Comparison of bacterial microbiota of the predatory mite Neoseiulus cucumeris (Acari: Phytoseiidae) and its factitious prey Tyrophagus putrescentiae (Acari: Acaridae)
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
PubMed
28127053
PubMed Central
PMC5428342
DOI
10.1038/s41598-017-00046-6
PII: 10.1038/s41598-017-00046-6
Knihovny.cz E-zdroje
- MeSH
- Acari mikrobiologie MeSH
- Bacteria klasifikace genetika MeSH
- metagenomika MeSH
- mikrobiota * MeSH
- symbióza MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
Neoseiulus cucumeris is a predatory mite used for biological control of arthropod pests. Mass-reared predators are fed with factitious prey mites such as Tyrophagus putrescentiae. Although some information on certain endosymbionts of N. cucumeris and T. putrescentiae exists, it is unclear whether both species share bacterial communities. The bacterial communities in populations of predator and prey mites, as well as the occurence of potential acaropathogenic bacteria were analyzed. The comparisons were based on the following groups: (i) N. cucumeris mass-production; (ii) N. cucumeris laboratory population with disease symptoms; (iii) T. putrescentiae pure populations and; (iv) T. putrescentiae from rearing units of N. cucumeris. Only 15% of OTUs were present in all samples from predatory and prey mite populations (core OTUs): the intracellular symbionts Wolbachia, Cardinium, plus other Blattabacterium-like, Solitalea-like, and Bartonella-like symbionts. Environmental bacteria were more abundant in predatory mites, while symbiotic bacteria prevailed in prey mites. Relative numbers of certain bacterial taxa were significantly different between the microbiota of prey mites reared with and without N. cucumeris. No significant differences were found in the bacterial communities of healthy N. cucumeris compared to N. cucumeris showing disease symptoms. We did not identify any confirmed acaropathogenic bacteria among microbiota.
Crop Research Institute Drnovska 507 73 Prague 6 Ruzyne CZ 161 06 Czechia Czech Republic
Evolutionary Biology Section School of Biological Sciences University of Reading Reading RG6 6AS UK
Research and Development Department Biobest Belgium N 5 Ilse Velden 18 Westerlo B 2260 Belgium
Zobrazit více v PubMed
Helle, W. & Sabelis, M. W. Spider mites: their biology, natural enemies and control. World crop pests, vol. 1B. (Elsevier, 1986).
Nomikou M, Janssen A, Schraag R, Sabelis MW. Phytoseiid predators as potential biological control agents for Bemisia tabaci. Exp. Appl. Acarol. 2001;25:271–291. doi: 10.1023/A:1017976725685. PubMed DOI
Put K, Bollens T, Wackers F, Pekas A. Non-target effects of commonly used plant protection products in roses on the predatory mite Euseius gallicus Kreiter & Tixier (Acari: Phytoseidae) Pest Manag. Sci. 2016;72:1373–1380. doi: 10.1002/ps.4162. PubMed DOI
Barbosa MFC, de Moraes GJ. Evaluation of astigmatid mites as factitious food for rearing four predaceous phytoseiid mites (Acari: Astigmatina; Phytoseiidae) Biol. Control. 2015;91:22–26. doi: 10.1016/j.biocontrol.2015.06.010. DOI
Gerson, U., Smiley, R. L. & Ochoa, R. Mites (acari) for pest control. 2nd edition. (Blackwell Science, 2003).
Schutte C, Gols R, Kleespies RG, Poitevin O, Dicke M. Novel bacterial pathogen Acaricomes phytoseiuli causes severe disease symptoms and histopathological changes in the predatory mite Phytoseiulus persimilis (Acari, Phytoseiidae) J. Invertebr. Pathol. 2008;98:127–135. doi: 10.1016/j.jip.2008.03.006. PubMed DOI
Hoy MA, Jeyaprakash A. Symbionts, including pathogens, of the predatory mite Metaseiulus occidentalis: current and future analysis methods. Exp. Appl. Acarol. 2008;46:329–347. doi: 10.1007/s10493-008-9185-3. PubMed DOI
Bjornson S. Natural enemies of mass-reared predatory mites (family Phytoseiidae) used for biological pest control. Exp. Appl. Acarol. 2008;46:299–306. doi: 10.1007/s10493-008-9187-1. PubMed DOI
van der Geest LPS, Elliot SL, Breeuwer JAJ, Beerling EAM. Diseases of mites. Exp. Appl. Acarol. 2000;24:497–560. doi: 10.1023/A:1026518418163. PubMed DOI
Hubert J, Nesvorna M, Palevsky E, Smrz J. Diseases of prey mites used for mass rearing predatory mites. Acta Hortic. 2014;1041:177–185. doi: 10.17660/ActaHortic.2014.1041.20. DOI
Zindel R, Gottlieb Y, Aebi A. Arthropod symbioses: a neglected parameter in pest- and disease-control programmes. J. Appl. Ecol. 2011;48:864–872. doi: 10.1111/j.1365-2664.2011.01984.x. DOI
Chiel E, et al. Almost there: transmission routes of bacterial symbionts between trophic levels. PLoS One. 2009;4:e4767. doi: 10.1371/journal.pone.0004767. PubMed DOI PMC
Enigl M, Schausberger P. Incidence of the endosymbionts Wolbachia, Cardinium and Spiroplasma in phytoseiid mites and associated prey. Exp. Appl. Acarol. 2007;42:75–85. doi: 10.1007/s10493-007-9080-3. PubMed DOI
Famah Sourassou N, et al. The endosymbionts Wolbachia and Cardinium and their effects in three populations of the predatory mite Neoseiulus paspalivorus. Exp. Appl. Acarol. 2014;64:207–221. doi: 10.1007/s10493-014-9820-0. PubMed DOI
Gols R, Schutte C, Stouthamer R, Dicke M. PCR-based identification of the pathogenic bacterium, Acaricomes phytoseiuli, in the biological control agent Phytoseiulus persimilis (Acari: Phytoseiidae) Biol. Control. 2007;42:316–325. doi: 10.1016/j.biocontrol.2007.06.001. DOI
Kopecky J, Nesvorna M, Hubert J. Bartonella-like bacteria carried by domestic mite species. Exp. Appl. Acarol. 2014;64:21–32. doi: 10.1007/s10493-014-9811-1. PubMed DOI
Hubert J, et al. Detection and identification of species-specific bacteria associated with synanthropic mites. Microb. Ecol. 2012;63:919–928. doi: 10.1007/s00248-011-9969-6. PubMed DOI
Ferragut Perez, F., Perez Moreno, I., Iraola Calvo, V. M. & Escudero Colomar, L. A. Acaros depredadores de la familia Phytoseiidae en las plantas cultivadas. (Ediciones Agrotecnicas, 2010) (in Spanish).
McMurtry JA, Croft BA. Life-styles of phytoseiid mites and their roles in biological control. Annu. Rev. Entomol. 1997;42:291–321. doi: 10.1146/annurev.ento.42.1.291. PubMed DOI
van Lenteren JC. The state of commercial augmentative biological control: plenty of natural enemies, but a frustrating lack of uptake. BioControl. 2012;57:1–20. doi: 10.1007/s10526-011-9395-1. DOI
Ramakers PMJ. Mass prodution and introduction of Amblyseius mckenziei and A. cucumeris. Bull. SROP. 1983;6:203–206.
Hoy MA, Jeyaprakash A. Microbial diversity in the predatory mite Metaseiulus occidentalis (Acari: Phytoseiidae) and its prey, Tetranychus urticae (Acari: Tetranychidae) Biol. Control. 2005;32:427–441. doi: 10.1016/j.biocontrol.2004.12.012. DOI
Yun J-H, et al. Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Appl. Environ. Microbiol. 2014;80:5254–5264. doi: 10.1128/AEM.01226-14. PubMed DOI PMC
Hubert J, Kopecky J, Nesvorna M, Perotti MA, Erban T. Detection and localization of Solitalea-like and Cardinium bacteria in three Acarus siro populations (Astigmata: Acaridae) Exp. Appl. Acarol. 2016;70:309–327. doi: 10.1007/s10493-016-0080-z. PubMed DOI
Erban T, et al. Populations of stored product mite Tyrophagus putrescentiae differ in their bacterial communities. Front. Microbiol. 2016;7:1046. doi: 10.3389/fmicb.2016.01046. PubMed DOI PMC
Erban T, Hubert J. Digestive function of lysozyme in synanthropic acaridid mites enables utilization of bacteria as a food source. Exp. Appl. Acarol. 2008;44:199–212. doi: 10.1007/s10493-008-9138-x. PubMed DOI
Erban T, Rybanska D, Harant K, Hortova B, Hubert J. Feces derived allergens of Tyrophagus putrescentiae reared on dried dog food and evidence of the strong nutritional interaction between the mite and Bacillus cereus producing protease bacillolysins and exo-chitinases. Front. Physiol. 2016;7:53. doi: 10.3389/fphys.2016.00053. PubMed DOI PMC
Rybanska D, Hubert J, Markovic M, Erban T. Dry dog food integrity and mite strain influence the density-dependent growth of the stored-product mite Tyrophagus putrescentiae (Acari: Acaridida) J. Econ. Entomol. 2016;109:454–460. doi: 10.1093/jee/tov298. PubMed DOI
Duek L, Kaufman G, Palevsky E, Berdicevsky I. Mites in fungal cultures. Mycoses. 2001;44:390–394. doi: 10.1046/j.1439-0507.2001.00684.x. PubMed DOI
Collins MD, Hoyles L, Foster G, Falsen E. Corynebacterium caspium sp. nov., from a Caspian seal (Phoca caspica) Int. J. Syst. Evol. Microbiol. 2004;54:925–928. doi: 10.1099/ijs.0.02950-0. PubMed DOI
Suzuki T, Honda H, Katsumata R. Production of antibacterial compounds analogous to chloramphenicol by a n-paraffin-grown bacterium. Agric. Biol. Chem. 1972;36:2223–2228. doi: 10.1080/00021369.1972.10860545. DOI
Murphy EC, Frick I-M. Gram-positive anaerobic cocci – commensals and opportunistic pathogens. FEMS Microbiol. Rev. 2013;37:520–553. doi: 10.1111/1574-6976.12005. PubMed DOI
Jan G, Leverrier P, Proudy I, Roland N. Survival and beneficial effects of propionibacteria in the human gut: in vivo and in vitro investigations. Lait. 2002;82:131–144. doi: 10.1051/lait:2001012. DOI
Foligne B, Breton J, Mater D, Jan G. Tracking the microbiome functionality: focus on Propionibacterium species. Gut. 2013;62:1227–1228. doi: 10.1136/gutjnl-2012-304393. PubMed DOI
Zindel R, et al. The role of the bacterial community in the nutritional ecology of the bulb mite Rhizoglyphus robini (Acari: Astigmata: Acaridae) FASEB J. 2013;27:1488–1497. doi: 10.1096/fj.12-216242. PubMed DOI
Hubert J, et al. Assessment of bacterial communities in thirteen species of laboratory-cultured domestic mites (Acari: Acaridida) J. Econ. Entomol. 2016;109:1887–1896. doi: 10.1093/jee/tow089. PubMed DOI
Hurst TP, et al. Impacts of Wolbachia infection on predator prey relationships: evaluating survival and horizontal transfer between wMelPop infected Aedes aegypti and its predators. J. Med. Entomol. 2012;49:624–630. doi: 10.1603/ME11277. PubMed DOI
Brown AN, Lloyd VK. Evidence for horizontal transfer of Wolbachia by a Drosophila mite. Exp. Appl. Acarol. 2015;66:301–311. doi: 10.1007/s10493-015-9918-z. PubMed DOI
Paula DP, et al. Detection and decay rates of prey and prey symbionts in the gut of a predator through metagenomics. Mol. Ecol. Resour. 2015;15:880–892. doi: 10.1111/1755-0998.12364. PubMed DOI
Wu K, Hoy MA. Cardinium is associated with reproductive incompatibility in the predatory mite Metaseiulus occidentalis (Acari: Phytoseiidae) J. Invertebr. Pathol. 2012;110:359–365. doi: 10.1016/j.jip.2012.03.027. PubMed DOI
Wu K, Hoy MA. Extended starvation reduced and eliminated Wolbachia, but not Cardinium, from Metaseiulus occidentalis females (Acari: Phytoseiidae): a need to reassess Wolbachia’s status in this predatory mite? J. Invertebr. Pathol. 2012;109:20–26. doi: 10.1016/j.jip.2011.09.005. PubMed DOI
Enigl M, Zchori-Fein E, Schausberger P. Negative evidence of Wolbachia in the predaceous mite Phytoseiulus persimilis. Exp. Appl. Acarol. 2005;36:249–262. doi: 10.1007/s10493-005-6075-9. PubMed DOI
Zchori-Fein E, Perlman SJ. Distribution of the bacterial symbiont Cardinium in arthropods. Mol. Ecol. 2004;13:2009–2016. doi: 10.1111/j.1365-294X.2004.02203.x. PubMed DOI
Zhang Y-K, Chen Y-T, Yang K, Hong X-Y. A review of prevalence and phylogeny of the bacterial symbiont Cardinium in mites (subclass: Acari) Syst. Appl. Acarol. 2016;21:978–990. doi: 10.11158/saa.21.7.11. DOI
Zhang Y-K, Chen Y-T, Yang K, Qiao G-X, Hong X-Y. Screening of spider mites (Acari: Tetranychidae) for reproductive endosymbionts reveals links between co-infection and evolutionary history. Sci. Rep. 2016;6:27900. doi: 10.1038/srep27900. PubMed DOI PMC
Clark JW, Kambhampati S. Phylogenetic analysis of Blattabacterium, endosymbiotic bacteria from the wood roach, Cryptocercus (Blattodea: Cryptocercidae), including a description of three new species. Mol. Phylogenet. Evol. 2003;26:82–88. doi: 10.1016/S1055-7903(02)00330-5. PubMed DOI
Gruwell ME, Hardy NB, Gullan PJ, Dittmar K. Evolutionary relationships among primary endosymbionts of the mealybug subfamily Phenacoccinae (Hemiptera: Coccoidea: Pseudococcidae) Appl. Environ. Microbiol. 2010;76:7521–7525. doi: 10.1128/AEM.01354-10. PubMed DOI PMC
Gruwell ME, Morse GE, Normark BB. Phylogenetic congruence of armored scale insects (Hemiptera: Diaspididae) and their primary endosymbionts from the phylum Bacteroidetes. Mol. Phylogenet. Evol. 2007;44:267–280. doi: 10.1016/j.ympev.2007.01.014. PubMed DOI
Moran NA, Tran P, Gerardo NM. Symbiosis and insect diversification: an ancient symbiont of sap-feeding insects from the bacterial phylum Bacteroidetes. Appl. Environ. Microbiol. 2005;71:8802–8810. doi: 10.1128/AEM.71.12.8802-8810.2005. PubMed DOI PMC
Kambhampati S, Alleman A, Park Y. Complete genome sequence of the endosymbiont Blattabacterium from the cockroach Nauphoeta cinerea (Blattodea: Blaberidae) Genomics. 2013;102:479–483. doi: 10.1016/j.ygeno.2013.09.003. PubMed DOI
Sabree ZL, Kambhampati S, Moran NA. Nitrogen recycling and nutritional provisioning by Blattabacterium, the cockroach endosymbiont. Proc. Natl. Acad. Sci. USA. 2009;106:19521–19526. doi: 10.1073/pnas.0907504106. PubMed DOI PMC
Valerio CR, Murray P, Arlian LG, Slater JE. Bacterial 16S ribosomal DNA in house dust mite cultures. J. Allergy Clin. Immunol. 2005;116:1296–1300. doi: 10.1016/j.jaci.2005.09.046. PubMed DOI
Hubert J, et al. Differences in the bacterial community of laboratory and wild populations of the predatory mite Cheyletus eruditus (Acarina: Cheyletidae) and bacteria transmission from its prey Acarus siro (Acari: Acaridae) J. Econ. Entomol. 2016;109:1450–1457. doi: 10.1093/jee/tow032. PubMed DOI
Saleh SM, Kelada NL, Shaker N. Control of European house dust mite Dermatophagoides pteronyssinus (Trouessart) with Bacillus spp. Acarologia. 1991;32:257–260.
Erban T, Nesvorna M, Erbanova M, Hubert J. Bacillus thuringiensis var. tenebrionis control of synanthropic mites (Acari: Acaridida) under laboratory conditions. Exp. Appl. Acarol. 2009;49:339–346. doi: 10.1007/s10493-009-9265-z. PubMed DOI
Vallet-Gely I, Lemaitre B, Boccard F. Bacterial strategies to overcome insect defences. Nat. Rev. Microbiol. 2008;6:302–313. doi: 10.1038/nrmicro1870. PubMed DOI
Oliwa-Stasiak K, Molnar CI, Arshak K, Bartoszcze M, Adley CC. Development of a PCR assay for identification of the Bacillus cereus group species. J. Appl. Microbiol. 2010;108:266–273. doi: 10.1111/j.1365-2672.2009.04419.x. PubMed DOI
Baumler AJ, Sperandio V. Interactions between the microbiota and pathogenic bacteria in the gut. Nature. 2016;535:85–93. doi: 10.1038/nature18849. PubMed DOI PMC
Hubert J, Pekar S, Aulicky R, Nesvorna M, Stejskal V. The effect of stored barley cultivars, temperature and humidity on population increase of Acarus siro, Lepidoglyphus destructor and Tyrophagus putrescentiae. Exp. Appl. Acarol. 2013;60:241–252. doi: 10.1007/s10493-012-9639-5. PubMed DOI
Lane, D. J. 16S/23S rRNA sequencing In Nucleic acid techniques in bacterial systematics (ed. Stackebrandt, E. & Goodfellow, M.) 115–175 (John Wiley and Sons, 1991).
Chiodini RJ, et al. Microbial population differentials between mucosal and submucosal intestinal tissues in advanced Crohn’s disease of the ileum. PLoS One. 2015;10:e0134382. doi: 10.1371/journal.pone.0134382. PubMed DOI PMC
Schloss PD, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 2009;75:7537–7541. doi: 10.1128/AEM.01541-09. PubMed DOI PMC
Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl. Environ. Microbiol. 2013;79:5112–5120. doi: 10.1128/AEM.01043-13. PubMed DOI PMC
Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods. 2013;10:996–968. doi: 10.1038/nmeth.2604. PubMed DOI
Cole JR, et al. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 2014;42:D633–D642. doi: 10.1093/nar/gkt1244. PubMed DOI PMC
Quast C, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–D596. doi: 10.1093/nar/gks1219. PubMed DOI PMC
Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 2011;27:2194–2200. doi: 10.1093/bioinformatics/btr381. PubMed DOI PMC
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J. Mol. Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI
Altschul SF, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–3402. doi: 10.1093/nar/25.17.3389. PubMed DOI PMC
Ondov BD, Bergman NH, Phillippy AM. Interactive metagenomic visualization in a Web browser. BMC Bioinformatics. 2011;12:385. doi: 10.1186/1471-2105-12-385. PubMed DOI PMC
Hammer, O., Harper, D. A. T. & Ryan, P. D. PAST: paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 4 (2001). http://palaeo-electronica.org/2001_1/past/issue1_01.htm. Accessed 23 June 2016.
Anderson MJ, Walsh DCI. PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: what null hypothesis are you testing? Ecol. Monogr. 2013;83:557–574. doi: 10.1890/12-2010.1. DOI
White JR, Nagarajan N, Pop M. Statistical methods for detecting differentially abundant features in clinical metagenomic samples. PLoS Comput. Biol. 2009;5:e1000352. doi: 10.1371/journal.pcbi.1000352. PubMed DOI PMC