Food Restriction Induces Changes in Ovarian Folliculogenesis, Cell Proliferation, Apoptosis, and Production of Regulatory Peptides in Rabbits
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
PID2021-123702OB-100
Ministerio de Ciencia e Innovación (MCI)-Agencia Estatal de Investigación (AEI) and the Fondo Europeo de Desarrollo Regional (FEDER) "Una manera de hacer Europa"
VEGA 1/0680/22
Scientific Grant Agency of the Ministry of Education, Science, and Sport of Slovak Republic (VEGA
PubMed
40362096
PubMed Central
PMC12071153
DOI
10.3390/ani15091282
PII: ani15091282
Knihovny.cz E-resources
- Keywords
- apoptosis, food restriction, hormone, ovarian follicle, rabbit,
- Publication type
- Journal Article MeSH
The aim of this study is to examine the influence of food restriction on rabbit ovarian functions. A total of eight females were fed ad libitum (NF), while eight females were subjected to 50% food restriction (RF). One month later, all females were euthanized. Weights and lengths of ovaries and uterine horns were measured. Representative parts of the ovaries were subjected to histomorphometry analysis of folliculogenesis. Granulosa cells were isolated and cell viability, proliferation (accumulation of PCNA, cyclin B1, and BrdU-positive cells), apoptosis (accumulation of bax, caspase 3, and DNA fragmentation) were evaluated. Granulosa cells were subjected to proteomic analysis by using the nano HPLC-Chip-MS/MS method. Estradiol and progesterone release by ovarian and granulosa cells was assessed by ELISA. Ovarian and uterine horn weights were lower in RF than NF. The diameter of follicles and oocytes and the thickness of the theca and granulosa cells were higher in RF than NF. RF showed a lower percentage of cells containing bax and caspase 3, occurrence of DNA fragmented cells, and estradiol and progesterone. RF had higher incorporation of BrdU, a higher proportion of cells containing PCNA and cyclin B1, and a lower percentage of viable cells. RF produced more specific proteins than NF, including peptides involved in cell differentiation, proliferation/division, mitotic cell cycle, and GTP-ase activity. In conclusion, food restriction can activate reproduction by (1) selection of the growing primordial follicles, (2) better transformation of secondary to preovulatory follicles, (3) increasing growth of oocytes, (4) increasing proliferation and decreasing apoptosis in granulosa cells, (5) changes in ovarian secretory activity, and (6) changes in the number of peptides.
See more in PubMed
Boland M.P., Lonergan P., O’Callaghan D. Effect of nutrition on endocrine parameters, ovarian physiology and oocyte and embryo development. Theriogenology. 2001;55:1323–1340. doi: 10.1016/S0093-691X(01)00485-X. PubMed DOI
Ferguson E.M., Ashworth C.J., Edwards S.A., Hawkins N., Hepburn N., Hunter M.G. Effect of different nutritional regimens before ovulation on plasma concentrations of metabolic and reproductive hormones and oocyte maturation in gilts. Reproduction. 2003;126:61–71. doi: 10.1530/rep.0.1260061. PubMed DOI
Kiyma Z., Alexander B.M., Van Krik E.A., Murdoch W.J., Hallford D.M., Moss G.E. Effects of feed restriction on reproductive and metabolic hormones in ewes. J. Anim. Sci. 2004;82:2548–2557. doi: 10.2527/2004.8292548x. PubMed DOI
Brecchia G., Bonanno A., Galeati G., Federici C., Maranesi M., Gobbetti A., Boiti C. Hormonal and metabolic adaptation to fasting: Effects on the hypothalamic-pituitary-ovarian axis and reproductive performance of rabbit does. Domest. Anim. Endocrinol. 2006;31:105–122. doi: 10.1016/j.domaniend.2005.09.006. PubMed DOI
Armstrong D.G., McEvoy T.G., Baxter G., Robinson J.J., Hogg C.O., Woad K.J., Webb R., Sinclair K.D. Effect of dietary energy and protein on bovine follicular dynamics and embryo production in vitro: Associations with the ovarian insulin-like growth factor system. Biol. Reprod. 2001;64:1624–1632. doi: 10.1095/biolreprod64.6.1624. PubMed DOI
Alexander B.M., Kiyma Z., McFarland M., Van Krik E.A., Hallford D.M., Hawkins D.E., Kane K.K., Moss G.E. Influence of short-term fasting during the luteal phase of the oestrous cycle on ovarian follicular development during the ensuing proestrus of ewes. Anim. Reprod. Sci. 2007;97:356–363. doi: 10.1016/j.anireprosci.2006.01.012. PubMed DOI
Szendrő Z., Szendrő K., Zotte A.D. Management of reproduction on small, medium and large rabbit farms: A review. Asian Australas. J. Anim. Sci. 2012;25:738–748. doi: 10.5713/ajas.2012.12015. PubMed DOI PMC
Manal A.F., Tony M.A., Ezzo O.H. Feed restriction of pregnant nulliparous rabbit does: Consequences on reproductive performance and maternal behaviour. Anim. Reprod. Sci. 2010;120:179–186. doi: 10.1016/j.anireprosci.2010.03.010. PubMed DOI
García-García R.M., Rebollar P.G., Arias-Alvarez M., Sakr O.G., Bermejo-Alvarez P., Brecchia G., Gutierres-Adan A., Zerani M., Boiti C., Lorenzo P.L. Acute fasting before conception affects metabolic and endocrine status without impacting follicle and oocyte development and embryo gene expression in the rabbit. Reprod. Fertil. Dev. 2011;23:759–768. doi: 10.1071/RD10298. PubMed DOI
Menchetti L., Brecchia G., Canali C., Cardinali R., Polisca A., Zerani M., Boiti C. Food restriction during pregnancy in rabbits: Effects on hormones and metabolites involved in energy homeostasis and metabolic programming. Res. Vet. Sci. 2015;98:7–12. doi: 10.1016/j.rvsc.2014.11.017. PubMed DOI
Fortun-Lamothe L. Effects of pre-mating energy intake on reproductive performance of rabbit does. Anim. Sci. 1998;66:263–269. doi: 10.1017/S1357729800009048. DOI
Daoud N.M., Mahrous K.F., Ezzo O.H. Feed restriction as a biostimulant of the production of oocyte, their quality and GDF-9 gene expression in rabbit oocytes. Anim. Reprod. Sci. 2012;136:121–127. doi: 10.1016/j.anireprosci.2012.09.011. PubMed DOI
Naturil-Alfonso C., Lavara R., Vicente J.S., Marco-Jimenez F. Effects of female dietary restriction in a rabbit growth line during rearing on reproductive performance and embryo quality. Reprod. Domest. Anim. 2016;51:114–122. doi: 10.1111/rda.12653. PubMed DOI
Sirotkin A.V., Koničková I., Østrup O., Rafay J., Laurincik J., Harrath A.H. Caloric restriction and IGF-I administration promote rabbit fecundity: Possible interrelationships and mechanisms of action. Theriogenology. 2017;90:252–259. doi: 10.1016/j.theriogenology.2016.12.017. PubMed DOI
Harrath A.H., Østrup O., Rafay J., Koničková Florkovičová I., Laurincik J., Sirotkin A.V. Metabolic state defines the response of rabbit ovarian cells to leptin. Repro. Biol. 2017;17:19–24. doi: 10.1016/j.repbio.2016.11.002. PubMed DOI
Blasco A., Martínez-Álvaro M., García M.L., Ibáñez-Escriche N., Argente M.J. Selection for genetic environmental sensitivity of litter size in rabbits. Genet. Sel. Evol. 2017;49:48–55. doi: 10.1186/s12711-017-0323-4. PubMed DOI PMC
Pedersen T., Peters H. Proposal for a classification of oocytes and follicles in the mouse ovary. J. Reprod. Fertil. 1968;17:555–557. doi: 10.1530/jrf.0.0170555. PubMed DOI
Sirotkin A.V., Pavlova S., Tena-Sempere M., Grossmann R., Jiménez M.R., Rodriguez J.M., Valenzuela F. Food restriction, ghrelin, its antagonist and obestatin control expression of ghrelin and its receptor in chicken hypothalamus and ovary. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2013;164:141–153. doi: 10.1016/j.cbpa.2012.07.010. PubMed DOI
Mescher A.L. Junqueira’s Basic Histology: Text and Atlas. 16th ed. McGraw-Hill; New York, NY, USA: 2021.
Perry S.W., Epstein L.G., Gelbard H.A. In situ trypan blue staining of monolayer cell cultures for permanent fixation and mounting. BioTechniques. 1997;22:1020–1024. doi: 10.2144/97226bm01. PubMed DOI
Uzuner S.Ç. Development of a direct trypan blue exclusion method to detect cell viability of adherent cells into ELISA plates. Celal Bayar Univ. Fen Bilim. Derg. 2018;14:99–104.
Fabová Z., Loncová B., Mlynček M., Sirotkin A.V. Interrelationships between amphiregulin, kisspeptin, FSH and FSH receptor in promotion of human ovarian cell functions. Reprod. Fertil. Dev. 2022;34:362–377. doi: 10.1071/RD21230. PubMed DOI
Moldovan G.L., Pfander B., Jentsch S. PCNA, the maestro of the replication fork. Cell. 2007;129:665–679. doi: 10.1016/j.cell.2007.05.003. PubMed DOI
Dai Y., Jin F., Wu W., Kumar S.K. Cell cycle regulation and hematologic malignancies. Blood Sci. 2019;1:34–43. doi: 10.1097/BS9.0000000000000009. PubMed DOI PMC
Ligasová A., Frydrych I., Koberna K. Basic Methods of Cell Cycle Analysis. Int. J. Mol. Sci. 2023;24:3674. doi: 10.3390/ijms24043674. PubMed DOI PMC
Spitz A.Z., Gavathiotis E. Physiological and pharmacological modulation of BAX. Trends Pharmacol. Sci. 2022;43:206–220. doi: 10.1016/j.tips.2021.11.001. PubMed DOI PMC
Sirotkin A.V. Regulators of Ovarian Functions. Nova Science Publishers; New York, NY, USA: 2014. p. 194.
Chou C.H., Chen M.J. The effect of steroid hormones on ovarian follicle development. Vitam. Horm. 2018;107:155–175. doi: 10.1016/bs.vh.2018.01.013. PubMed DOI
Chen P., Li B., Ou-Yang L. Role of estrogen receptors in health and disease. Front. Endocrinol. 2022;18:839005. doi: 10.3389/fendo.2022.839005. PubMed DOI PMC
Wiśniewski J.R., Zougman A., Nagaraj N., Mann M. Universal sample preparation method for proteome analysis. Nat. Methods. 2009;6:359–362. doi: 10.1038/nmeth.1322. PubMed DOI
Ge S.X., Jung D., Yao R. ShinyGO: A Graphical Gene-Set Enrichment Tool for Animals and Plants. Bioinformatics. 2020;36:2628–2629. doi: 10.1093/bioinformatics/btz931. PubMed DOI PMC
García M.L., Muelas R., Argente M.J., Peiró R. Relationship between prenatal characteristics and body condition and endocrine profile in Rabbits. Animals. 2021;11:95. doi: 10.3390/ani11010095. PubMed DOI PMC
Rebollar P.G., Pérez-Cabal M.A., Pereda N., Lorenzo P.L., Arias-Álvarez M., García-Rebollar P. Effects of parity order and reproductive management on the efficiency of rabbit productive systems. Livest. Scie. 2009;121:227–233. doi: 10.1016/j.livsci.2008.06.018. DOI
Bolet G., Garreau H., Joly T., Theau-Clement M., Falieres J., Hurtaud J., Bodin L. Genetic homogenisation of birth weight in rabbits: Indirect selection response for uterine horn characteristics. Livest. Scie. 2007;111:28–32. doi: 10.1016/j.livsci.2006.11.012. DOI
Argente M.J., Santacreu M.A., Climent A., Blasco A. Influence of available uterine space per fetus on fetal development and prenatal survival in rabbits selected for uterine capacity. Livest. Scie. 2006;102:83–91. doi: 10.1016/j.livprodsci.2005.11.022. DOI
Žitný J., Massányi P., Trakovická A., Rafaj J., Toman R. Quantification of the ovarian follicular growth in rabbits. Bull. Vet. Inst. Pulawy. 2004;48:37–40.
Al-Mufti W., Bomsel-Helmreich O., Chritidès J.P. Oocyte size and intrafollicular position in polyovular follicles in rabbits. J. Reprod. Fert. 1988;82:15–25. doi: 10.1530/jrf.0.0820015. PubMed DOI
Naseer Z., Ahmad E., Epikmen E.T., Uçan U., Boyacioğlu M., İpek E., Akosy M. Quercetin supplemented diet improves follicular development, oocyte quality, and reduces ovarian apoptosis in rabbits during summer heat stress. Theriogenology. 2017;96:136–141. doi: 10.1016/j.theriogenology.2017.03.029. PubMed DOI
Hutt K.J., McLaughlin E.A., Holland M.K. Primordial follicle activation and follicular development in the juvenile rabbit ovary. Cell Tissue Res. 2006;326:809–822. doi: 10.1007/s00441-006-0223-3. PubMed DOI
Alam M.H., Miyano T. Interaction between growing oocytes and granulosa cells in vitro. Reprod. Med. Biol. 2020;19:13–23. doi: 10.1002/rmb2.12292. PubMed DOI PMC
Martí-Clúa J. Incorporation of 5-Bromo-2′-deoxyuridine into DNA and Proliferative Behavior of Cerebellar Neuroblasts: All That Glitters Is Not Gold. Cells. 2021;10:1453. doi: 10.3390/cells10061453. PubMed DOI PMC
McCann J.P., Hansel W. Relationship between insulin and glucose metabolism and pituitary-ovarian functions in fasted heifers. Biol. Reprod. 1986;34:630–641. doi: 10.1095/biolreprod34.4.630. PubMed DOI
Dunkley S., Scheffler K., Mogessie B. Cytoskeletal form and function in mammalian oocytes and zygotes. Curr. Opin. Cell Biol. 2022;75:102073. doi: 10.1016/j.ceb.2022.02.007. PubMed DOI
Pathirana A., Diao M., Huang S., Zuo L., Liang Y. Alpha 2 macroglobulin is a maternally-derived immune factor in amphioxus embryos: New evidence for defense roles of maternal immune components in invertebrate chordate. Fish Shellfish Immunol. 2016;50:21–26. doi: 10.1016/j.fsi.2015.10.040. PubMed DOI
Saadeldin I.M., Tukur H.A., Aljumaah R.S., Sindi R.A. Rocking the boat: The decisive roles of rho kinases during oocyte, blastocyst, and stem cell development. Front. Cell Dev. Biol. 2021;8:616762. doi: 10.3389/fcell.2020.616762. PubMed DOI PMC