Basic Methods of Cell Cycle Analysis

. 2023 Feb 12 ; 24 (4) : . [epub] 20230212

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid36835083

Grantová podpora
TN01000013 Technology Agency of the Czech Republic
NU22-08-00148 Ministry of Health
Project EATRIS-CZ, grant number LM2018133 Ministry of Education Youth and Sports
Project ENOCH, grant number CZ.02.1.01/0.0/0.0/16_019/0000868 European Regional Development Fund

Cellular growth and the preparation of cells for division between two successive cell divisions is called the cell cycle. The cell cycle is divided into several phases; the length of these particular cell cycle phases is an important characteristic of cell life. The progression of cells through these phases is a highly orchestrated process governed by endogenous and exogenous factors. For the elucidation of the role of these factors, including pathological aspects, various methods have been developed. Among these methods, those focused on the analysis of the duration of distinct cell cycle phases play important role. The main aim of this review is to guide the readers through the basic methods of the determination of cell cycle phases and estimation of their length, with a focus on the effectiveness and reproducibility of the described methods.

Zobrazit více v PubMed

Malumbres M., Barbacid M. Cell cycle, CDKs and cancer: A changing paradigm. Nat. Rev. Cancer. 2009;9:153–166. doi: 10.1038/nrc2602. PubMed DOI

Krabbe L.-M., Margulis V., Lotan Y. Prognostic Role of Cell Cycle and Proliferative Markers in Clear Cell Renal Cell Carcinoma. Urol. Clin. N. Am. 2015;43:105–118. doi: 10.1016/j.ucl.2015.08.010. PubMed DOI

Gong J.P., Traganos F., Darzynkiewicz Z. Growth Imbalance and Altered Expression of Cyclin-B1, Cyclin-a, Cyclin-E, and Cyclin-D3 in Molt-4 Cells Synchronized in the Cell-Cycle by Inhibitors of DNA-Replication. Cell Growth Differ. 1995;6:1485–1493. PubMed

Fang H.-S., Lang M.-F., Sun J. New Methods for Cell Cycle Analysis. Chin. J. Anal. Chem. 2019;47:1293–1301. doi: 10.1016/S1872-2040(19)61186-2. DOI

Eastman A.E., Guo S. The palette of techniques for cell cycle analysis. FEBS Lett. 2020;594:2084–2098. doi: 10.1002/1873-3468.13842. PubMed DOI PMC

Charlebois D.A., Balázsi G. Modeling cell population dynamics. Silico Biol. 2019;13:21–39. doi: 10.3233/ISB-180470. PubMed DOI PMC

Corso A. MA 138–Calculus 2 with Life Science Applications Solving Differential Equations. [(accessed on 14 December 2022)]. Available online: https://www.ms.uky.edu/~ma138/Spring18/Lectures/Lecture_12-13.pdf.

Vogels M., Zoeckler R., Stasiw D.M., Cerny L.C. P. F. Verhulst’s “notice sur la loi que la populations suit dans son accroissement” from correspondence mathematique et physique. Ghent, vol. X, 1838. J. Biol. Phys. 1975;3:183–192. doi: 10.1007/BF02309004. DOI

Verhulst P.F. Notice sur la loi que la population suit dans son accroissement. Corresp. Math. Phys. 1838;10:113–121.

Lerma M.A. 3.4. The Logistic Equation. [(accessed on 14 December 2022)]. Available online: https://sites.math.northwestern.edu/~mlerma/courses/math214-2-03f/notes/c2-all.pdf.

Monod J. The growth of bacterial cultures. Annu. Rev. Microbiol. 1949;3:371–394. doi: 10.1146/annurev.mi.03.100149.002103. DOI

Korolev K.S., Xavier J.B., Gore J. Turning ecology and evolution against cancer. Nat. Rev. Cancer. 2014;14:371–380. doi: 10.1038/nrc3712. PubMed DOI

Courchamp F., Clutton-Brock T., Grenfell B. Inverse density dependence and the Allee effect. Trends Ecol. Evol. 1999;14:405–410. doi: 10.1016/S0169-5347(99)01683-3. PubMed DOI

Winter A., Richter A., Eikeset A.M. Implications of Allee effects for fisheries management in a changing climate: Evidence from Atlantic cod. Ecol. Appl. 2020;30:e01994. doi: 10.1002/eap.1994. PubMed DOI

Neufeld Z., Von Witt W., Lakatos D., Wang J., Hegedus B., Czirok A. The role of Allee effect in modelling post resection recurrence of glioblastoma. PLoS Comput. Biol. 2017;13:e1005818. doi: 10.1371/journal.pcbi.1005818. PubMed DOI PMC

Ding L., Cao J., Lin W., Chen H., Xiong X., Ao H., Yu M., Lin J., Cui Q. The Roles of Cyclin-Dependent Kinases in Cell-Cycle Progression and Therapeutic Strategies in Human Breast Cancer. Int. J. Mol. Sci. 2020;21:1960. doi: 10.3390/ijms21061960. PubMed DOI PMC

Otto T., Sicinski P. Cell cycle proteins as promising targets in cancer therapy. Nat. Rev. Cancer. 2017;17:93–115. doi: 10.1038/nrc.2016.138. PubMed DOI PMC

Cao L., Chen F., Yang X., Xu W., Xie J., Yu L. Phylogenetic analysis of CDK and cyclin proteins in premetazoan lineages. BMC Evol. Biol. 2014;14:10. doi: 10.1186/1471-2148-14-10. PubMed DOI PMC

Blagosklonny M.V., Pardee A.B. The Restriction Point of the Cell Cycle. Cell Cycle. 2002;1:102–109. doi: 10.4161/cc.1.2.108. PubMed DOI

Pardee A.B. A Restriction Point for Control of Normal Animal Cell Proliferation. Proc. Natl. Acad. Sci. USA. 1974;71:1286–1290. doi: 10.1073/pnas.71.4.1286. PubMed DOI PMC

Wang Y.M., Ji P., Liu J.S., Broaddus R.R., Xue F.X., Zhang W. Centrosome-associated regulators of the G(2)/M checkpoint as targets for cancer therapy. Mol. Cancer. 2009;8:8. doi: 10.1186/1476-4598-8-8. PubMed DOI PMC

Oki T., Nishimura K., Kitaura J., Togami K., Maehara A., Izawa K., Sakaue-Sawano A., Niida A., Miyano S., Aburatani H., et al. A novel cell-cycle-indicator, mVenus-p27K−, identifies quiescent cells and visualizes G0–G1 transition. Sci. Rep. 2014;4:4012. doi: 10.1038/srep04012. PubMed DOI PMC

Kumari R., Jat P. Mechanisms of Cellular Senescence: Cell Cycle Arrest and Senescence Associated Secretory Phenotype. Front. Cell Dev. Biol. 2021;9 doi: 10.3389/fcell.2021.645593. PubMed DOI PMC

Di Micco R., Sulli G., Dobreva M., Liontos M., Botrugno O.A., Gargiulo G., Zuffo R.D., Matti V., D’Ario G., Montani E., et al. Interplay between oncogene-induced DNA damage response and heterochromatin in senescence and cancer. Nat. Cell Biol. 2011;13:292–302. doi: 10.1038/ncb2170. PubMed DOI PMC

Kuilman T., Michaloglou C., Mooi W.J., Peeper D.S. The essence of senescence. Genes Dev. 2010;24:2463–2479. doi: 10.1101/gad.1971610. PubMed DOI PMC

Passos J.F., Nelson G., Wang C., Richter T., Simillion C., Proctor C.J., Miwa S., Olijslagers S., Hallinan J., Wipat A., et al. Feedback between p21 and reactive oxygen production is necessary for cell senescence. Mol. Syst. Biol. 2010;6:347. doi: 10.1038/msb.2010.5. PubMed DOI PMC

Pazolli E., Alspach E., Milczarek A., Prior J., Piwnica-Worms D., Stewart S.A. Chromatin Remodeling Underlies the Senescence-Associated Secretory Phenotype of Tumor Stromal Fibroblasts That Supports Cancer Progression. Cancer Res. 2012;72:2251–2261. doi: 10.1158/0008-5472.CAN-11-3386. PubMed DOI PMC

García-Prat L., Martínez-Vicente M., Perdiguero E., Ortet L., Rodríguez-Ubreva J., Rebollo E., Ruiz-Bonilla V., Gutarra S., Ballestar E., Serrano A.L., et al. Autophagy maintains stemness by preventing senescence. Nature. 2016;529:37–42. doi: 10.1038/nature16187. PubMed DOI

Mikuła-Pietrasik J., Niklas A., Uruski P., Tykarski A., Książek K. Mechanisms and significance of therapy-induced and spontaneous senescence of cancer cells. Cell. Mol. Life Sci. 2019;77:213–229. doi: 10.1007/s00018-019-03261-8. PubMed DOI PMC

McKinnon K.M. Flow Cytometry: An Overview. Curr. Protoc. Immunol. 2018;120:5.1.1–5.1.11. doi: 10.1002/cpim.40. PubMed DOI PMC

Darzynkiewicz Z., Juan G., Bedner E. Determining Cell Cycle Stages by Flow Cytometry. Curr. Protoc. Cell Biol. 1999;1:8.4.1–8.4.18. doi: 10.1002/0471143030.cb0804s01. PubMed DOI

Frydrych I. Cell cycle analysis by flow cytometry. In: Agrawal K., Bouchal J., Das V., Drábek J., Džubák P., Hajdúch M., Koberna K., Ligasová A., Mistrík M., de Sanctis J.B., editors. Laboratory Techniques in Cellular and Molecular Medicine. 1st ed. Palacký University Olomouc; Olomouc, Czech Republic: 2021. pp. 193–200. DOI

Jayat C., Ratinaud M.-H. Cell cycle analysis by flow cytometry: Principles and applications. Biol. Cell. 1993;78:15–25. doi: 10.1016/0248-4900(93)90110-Z. PubMed DOI

Baisch H., Beck H.-P., Christensen I.J., Hartmann N.R., Fried J., Dean P.N., Gray J.W., Jett J.H., Johnston D.A., White R.A., et al. A comparison of mathematical methods for the analysis of DNA histograms obtained by flow cytometry. Cell Prolif. 1982;15:235–249. doi: 10.1111/j.1365-2184.1982.tb01043.x. PubMed DOI

Dean P.N. A simplified method of DNA distribution analysis. Cell Prolif. 1980;13:299–308. doi: 10.1111/j.1365-2184.1980.tb00468.x. PubMed DOI

Dean P.N., Jett J.H. Mathematical analysis of DNA distributions derived from flow microfluorometry. J. Cell Biol. 1974;60:523–527. doi: 10.1083/jcb.60.2.523. PubMed DOI PMC

Jett J.H., Gurley L.R. An Improved Sum-Of-Normals Technique For Cell Cycle Distribution Analysis of Flow Cytometric Dna Histograms. Cell Prolif. 1981;14:413–423. doi: 10.1111/j.1365-2184.1981.tb00548.x. PubMed DOI

Watson J.V., Chambers S.H., Smith P.J. A pragmatic approach to the analysis of DNA histograms with a definable G1 peak. Cytometry. 1987;8:1–8. doi: 10.1002/cyto.990080101. PubMed DOI

Liboska R., Ligasová A., Strunin D., Rosenberg I., Koberna K. Most Anti-BrdU Antibodies React with 2′-Deoxy-5-Ethynyluridine—The Method for the Effective Suppression of This Cross-Reactivity. PLoS ONE. 2012;7:e51679. doi: 10.1371/journal.pone.0051679. PubMed DOI PMC

Pozarowski P., Darzynkiewicz Z. Analysis of Cell Cycle by Flow Cytometry. In: Schönthal A.H., editor. Checkpoint Controls and Cancer: Volume 2: Activation and Regulation Protocols. Humana Press; Totowa, NJ, USA: 2004. pp. 301–311. PubMed

Hendzel M.J., Wei Y., Mancini M.A., Van Hooser A., Ranalli T., Brinkley B.R., Bazett-Jones D.P., Allis C.D. Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma. 1997;106:348–360. doi: 10.1007/s004120050256. PubMed DOI

Shapiro H.M. Flow cytometric estimation of DNA and RNA content in intact cells stained with hoechst 33342 and pyronin Y. Cytometry. 1981;2:143–150. doi: 10.1002/cyto.990020302. PubMed DOI

Qiu L., Liu M., Pan K. A Triple Staining Method for Accurate Cell Cycle Analysis Using Multiparameter Flow Cytometry. Molecules. 2013;18:15412–15421. doi: 10.3390/molecules181215412. PubMed DOI PMC

Scholzen T., Gerdes J. The Ki-67 protein: From the known and the unknown. J. Cell Physiol. 2000;182:311–322. doi: 10.1002/(SICI)1097-4652(200003)182:3<311::AID-JCP1>3.0.CO;2-9. PubMed DOI

Gerdes J., Lemke H., Baisch H., Wacker H.H., Schwab U., Stein H. Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J. Immunol. 1984;133:1710–1715. doi: 10.4049/jimmunol.133.4.1710. PubMed DOI

Miller I., Min M., Yang C., Tian C., Gookin S., Carter D., Spencer S.L. Ki67 is a Graded Rather than a Binary Marker of Proliferation versus Quiescence. Cell Rep. 2018;24:1105–1112.e5. doi: 10.1016/j.celrep.2018.06.110. PubMed DOI PMC

Sobecki M., Mrouj K., Camasses A., Parisis N., Nicolas E., Llères D., Gerbe F., Prieto S., Krasinska L., David A., et al. The cell proliferation antigen Ki-67 organises heterochromatin. Elife. 2016;5:e13722. doi: 10.7554/eLife.13722. PubMed DOI PMC

Sobecki M., Mrouj K., Colinge J., Gerbe F., Jay P., Krasinska L., Dulic V., Fisher D. Cell-Cycle Regulation Accounts for Variability in Ki-67 Expression Levels. Cancer Res. 2017;77:2722–2734. doi: 10.1158/0008-5472.CAN-16-0707. PubMed DOI

Sakaue-Sawano A., Kurokawa H., Morimura T., Hanyu A., Hama H., Osawa H., Kashiwagi S., Fukami K., Miyata T., Miyoshi H., et al. Visualizing Spatiotemporal Dynamics of Multicellular Cell-Cycle Progression. Cell. 2008;132:487–498. doi: 10.1016/j.cell.2007.12.033. PubMed DOI

Whitfield M.L., Zheng L.-X., Baldwin A., Ohta T., Hurt M.M., Marzluff W.F. Stem-Loop Binding Protein, the Protein That Binds the 3′ End of Histone mRNA, Is Cell Cycle Regulated by Both Translational and Posttranslational Mechanisms. Mol. Cell. Biol. 2000;20:4188–4198. doi: 10.1128/MCB.20.12.4188-4198.2000. PubMed DOI PMC

Mitchison J.M. The Biology of the Cell Cycle. Cambridge University Press; London, UK: 1971. p. 313.

Wheeler R.J. Analyzing the dynamics of cell cycle processes from fixed samples through ergodic principles. Mol. Biol. Cell. 2015;26:3898–3903. doi: 10.1091/mbc.E15-03-0151. PubMed DOI PMC

Zeuthen E. Synchrony in Cell Division and Growth. 1st ed. John Wiley & Sons Inc.; Hoboken, NJ, USA: 1964.

Schorl C., Sedivy J.M. Analysis of cell cycle phases and progression in cultured mammalian cells. Methods. 2007;41:143–150. doi: 10.1016/j.ymeth.2006.07.022. PubMed DOI PMC

Pereira P.D., Serra-Caetano A., Cabrita M., Bekman E., Braga J., Rino J., Santus R., Filipe P.L., Sousa A.E., Ferreira J.A. Quantification of cell cycle kinetics by EdU (5-ethynyl-2′-deoxyuridine)-coupled-fluorescence-intensity analysis. Oncotarget. 2017;8:40514–40532. doi: 10.18632/oncotarget.17121. PubMed DOI PMC

Hwang Y., Futran M., Hidalgo D., Pop R., Iyer D.R., Scully R., Rhind N., Socolovsky M. Global increase in replication fork speed during a p57KIP2-regulated erythroid cell fate switch. Sci. Adv. 2017;3:e1700298. doi: 10.1126/sciadv.1700298. PubMed DOI PMC

Martynoga B., Morrison H., Price D., Mason J. Foxg1 is required for specification of ventral telencephalon and region-specific regulation of dorsal telencephalic precursor proliferation and apoptosis. Dev. Biol. 2005;283:113–127. doi: 10.1016/j.ydbio.2005.04.005. PubMed DOI

Bialic M., Nachar B.A.A., Koźlak M., Coulon V., Schwob E. Measuring S-Phase Duration from Asynchronous Cells Using Dual EdU-BrdU Pulse-Chase Labeling Flow Cytometry. Genes. 2022;13:408. doi: 10.3390/genes13030408. PubMed DOI PMC

Chao H.X., I Fakhreddin R., Shimerov H.K., Kedziora K.M., Kumar R.J., Perez J., Limas J.C., Grant G.D., Cook J.G., Gupta G.P., et al. Evidence that the human cell cycle is a series of uncoupled, memoryless phases. Mol. Syst. Biol. 2019;15:e8604. doi: 10.15252/msb.20188604. PubMed DOI PMC

Ligasová A., Koberna K. DNA Replication: From Radioisotopes to Click Chemistry. Molecules. 2018;23:3007. doi: 10.3390/molecules23113007. PubMed DOI PMC

Taylor J.H., Woods P.S., Hughes W.L. The organization and duplication of chromosomes as revealed by autoradiographic studies using tritium-labeled thymidinee. Proc. Natl. Acad. Sci. USA. 1957;43:122–128. doi: 10.1073/pnas.43.1.122. PubMed DOI PMC

Visser D., Frisch D., Huang B. Synthesis of 5-chlorodeoxyuridine and a comparative study of 5-halodeoxyuridines in E. Coli. Biochem. Pharmacol. 1960;5:157–164. doi: 10.1016/0006-2952(60)90017-4. PubMed DOI

Prusoff W.H. Synthesis and biological activities of iododeoxyuridine, an analog of thymidine. Biochim. Biophys. Acta. 1959;32:295–296. doi: 10.1016/0006-3002(59)90597-9. PubMed DOI

Aten J.A., Bakker P.J.M., Stap J., Boschman G.A., Veenhof C.H.N. DNA double labelling with IdUrd and CldUrd for spatial and temporal analysis of cell proliferation and DNA replication. Histochem. J. 1992;24:251–259. doi: 10.1007/BF01046839. PubMed DOI

Ligasová A., Konečný P., Frydrych I., Koberna K. Cell cycle profiling by image and flow cytometry: The optimised protocol for the detection of replicational activity using 5-Bromo-2′-deoxyuridine, low concentration of hydrochloric acid and exonuclease III. PLoS ONE. 2017;12:e0175880. doi: 10.1371/journal.pone.0175880. PubMed DOI PMC

Ligasová A., Konečný P., Frydrych I., Koberna K. Looking for ugly ducklings: The role of the stability of BrdU-antibody complex and the improved method of the detection of DNA replication. PLoS ONE. 2017;12:e0174893. doi: 10.1371/journal.pone.0174893. PubMed DOI PMC

Ligasová A., Strunin D., Liboska R., Rosenberg I., Koberna K. Atomic Scissors: A New Method of Tracking the 5-Bromo-2′-Deoxyuridine-Labeled DNA In Situ. PLoS ONE. 2012;7:e52584. doi: 10.1371/journal.pone.0052584. PubMed DOI PMC

Ageno M., Dore E., Frontali C. The Alkaline Denaturation of DNA. Biophys. J. 1969;9:1281–1311. doi: 10.1016/S0006-3495(69)86452-0. PubMed DOI PMC

Dimitrova D.S., Berezney R. The spatio-temporal organization of DNA replication sites is identical in primary, immortalized and transformed mammalian cells. J. Cell Sci. 2002;115:4037–4051. doi: 10.1242/jcs.00087. PubMed DOI

Jackson D.A., Pombo A. Replicon Clusters Are Stable Units of Chromosome Structure: Evidence That Nuclear Organization Contributes to the Efficient Activation and Propagation of S Phase in Human Cells. J. Cell Biol. 1998;140:1285–1295. doi: 10.1083/jcb.140.6.1285. PubMed DOI PMC

Kennedy B.K., Barbie D.A., Classon M., Dyson N., Harlow E. Nuclear organization of DNA replication in primary mammalian cells. Genes Dev. 2000;14:2855–2868. doi: 10.1101/gad.842600. PubMed DOI PMC

Koberna K., Ligasová A., Malínský J., Pliss A., Siegel A.J., Cvačková Z., Fidlerová H., Mašata M., Fialová M., Raška I., et al. Electron microscopy of DNA replication in 3-D: Evidence for similar-sized replication foci throughout S-phase. J. Cell. Biochem. 2004;94:126–138. doi: 10.1002/jcb.20300. PubMed DOI

Dolbeare F., Gray J.W. Use of restriction endonucleases and exonuclease III to expose halogenated pyrimidines for immunochemical staining. Cytometry. 1988;9:631–635. doi: 10.1002/cyto.990090619. PubMed DOI

Fox M., Arndt-Jovin D., Jovin T., Baumann P., Robert-Nicoud M. Spatial and temporal distribution of DNA replication sites localized by immunofluorescence and confocal microscopy in mouse fibroblasts. J. Cell Sci. 1991;99:247–253. doi: 10.1242/jcs.99.2.247. PubMed DOI

Li X., Darzynkiewicz Z. Labelling DNA strand breaks with BrdUTP. Detection of apoptosis and cell proliferation. Cell Prolif. 1995;28:571–579. doi: 10.1111/j.1365-2184.1995.tb00045.x. PubMed DOI

Salic A., Mitchison T.J. A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc. Natl. Acad. Sci. USA. 2008;105:2415–2420. doi: 10.1073/pnas.0712168105. PubMed DOI PMC

Kohlmeier F., Maya-Mendoza A., Jackson D.A. EdU induces DNA damage response and cell death in mESC in culture. Chromosom. Res. 2013;21:87–100. doi: 10.1007/s10577-013-9340-5. PubMed DOI PMC

Ligasová A., Strunin D., Friedecký D., Adam T., Koberna K. A Fatal Combination: A Thymidylate Synthase Inhibitor with DNA Damaging Activity. PLoS ONE. 2015;10:e0117459. doi: 10.1371/journal.pone.0117459. PubMed DOI PMC

Ross H.H., Rahman M., Levkoff L.H., Millette S., Martin-Carreras T., Dunbar E.M., Reynolds B.A., Laywell E.D. Ethynyldeoxyuridine (EdU) suppresses in vitro population expansion and in vivo tumor progression of human glioblastoma cells. J. Neuro-Oncol. 2011;105:485–498. doi: 10.1007/s11060-011-0621-6. PubMed DOI PMC

Zhao H., Halicka H.D., Li J., Biela E., Berniak K., Dobrucki J., Darzynkiewicz Z. DNA damage signaling, impairment of cell cycle progression, and apoptosis triggered by 5-ethynyl-2′-deoxyuridine incorporated into DNA. Cytom. Part A. 2013;83:979–988. doi: 10.1002/cyto.a.22396. PubMed DOI PMC

Ross H.H., Levkoff L.H., Marshall G.P., Caldeira M., Steindler D.A., Reynolds B.A., Laywell E.D. Bromodeoxyuridine Induces Senescence in Neural Stem and Progenitor Cells. Stem Cells. 2008;26:3218–3227. doi: 10.1634/stemcells.2008-0299. PubMed DOI PMC

Quastler H., Sherman F. Cell population kinetics in the intestinal epithelium of the mouse. Exp. Cell Res. 1959;17:420–438. doi: 10.1016/0014-4827(59)90063-1. PubMed DOI

Stanners C., Till J. DNA synthesis in individual L-strain mouse cells. Biochim. Biophys. Acta. 1960;37:406–419. doi: 10.1016/0006-3002(60)90496-0. PubMed DOI

Maga G., Hübscher U. Proliferating cell nuclear antigen (PCNA): A dancer with many partners. J. Cell Sci. 2003;116:3051–3060. doi: 10.1242/jcs.00653. PubMed DOI

Strzalka W., Ziemienowicz A. Proliferating cell nuclear antigen (PCNA): A key factor in DNA replication and cell cycle regulation. Ann. Bot. 2010;107:1127–1140. doi: 10.1093/aob/mcq243. PubMed DOI PMC

Madsen P., Celis J.E. S-phase patterns of cyclin (PCNA) antigen staining resemble topographical patterns of DNA synthesis. A role for cyclin in DNA replication? FEBS Lett. 1985;193:5–11. doi: 10.1016/0014-5793(85)80068-5. PubMed DOI

Dowling M.R., Kan A., Heinzel S., Zhou J.H.S., Marchingo J.M., Wellard C.J., Markham J.F., Hodgkin P.D. Stretched cell cycle model for proliferating lymphocytes. Proc. Natl. Acad. Sci. USA. 2014;111:6377–6382. doi: 10.1073/pnas.1322420111. PubMed DOI PMC

Forcina G.C., Conlon M., Wells A., Cao J.Y., Dixon S.J. Systematic Quantification of Population Cell Death Kinetics in Mammalian Cells. Cell Syst. 2017;4:600–610.e6. doi: 10.1016/j.cels.2017.05.002. PubMed DOI PMC

Crowley L.C., Scott A.P., Marfell B.J., Boughaba J.A., Chojnowski G., Waterhouse N.J. Measuring Cell Death by Propidium Iodide Uptake and Flow Cytometry. Cold Spring Harb. Protoc. 2016;2016:pdb-prot087163. doi: 10.1101/pdb.prot087163. PubMed DOI

Schmid I., Krall W.J., Uittenbogaart C.H., Braun J., Giorgi J.V. Dead cell discrimination with 7-amino-actinomcin D in combination with dual color immunofluorescence in single laser flow cytometry. Cytometry. 1992;13:204–208. doi: 10.1002/cyto.990130216. PubMed DOI

Icha J., Weber M., Waters J.C., Norden C. Phototoxicity in live fluorescence microscopy, and how to avoid it. Bioessays. 2017;39 doi: 10.1002/bies.201700003. PubMed DOI

Skylaki S., Hilsenbeck O., Schroeder T. Challenges in long-term imaging and quantification of single-cell dynamics. Nat. Biotechnol. 2016;34:1137–1144. doi: 10.1038/nbt.3713. PubMed DOI

Doan M., Vorobjev I., Rees P., Filby A., Wolkenhauer O., Goldfeld A.E., Lieberman J., Barteneva N., Carpenter A., Hennig H. Diagnostic Potential of Imaging Flow Cytometry. Trends Biotechnol. 2018;36:649–652. doi: 10.1016/j.tibtech.2017.12.008. PubMed DOI

Behbehani G.K. Cell Cycle Analysis by Mass Cytometry. Methods Mol. Biol. 2017;1686:105–124. doi: 10.1007/978-1-4939-7371-2_8. PubMed DOI

Schneider E.L., Mitsui Y. The relationship between in vitro cellular aging and in vivo human age. Proc. Natl. Acad. Sci. USA. 1976;73:3584–3588. doi: 10.1073/pnas.73.10.3584. PubMed DOI PMC

Sherwood S.W., Rush D., Ellsworth J.L., Schimke R.T. Defining cellular senescence in IMR-90 cells: A flow cytometric analysis. Proc. Natl. Acad. Sci. USA. 1988;85:9086–9090. doi: 10.1073/pnas.85.23.9086. PubMed DOI PMC

Adewoye A.B., Tampakis D., Follenzi A., Stolzing A. Multiparameter flow cytometric detection and quantification of senescent cells in vitro. Biogerontology. 2020;21:773–786. doi: 10.1007/s10522-020-09893-9. PubMed DOI PMC

Perillo N.L., Walford R.L., Newman M.A., Effros R.B. Human T lymphocytes possess a limited in vitro life span. Exp. Gerontol. 1989;24:177–187. doi: 10.1016/0531-5565(89)90009-0. PubMed DOI

Lipetz J., Cristofalo V.J. Ultrastructural changes accompanying the aging of human diploid cells in culture. J. Ultrastruct. Res. 1972;39:43–56. doi: 10.1016/S0022-5320(72)80005-4. PubMed DOI

Dimri G.P., Lee X., Basile G., Acosta M., Scott G., Roskelley C., Medrano E.E., Linskens M., Rubelj I., Pereira-Smith O., et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl. Acad. Sci. USA. 1995;92:9363–9367. doi: 10.1073/pnas.92.20.9363. PubMed DOI PMC

Thomas E., Al-Baker E., Dropcova S., Denyer S., Ostad N., Lloyd A., Kill I.R., Faragher R.G. Different Kinetics of Senescence in Human Fibroblasts and Peritoneal Mesothelial Cells. Exp. Cell Res. 1997;236:355–358. doi: 10.1006/excr.1997.3760. PubMed DOI

Yegorov Y.E., Akimov S.S., Hass R., Zelenin A.V., Prudovsky I.A. Endogenous β-Galactosidase Activity in Continuously Nonproliferating Cells. Exp. Cell Res. 1998;243:207–211. doi: 10.1006/excr.1998.4169. PubMed DOI

Piechota M., Sunderland P., Wysocka A., Nalberczak M., Sliwinska M.A., Radwanska K., Sikora E. Is senescence-associated β-galactosidase a marker of neuronal senescence? Oncotarget. 2016;7:81099–81109. doi: 10.18632/oncotarget.12752. PubMed DOI PMC

Severino J., Allen R.G., Balin S., Balin A., Cristofalo V.J. Is β-Galactosidase Staining a Marker of Senescence in Vitro and in Vivo? Exp. Cell Res. 2000;257:162–171. doi: 10.1006/excr.2000.4875. PubMed DOI

Pospelova T.V., Demidenko Z.N., Bukreeva E.I., Pospelov V.A., Gudkov A., Blagosklonny M.V. Pseudo-DNA damage response in senescent cells. Cell Cycle. 2009;8:4112–4118. doi: 10.4161/cc.8.24.10215. PubMed DOI PMC

Noren Hooten N., Evans M.K. Techniques to Induce and Quantify Cellular Senescence. J. Vis. Exp. 2017;123:e55533. doi: 10.3791/55533. PubMed DOI PMC

Narita M., Nuñez S., Heard E., Narita M., Lin A.W., Hearn S.A., Spector D.L., Hannon G.J., Lowe S.W. Rb-Mediated Heterochromatin Formation and Silencing of E2F Target Genes during Cellular Senescence. Cell. 2003;113:703–716. doi: 10.1016/S0092-8674(03)00401-X. PubMed DOI

Sharpless N.E., Sherr C.J. Forging a signature of in vivo senescence. Nat. Rev. Cancer. 2015;15:397–408. doi: 10.1038/nrc3960. PubMed DOI

Kosar M., Bartkova J., Hubackova S., Hodny Z., Lukas J., Bartek J. Senescence-associated heterochromatin foci are dispensable for cellular senescence, occur in a cell type- and insult-dependent manner and follow expression of p16ink4a. Cell Cycle. 2011;10:457–468. doi: 10.4161/cc.10.3.14707. PubMed DOI

Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC

Stirling D.R., Swain-Bowden M.J., Lucas A.M., Carpenter A.E., Cimini B.A., Goodman A. CellProfiler 4: Improvements in speed, utility and usability. BMC Bioinform. 2021;22:1–11. doi: 10.1186/s12859-021-04344-9. PubMed DOI PMC

Dao D., Fraser A.N., Hung J., Ljosa V., Singh S., Carpenter A.E. CellProfiler Analyst: Interactive data exploration, analysis and classification of large biological image sets. Bioinformatics. 2016;32:3210–3212. doi: 10.1093/bioinformatics/btw390. PubMed DOI PMC

Berg S., Kutra D., Kroeger T., Straehle C.N., Kausler B.X., Haubold C., Schiegg M., Ales J., Beier T., Rudy M., et al. Ilastik: Interactive machine learning for (bio)image analysis. Nat. Methods. 2019;16:1226–1232. doi: 10.1038/s41592-019-0582-9. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...