Basic Methods of Cell Cycle Analysis
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
TN01000013
Technology Agency of the Czech Republic
NU22-08-00148
Ministry of Health
Project EATRIS-CZ, grant number LM2018133
Ministry of Education Youth and Sports
Project ENOCH, grant number CZ.02.1.01/0.0/0.0/16_019/0000868
European Regional Development Fund
PubMed
36835083
PubMed Central
PMC9963451
DOI
10.3390/ijms24043674
PII: ijms24043674
Knihovny.cz E-zdroje
- Klíčová slova
- BrdU, DNA labeling, EdU, cell cycle, labeled nucleosides, markers of cell cycle phases, time lapse microscopy,
- MeSH
- bromodeoxyuridin * metabolismus MeSH
- buněčné dělení MeSH
- buněčný cyklus MeSH
- proliferace buněk MeSH
- reprodukovatelnost výsledků MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- bromodeoxyuridin * MeSH
Cellular growth and the preparation of cells for division between two successive cell divisions is called the cell cycle. The cell cycle is divided into several phases; the length of these particular cell cycle phases is an important characteristic of cell life. The progression of cells through these phases is a highly orchestrated process governed by endogenous and exogenous factors. For the elucidation of the role of these factors, including pathological aspects, various methods have been developed. Among these methods, those focused on the analysis of the duration of distinct cell cycle phases play important role. The main aim of this review is to guide the readers through the basic methods of the determination of cell cycle phases and estimation of their length, with a focus on the effectiveness and reproducibility of the described methods.
Zobrazit více v PubMed
Malumbres M., Barbacid M. Cell cycle, CDKs and cancer: A changing paradigm. Nat. Rev. Cancer. 2009;9:153–166. doi: 10.1038/nrc2602. PubMed DOI
Krabbe L.-M., Margulis V., Lotan Y. Prognostic Role of Cell Cycle and Proliferative Markers in Clear Cell Renal Cell Carcinoma. Urol. Clin. N. Am. 2015;43:105–118. doi: 10.1016/j.ucl.2015.08.010. PubMed DOI
Gong J.P., Traganos F., Darzynkiewicz Z. Growth Imbalance and Altered Expression of Cyclin-B1, Cyclin-a, Cyclin-E, and Cyclin-D3 in Molt-4 Cells Synchronized in the Cell-Cycle by Inhibitors of DNA-Replication. Cell Growth Differ. 1995;6:1485–1493. PubMed
Fang H.-S., Lang M.-F., Sun J. New Methods for Cell Cycle Analysis. Chin. J. Anal. Chem. 2019;47:1293–1301. doi: 10.1016/S1872-2040(19)61186-2. DOI
Eastman A.E., Guo S. The palette of techniques for cell cycle analysis. FEBS Lett. 2020;594:2084–2098. doi: 10.1002/1873-3468.13842. PubMed DOI PMC
Charlebois D.A., Balázsi G. Modeling cell population dynamics. Silico Biol. 2019;13:21–39. doi: 10.3233/ISB-180470. PubMed DOI PMC
Corso A. MA 138–Calculus 2 with Life Science Applications Solving Differential Equations. [(accessed on 14 December 2022)]. Available online: https://www.ms.uky.edu/~ma138/Spring18/Lectures/Lecture_12-13.pdf.
Vogels M., Zoeckler R., Stasiw D.M., Cerny L.C. P. F. Verhulst’s “notice sur la loi que la populations suit dans son accroissement” from correspondence mathematique et physique. Ghent, vol. X, 1838. J. Biol. Phys. 1975;3:183–192. doi: 10.1007/BF02309004. DOI
Verhulst P.F. Notice sur la loi que la population suit dans son accroissement. Corresp. Math. Phys. 1838;10:113–121.
Lerma M.A. 3.4. The Logistic Equation. [(accessed on 14 December 2022)]. Available online: https://sites.math.northwestern.edu/~mlerma/courses/math214-2-03f/notes/c2-all.pdf.
Monod J. The growth of bacterial cultures. Annu. Rev. Microbiol. 1949;3:371–394. doi: 10.1146/annurev.mi.03.100149.002103. DOI
Korolev K.S., Xavier J.B., Gore J. Turning ecology and evolution against cancer. Nat. Rev. Cancer. 2014;14:371–380. doi: 10.1038/nrc3712. PubMed DOI
Courchamp F., Clutton-Brock T., Grenfell B. Inverse density dependence and the Allee effect. Trends Ecol. Evol. 1999;14:405–410. doi: 10.1016/S0169-5347(99)01683-3. PubMed DOI
Winter A., Richter A., Eikeset A.M. Implications of Allee effects for fisheries management in a changing climate: Evidence from Atlantic cod. Ecol. Appl. 2020;30:e01994. doi: 10.1002/eap.1994. PubMed DOI
Neufeld Z., Von Witt W., Lakatos D., Wang J., Hegedus B., Czirok A. The role of Allee effect in modelling post resection recurrence of glioblastoma. PLoS Comput. Biol. 2017;13:e1005818. doi: 10.1371/journal.pcbi.1005818. PubMed DOI PMC
Ding L., Cao J., Lin W., Chen H., Xiong X., Ao H., Yu M., Lin J., Cui Q. The Roles of Cyclin-Dependent Kinases in Cell-Cycle Progression and Therapeutic Strategies in Human Breast Cancer. Int. J. Mol. Sci. 2020;21:1960. doi: 10.3390/ijms21061960. PubMed DOI PMC
Otto T., Sicinski P. Cell cycle proteins as promising targets in cancer therapy. Nat. Rev. Cancer. 2017;17:93–115. doi: 10.1038/nrc.2016.138. PubMed DOI PMC
Cao L., Chen F., Yang X., Xu W., Xie J., Yu L. Phylogenetic analysis of CDK and cyclin proteins in premetazoan lineages. BMC Evol. Biol. 2014;14:10. doi: 10.1186/1471-2148-14-10. PubMed DOI PMC
Blagosklonny M.V., Pardee A.B. The Restriction Point of the Cell Cycle. Cell Cycle. 2002;1:102–109. doi: 10.4161/cc.1.2.108. PubMed DOI
Pardee A.B. A Restriction Point for Control of Normal Animal Cell Proliferation. Proc. Natl. Acad. Sci. USA. 1974;71:1286–1290. doi: 10.1073/pnas.71.4.1286. PubMed DOI PMC
Wang Y.M., Ji P., Liu J.S., Broaddus R.R., Xue F.X., Zhang W. Centrosome-associated regulators of the G(2)/M checkpoint as targets for cancer therapy. Mol. Cancer. 2009;8:8. doi: 10.1186/1476-4598-8-8. PubMed DOI PMC
Oki T., Nishimura K., Kitaura J., Togami K., Maehara A., Izawa K., Sakaue-Sawano A., Niida A., Miyano S., Aburatani H., et al. A novel cell-cycle-indicator, mVenus-p27K−, identifies quiescent cells and visualizes G0–G1 transition. Sci. Rep. 2014;4:4012. doi: 10.1038/srep04012. PubMed DOI PMC
Kumari R., Jat P. Mechanisms of Cellular Senescence: Cell Cycle Arrest and Senescence Associated Secretory Phenotype. Front. Cell Dev. Biol. 2021;9 doi: 10.3389/fcell.2021.645593. PubMed DOI PMC
Di Micco R., Sulli G., Dobreva M., Liontos M., Botrugno O.A., Gargiulo G., Zuffo R.D., Matti V., D’Ario G., Montani E., et al. Interplay between oncogene-induced DNA damage response and heterochromatin in senescence and cancer. Nat. Cell Biol. 2011;13:292–302. doi: 10.1038/ncb2170. PubMed DOI PMC
Kuilman T., Michaloglou C., Mooi W.J., Peeper D.S. The essence of senescence. Genes Dev. 2010;24:2463–2479. doi: 10.1101/gad.1971610. PubMed DOI PMC
Passos J.F., Nelson G., Wang C., Richter T., Simillion C., Proctor C.J., Miwa S., Olijslagers S., Hallinan J., Wipat A., et al. Feedback between p21 and reactive oxygen production is necessary for cell senescence. Mol. Syst. Biol. 2010;6:347. doi: 10.1038/msb.2010.5. PubMed DOI PMC
Pazolli E., Alspach E., Milczarek A., Prior J., Piwnica-Worms D., Stewart S.A. Chromatin Remodeling Underlies the Senescence-Associated Secretory Phenotype of Tumor Stromal Fibroblasts That Supports Cancer Progression. Cancer Res. 2012;72:2251–2261. doi: 10.1158/0008-5472.CAN-11-3386. PubMed DOI PMC
García-Prat L., Martínez-Vicente M., Perdiguero E., Ortet L., Rodríguez-Ubreva J., Rebollo E., Ruiz-Bonilla V., Gutarra S., Ballestar E., Serrano A.L., et al. Autophagy maintains stemness by preventing senescence. Nature. 2016;529:37–42. doi: 10.1038/nature16187. PubMed DOI
Mikuła-Pietrasik J., Niklas A., Uruski P., Tykarski A., Książek K. Mechanisms and significance of therapy-induced and spontaneous senescence of cancer cells. Cell. Mol. Life Sci. 2019;77:213–229. doi: 10.1007/s00018-019-03261-8. PubMed DOI PMC
McKinnon K.M. Flow Cytometry: An Overview. Curr. Protoc. Immunol. 2018;120:5.1.1–5.1.11. doi: 10.1002/cpim.40. PubMed DOI PMC
Darzynkiewicz Z., Juan G., Bedner E. Determining Cell Cycle Stages by Flow Cytometry. Curr. Protoc. Cell Biol. 1999;1:8.4.1–8.4.18. doi: 10.1002/0471143030.cb0804s01. PubMed DOI
Frydrych I. Cell cycle analysis by flow cytometry. In: Agrawal K., Bouchal J., Das V., Drábek J., Džubák P., Hajdúch M., Koberna K., Ligasová A., Mistrík M., de Sanctis J.B., editors. Laboratory Techniques in Cellular and Molecular Medicine. 1st ed. Palacký University Olomouc; Olomouc, Czech Republic: 2021. pp. 193–200. DOI
Jayat C., Ratinaud M.-H. Cell cycle analysis by flow cytometry: Principles and applications. Biol. Cell. 1993;78:15–25. doi: 10.1016/0248-4900(93)90110-Z. PubMed DOI
Baisch H., Beck H.-P., Christensen I.J., Hartmann N.R., Fried J., Dean P.N., Gray J.W., Jett J.H., Johnston D.A., White R.A., et al. A comparison of mathematical methods for the analysis of DNA histograms obtained by flow cytometry. Cell Prolif. 1982;15:235–249. doi: 10.1111/j.1365-2184.1982.tb01043.x. PubMed DOI
Dean P.N. A simplified method of DNA distribution analysis. Cell Prolif. 1980;13:299–308. doi: 10.1111/j.1365-2184.1980.tb00468.x. PubMed DOI
Dean P.N., Jett J.H. Mathematical analysis of DNA distributions derived from flow microfluorometry. J. Cell Biol. 1974;60:523–527. doi: 10.1083/jcb.60.2.523. PubMed DOI PMC
Jett J.H., Gurley L.R. An Improved Sum-Of-Normals Technique For Cell Cycle Distribution Analysis of Flow Cytometric Dna Histograms. Cell Prolif. 1981;14:413–423. doi: 10.1111/j.1365-2184.1981.tb00548.x. PubMed DOI
Watson J.V., Chambers S.H., Smith P.J. A pragmatic approach to the analysis of DNA histograms with a definable G1 peak. Cytometry. 1987;8:1–8. doi: 10.1002/cyto.990080101. PubMed DOI
Liboska R., Ligasová A., Strunin D., Rosenberg I., Koberna K. Most Anti-BrdU Antibodies React with 2′-Deoxy-5-Ethynyluridine—The Method for the Effective Suppression of This Cross-Reactivity. PLoS ONE. 2012;7:e51679. doi: 10.1371/journal.pone.0051679. PubMed DOI PMC
Pozarowski P., Darzynkiewicz Z. Analysis of Cell Cycle by Flow Cytometry. In: Schönthal A.H., editor. Checkpoint Controls and Cancer: Volume 2: Activation and Regulation Protocols. Humana Press; Totowa, NJ, USA: 2004. pp. 301–311. PubMed
Hendzel M.J., Wei Y., Mancini M.A., Van Hooser A., Ranalli T., Brinkley B.R., Bazett-Jones D.P., Allis C.D. Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma. 1997;106:348–360. doi: 10.1007/s004120050256. PubMed DOI
Shapiro H.M. Flow cytometric estimation of DNA and RNA content in intact cells stained with hoechst 33342 and pyronin Y. Cytometry. 1981;2:143–150. doi: 10.1002/cyto.990020302. PubMed DOI
Qiu L., Liu M., Pan K. A Triple Staining Method for Accurate Cell Cycle Analysis Using Multiparameter Flow Cytometry. Molecules. 2013;18:15412–15421. doi: 10.3390/molecules181215412. PubMed DOI PMC
Scholzen T., Gerdes J. The Ki-67 protein: From the known and the unknown. J. Cell Physiol. 2000;182:311–322. doi: 10.1002/(SICI)1097-4652(200003)182:3<311::AID-JCP1>3.0.CO;2-9. PubMed DOI
Gerdes J., Lemke H., Baisch H., Wacker H.H., Schwab U., Stein H. Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J. Immunol. 1984;133:1710–1715. doi: 10.4049/jimmunol.133.4.1710. PubMed DOI
Miller I., Min M., Yang C., Tian C., Gookin S., Carter D., Spencer S.L. Ki67 is a Graded Rather than a Binary Marker of Proliferation versus Quiescence. Cell Rep. 2018;24:1105–1112.e5. doi: 10.1016/j.celrep.2018.06.110. PubMed DOI PMC
Sobecki M., Mrouj K., Camasses A., Parisis N., Nicolas E., Llères D., Gerbe F., Prieto S., Krasinska L., David A., et al. The cell proliferation antigen Ki-67 organises heterochromatin. Elife. 2016;5:e13722. doi: 10.7554/eLife.13722. PubMed DOI PMC
Sobecki M., Mrouj K., Colinge J., Gerbe F., Jay P., Krasinska L., Dulic V., Fisher D. Cell-Cycle Regulation Accounts for Variability in Ki-67 Expression Levels. Cancer Res. 2017;77:2722–2734. doi: 10.1158/0008-5472.CAN-16-0707. PubMed DOI
Sakaue-Sawano A., Kurokawa H., Morimura T., Hanyu A., Hama H., Osawa H., Kashiwagi S., Fukami K., Miyata T., Miyoshi H., et al. Visualizing Spatiotemporal Dynamics of Multicellular Cell-Cycle Progression. Cell. 2008;132:487–498. doi: 10.1016/j.cell.2007.12.033. PubMed DOI
Whitfield M.L., Zheng L.-X., Baldwin A., Ohta T., Hurt M.M., Marzluff W.F. Stem-Loop Binding Protein, the Protein That Binds the 3′ End of Histone mRNA, Is Cell Cycle Regulated by Both Translational and Posttranslational Mechanisms. Mol. Cell. Biol. 2000;20:4188–4198. doi: 10.1128/MCB.20.12.4188-4198.2000. PubMed DOI PMC
Mitchison J.M. The Biology of the Cell Cycle. Cambridge University Press; London, UK: 1971. p. 313.
Wheeler R.J. Analyzing the dynamics of cell cycle processes from fixed samples through ergodic principles. Mol. Biol. Cell. 2015;26:3898–3903. doi: 10.1091/mbc.E15-03-0151. PubMed DOI PMC
Zeuthen E. Synchrony in Cell Division and Growth. 1st ed. John Wiley & Sons Inc.; Hoboken, NJ, USA: 1964.
Schorl C., Sedivy J.M. Analysis of cell cycle phases and progression in cultured mammalian cells. Methods. 2007;41:143–150. doi: 10.1016/j.ymeth.2006.07.022. PubMed DOI PMC
Pereira P.D., Serra-Caetano A., Cabrita M., Bekman E., Braga J., Rino J., Santus R., Filipe P.L., Sousa A.E., Ferreira J.A. Quantification of cell cycle kinetics by EdU (5-ethynyl-2′-deoxyuridine)-coupled-fluorescence-intensity analysis. Oncotarget. 2017;8:40514–40532. doi: 10.18632/oncotarget.17121. PubMed DOI PMC
Hwang Y., Futran M., Hidalgo D., Pop R., Iyer D.R., Scully R., Rhind N., Socolovsky M. Global increase in replication fork speed during a p57KIP2-regulated erythroid cell fate switch. Sci. Adv. 2017;3:e1700298. doi: 10.1126/sciadv.1700298. PubMed DOI PMC
Martynoga B., Morrison H., Price D., Mason J. Foxg1 is required for specification of ventral telencephalon and region-specific regulation of dorsal telencephalic precursor proliferation and apoptosis. Dev. Biol. 2005;283:113–127. doi: 10.1016/j.ydbio.2005.04.005. PubMed DOI
Bialic M., Nachar B.A.A., Koźlak M., Coulon V., Schwob E. Measuring S-Phase Duration from Asynchronous Cells Using Dual EdU-BrdU Pulse-Chase Labeling Flow Cytometry. Genes. 2022;13:408. doi: 10.3390/genes13030408. PubMed DOI PMC
Chao H.X., I Fakhreddin R., Shimerov H.K., Kedziora K.M., Kumar R.J., Perez J., Limas J.C., Grant G.D., Cook J.G., Gupta G.P., et al. Evidence that the human cell cycle is a series of uncoupled, memoryless phases. Mol. Syst. Biol. 2019;15:e8604. doi: 10.15252/msb.20188604. PubMed DOI PMC
Ligasová A., Koberna K. DNA Replication: From Radioisotopes to Click Chemistry. Molecules. 2018;23:3007. doi: 10.3390/molecules23113007. PubMed DOI PMC
Taylor J.H., Woods P.S., Hughes W.L. The organization and duplication of chromosomes as revealed by autoradiographic studies using tritium-labeled thymidinee. Proc. Natl. Acad. Sci. USA. 1957;43:122–128. doi: 10.1073/pnas.43.1.122. PubMed DOI PMC
Visser D., Frisch D., Huang B. Synthesis of 5-chlorodeoxyuridine and a comparative study of 5-halodeoxyuridines in E. Coli. Biochem. Pharmacol. 1960;5:157–164. doi: 10.1016/0006-2952(60)90017-4. PubMed DOI
Prusoff W.H. Synthesis and biological activities of iododeoxyuridine, an analog of thymidine. Biochim. Biophys. Acta. 1959;32:295–296. doi: 10.1016/0006-3002(59)90597-9. PubMed DOI
Aten J.A., Bakker P.J.M., Stap J., Boschman G.A., Veenhof C.H.N. DNA double labelling with IdUrd and CldUrd for spatial and temporal analysis of cell proliferation and DNA replication. Histochem. J. 1992;24:251–259. doi: 10.1007/BF01046839. PubMed DOI
Ligasová A., Konečný P., Frydrych I., Koberna K. Cell cycle profiling by image and flow cytometry: The optimised protocol for the detection of replicational activity using 5-Bromo-2′-deoxyuridine, low concentration of hydrochloric acid and exonuclease III. PLoS ONE. 2017;12:e0175880. doi: 10.1371/journal.pone.0175880. PubMed DOI PMC
Ligasová A., Konečný P., Frydrych I., Koberna K. Looking for ugly ducklings: The role of the stability of BrdU-antibody complex and the improved method of the detection of DNA replication. PLoS ONE. 2017;12:e0174893. doi: 10.1371/journal.pone.0174893. PubMed DOI PMC
Ligasová A., Strunin D., Liboska R., Rosenberg I., Koberna K. Atomic Scissors: A New Method of Tracking the 5-Bromo-2′-Deoxyuridine-Labeled DNA In Situ. PLoS ONE. 2012;7:e52584. doi: 10.1371/journal.pone.0052584. PubMed DOI PMC
Ageno M., Dore E., Frontali C. The Alkaline Denaturation of DNA. Biophys. J. 1969;9:1281–1311. doi: 10.1016/S0006-3495(69)86452-0. PubMed DOI PMC
Dimitrova D.S., Berezney R. The spatio-temporal organization of DNA replication sites is identical in primary, immortalized and transformed mammalian cells. J. Cell Sci. 2002;115:4037–4051. doi: 10.1242/jcs.00087. PubMed DOI
Jackson D.A., Pombo A. Replicon Clusters Are Stable Units of Chromosome Structure: Evidence That Nuclear Organization Contributes to the Efficient Activation and Propagation of S Phase in Human Cells. J. Cell Biol. 1998;140:1285–1295. doi: 10.1083/jcb.140.6.1285. PubMed DOI PMC
Kennedy B.K., Barbie D.A., Classon M., Dyson N., Harlow E. Nuclear organization of DNA replication in primary mammalian cells. Genes Dev. 2000;14:2855–2868. doi: 10.1101/gad.842600. PubMed DOI PMC
Koberna K., Ligasová A., Malínský J., Pliss A., Siegel A.J., Cvačková Z., Fidlerová H., Mašata M., Fialová M., Raška I., et al. Electron microscopy of DNA replication in 3-D: Evidence for similar-sized replication foci throughout S-phase. J. Cell. Biochem. 2004;94:126–138. doi: 10.1002/jcb.20300. PubMed DOI
Dolbeare F., Gray J.W. Use of restriction endonucleases and exonuclease III to expose halogenated pyrimidines for immunochemical staining. Cytometry. 1988;9:631–635. doi: 10.1002/cyto.990090619. PubMed DOI
Fox M., Arndt-Jovin D., Jovin T., Baumann P., Robert-Nicoud M. Spatial and temporal distribution of DNA replication sites localized by immunofluorescence and confocal microscopy in mouse fibroblasts. J. Cell Sci. 1991;99:247–253. doi: 10.1242/jcs.99.2.247. PubMed DOI
Li X., Darzynkiewicz Z. Labelling DNA strand breaks with BrdUTP. Detection of apoptosis and cell proliferation. Cell Prolif. 1995;28:571–579. doi: 10.1111/j.1365-2184.1995.tb00045.x. PubMed DOI
Salic A., Mitchison T.J. A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc. Natl. Acad. Sci. USA. 2008;105:2415–2420. doi: 10.1073/pnas.0712168105. PubMed DOI PMC
Kohlmeier F., Maya-Mendoza A., Jackson D.A. EdU induces DNA damage response and cell death in mESC in culture. Chromosom. Res. 2013;21:87–100. doi: 10.1007/s10577-013-9340-5. PubMed DOI PMC
Ligasová A., Strunin D., Friedecký D., Adam T., Koberna K. A Fatal Combination: A Thymidylate Synthase Inhibitor with DNA Damaging Activity. PLoS ONE. 2015;10:e0117459. doi: 10.1371/journal.pone.0117459. PubMed DOI PMC
Ross H.H., Rahman M., Levkoff L.H., Millette S., Martin-Carreras T., Dunbar E.M., Reynolds B.A., Laywell E.D. Ethynyldeoxyuridine (EdU) suppresses in vitro population expansion and in vivo tumor progression of human glioblastoma cells. J. Neuro-Oncol. 2011;105:485–498. doi: 10.1007/s11060-011-0621-6. PubMed DOI PMC
Zhao H., Halicka H.D., Li J., Biela E., Berniak K., Dobrucki J., Darzynkiewicz Z. DNA damage signaling, impairment of cell cycle progression, and apoptosis triggered by 5-ethynyl-2′-deoxyuridine incorporated into DNA. Cytom. Part A. 2013;83:979–988. doi: 10.1002/cyto.a.22396. PubMed DOI PMC
Ross H.H., Levkoff L.H., Marshall G.P., Caldeira M., Steindler D.A., Reynolds B.A., Laywell E.D. Bromodeoxyuridine Induces Senescence in Neural Stem and Progenitor Cells. Stem Cells. 2008;26:3218–3227. doi: 10.1634/stemcells.2008-0299. PubMed DOI PMC
Quastler H., Sherman F. Cell population kinetics in the intestinal epithelium of the mouse. Exp. Cell Res. 1959;17:420–438. doi: 10.1016/0014-4827(59)90063-1. PubMed DOI
Stanners C., Till J. DNA synthesis in individual L-strain mouse cells. Biochim. Biophys. Acta. 1960;37:406–419. doi: 10.1016/0006-3002(60)90496-0. PubMed DOI
Maga G., Hübscher U. Proliferating cell nuclear antigen (PCNA): A dancer with many partners. J. Cell Sci. 2003;116:3051–3060. doi: 10.1242/jcs.00653. PubMed DOI
Strzalka W., Ziemienowicz A. Proliferating cell nuclear antigen (PCNA): A key factor in DNA replication and cell cycle regulation. Ann. Bot. 2010;107:1127–1140. doi: 10.1093/aob/mcq243. PubMed DOI PMC
Madsen P., Celis J.E. S-phase patterns of cyclin (PCNA) antigen staining resemble topographical patterns of DNA synthesis. A role for cyclin in DNA replication? FEBS Lett. 1985;193:5–11. doi: 10.1016/0014-5793(85)80068-5. PubMed DOI
Dowling M.R., Kan A., Heinzel S., Zhou J.H.S., Marchingo J.M., Wellard C.J., Markham J.F., Hodgkin P.D. Stretched cell cycle model for proliferating lymphocytes. Proc. Natl. Acad. Sci. USA. 2014;111:6377–6382. doi: 10.1073/pnas.1322420111. PubMed DOI PMC
Forcina G.C., Conlon M., Wells A., Cao J.Y., Dixon S.J. Systematic Quantification of Population Cell Death Kinetics in Mammalian Cells. Cell Syst. 2017;4:600–610.e6. doi: 10.1016/j.cels.2017.05.002. PubMed DOI PMC
Crowley L.C., Scott A.P., Marfell B.J., Boughaba J.A., Chojnowski G., Waterhouse N.J. Measuring Cell Death by Propidium Iodide Uptake and Flow Cytometry. Cold Spring Harb. Protoc. 2016;2016:pdb-prot087163. doi: 10.1101/pdb.prot087163. PubMed DOI
Schmid I., Krall W.J., Uittenbogaart C.H., Braun J., Giorgi J.V. Dead cell discrimination with 7-amino-actinomcin D in combination with dual color immunofluorescence in single laser flow cytometry. Cytometry. 1992;13:204–208. doi: 10.1002/cyto.990130216. PubMed DOI
Icha J., Weber M., Waters J.C., Norden C. Phototoxicity in live fluorescence microscopy, and how to avoid it. Bioessays. 2017;39 doi: 10.1002/bies.201700003. PubMed DOI
Skylaki S., Hilsenbeck O., Schroeder T. Challenges in long-term imaging and quantification of single-cell dynamics. Nat. Biotechnol. 2016;34:1137–1144. doi: 10.1038/nbt.3713. PubMed DOI
Doan M., Vorobjev I., Rees P., Filby A., Wolkenhauer O., Goldfeld A.E., Lieberman J., Barteneva N., Carpenter A., Hennig H. Diagnostic Potential of Imaging Flow Cytometry. Trends Biotechnol. 2018;36:649–652. doi: 10.1016/j.tibtech.2017.12.008. PubMed DOI
Behbehani G.K. Cell Cycle Analysis by Mass Cytometry. Methods Mol. Biol. 2017;1686:105–124. doi: 10.1007/978-1-4939-7371-2_8. PubMed DOI
Schneider E.L., Mitsui Y. The relationship between in vitro cellular aging and in vivo human age. Proc. Natl. Acad. Sci. USA. 1976;73:3584–3588. doi: 10.1073/pnas.73.10.3584. PubMed DOI PMC
Sherwood S.W., Rush D., Ellsworth J.L., Schimke R.T. Defining cellular senescence in IMR-90 cells: A flow cytometric analysis. Proc. Natl. Acad. Sci. USA. 1988;85:9086–9090. doi: 10.1073/pnas.85.23.9086. PubMed DOI PMC
Adewoye A.B., Tampakis D., Follenzi A., Stolzing A. Multiparameter flow cytometric detection and quantification of senescent cells in vitro. Biogerontology. 2020;21:773–786. doi: 10.1007/s10522-020-09893-9. PubMed DOI PMC
Perillo N.L., Walford R.L., Newman M.A., Effros R.B. Human T lymphocytes possess a limited in vitro life span. Exp. Gerontol. 1989;24:177–187. doi: 10.1016/0531-5565(89)90009-0. PubMed DOI
Lipetz J., Cristofalo V.J. Ultrastructural changes accompanying the aging of human diploid cells in culture. J. Ultrastruct. Res. 1972;39:43–56. doi: 10.1016/S0022-5320(72)80005-4. PubMed DOI
Dimri G.P., Lee X., Basile G., Acosta M., Scott G., Roskelley C., Medrano E.E., Linskens M., Rubelj I., Pereira-Smith O., et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl. Acad. Sci. USA. 1995;92:9363–9367. doi: 10.1073/pnas.92.20.9363. PubMed DOI PMC
Thomas E., Al-Baker E., Dropcova S., Denyer S., Ostad N., Lloyd A., Kill I.R., Faragher R.G. Different Kinetics of Senescence in Human Fibroblasts and Peritoneal Mesothelial Cells. Exp. Cell Res. 1997;236:355–358. doi: 10.1006/excr.1997.3760. PubMed DOI
Yegorov Y.E., Akimov S.S., Hass R., Zelenin A.V., Prudovsky I.A. Endogenous β-Galactosidase Activity in Continuously Nonproliferating Cells. Exp. Cell Res. 1998;243:207–211. doi: 10.1006/excr.1998.4169. PubMed DOI
Piechota M., Sunderland P., Wysocka A., Nalberczak M., Sliwinska M.A., Radwanska K., Sikora E. Is senescence-associated β-galactosidase a marker of neuronal senescence? Oncotarget. 2016;7:81099–81109. doi: 10.18632/oncotarget.12752. PubMed DOI PMC
Severino J., Allen R.G., Balin S., Balin A., Cristofalo V.J. Is β-Galactosidase Staining a Marker of Senescence in Vitro and in Vivo? Exp. Cell Res. 2000;257:162–171. doi: 10.1006/excr.2000.4875. PubMed DOI
Pospelova T.V., Demidenko Z.N., Bukreeva E.I., Pospelov V.A., Gudkov A., Blagosklonny M.V. Pseudo-DNA damage response in senescent cells. Cell Cycle. 2009;8:4112–4118. doi: 10.4161/cc.8.24.10215. PubMed DOI PMC
Noren Hooten N., Evans M.K. Techniques to Induce and Quantify Cellular Senescence. J. Vis. Exp. 2017;123:e55533. doi: 10.3791/55533. PubMed DOI PMC
Narita M., Nuñez S., Heard E., Narita M., Lin A.W., Hearn S.A., Spector D.L., Hannon G.J., Lowe S.W. Rb-Mediated Heterochromatin Formation and Silencing of E2F Target Genes during Cellular Senescence. Cell. 2003;113:703–716. doi: 10.1016/S0092-8674(03)00401-X. PubMed DOI
Sharpless N.E., Sherr C.J. Forging a signature of in vivo senescence. Nat. Rev. Cancer. 2015;15:397–408. doi: 10.1038/nrc3960. PubMed DOI
Kosar M., Bartkova J., Hubackova S., Hodny Z., Lukas J., Bartek J. Senescence-associated heterochromatin foci are dispensable for cellular senescence, occur in a cell type- and insult-dependent manner and follow expression of p16ink4a. Cell Cycle. 2011;10:457–468. doi: 10.4161/cc.10.3.14707. PubMed DOI
Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC
Stirling D.R., Swain-Bowden M.J., Lucas A.M., Carpenter A.E., Cimini B.A., Goodman A. CellProfiler 4: Improvements in speed, utility and usability. BMC Bioinform. 2021;22:1–11. doi: 10.1186/s12859-021-04344-9. PubMed DOI PMC
Dao D., Fraser A.N., Hung J., Ljosa V., Singh S., Carpenter A.E. CellProfiler Analyst: Interactive data exploration, analysis and classification of large biological image sets. Bioinformatics. 2016;32:3210–3212. doi: 10.1093/bioinformatics/btw390. PubMed DOI PMC
Berg S., Kutra D., Kroeger T., Straehle C.N., Kausler B.X., Haubold C., Schiegg M., Ales J., Beier T., Rudy M., et al. Ilastik: Interactive machine learning for (bio)image analysis. Nat. Methods. 2019;16:1226–1232. doi: 10.1038/s41592-019-0582-9. PubMed DOI
The Toxic Effect of Toluene on Ovarian Cells Can Be Prevented by the MicroRNA miR-152