Most anti-BrdU antibodies react with 2'-deoxy-5-ethynyluridine -- the method for the effective suppression of this cross-reactivity
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
23272138
PubMed Central
PMC3525573
DOI
10.1371/journal.pone.0051679
PII: PONE-D-12-15706
Knihovny.cz E-zdroje
- MeSH
- afinita protilátek MeSH
- barvení a značení MeSH
- biologický transport MeSH
- biotinylace MeSH
- bromodeoxyuridin chemie imunologie metabolismus MeSH
- deoxyuridin analogy a deriváty chemie imunologie metabolismus MeSH
- DNA chemie metabolismus MeSH
- fluorescenční barviva MeSH
- fluorescenční mikroskopie * MeSH
- HeLa buňky MeSH
- lidé MeSH
- protilátky chemie imunologie MeSH
- zkřížené reakce imunologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 5-ethynyl-2'-deoxyuridine MeSH Prohlížeč
- bromodeoxyuridin MeSH
- deoxyuridin MeSH
- DNA MeSH
- fluorescenční barviva MeSH
- protilátky MeSH
5-Bromo-2'-deoxyuridine (BrdU) and 2'-deoxy-5-ethynyluridine (EdU) are widely used as markers of replicated DNA. While BrdU is detected using antibodies, the click reaction typically with fluorescent azido-dyes is used for EdU localisation. We have performed an analysis of ten samples of antibodies against BrdU with respect to their reactivity with EdU. Except for one sample all the others evinced reactivity with EdU. A high level of EdU persists in nuclear DNA even after the reaction of EdU with fluorescent azido-dyes if the common concentration of dye is used. Although a ten-time increase of azido-dye concentration resulted in a decrease of the signal provided by anti-BrdU antibodies, it also resulted in a substantial increase of the non-specific signal. We have shown that this unwanted reactivity is effectively suppressed by non-fluorescent azido molecules. In this respect, we have tested two protocols of the simultaneous localisation of incorporated BrdU and EdU. They differ in the mechanism of the revelation of incorporated BrdU for the reaction with antibodies. The first one was based on the use of hydrochloric acid, the second one on the incubation of samples with copper(I) ions. The use of hydrochloric acid resulted in a significant increase of the non-specific signal. In the case of the second method, no such effect was observed.
Zobrazit více v PubMed
Dimitrova DS, Berezney R (2002) The spatio-temporal organization of DNA replication sites is identical in primary, immortalized and transformed mammalian cells. J Cell Sci 115: 4037–4051. PubMed
Kennedy BK, Barbie DA, Classon M, Dyson N, Harlow E (2000) Nuclear organization of DNA replication in primary mammalian cells. Genes Dev 14: 2855–2868. PubMed PMC
Aten JA, Bakker PJ, Stap J, Boschman GA, Veenhof CH (1992) DNA double labelling with IdUrd and CldUrd for spatial and temporal analysis of cell proliferation and DNA replication. Histochem J 24: 251–259. PubMed
Merrick CJ, Jackson D, Diffley JF (2004) Visualization of altered replication dynamics after DNA damage in human cells. J Biol Chem 279: 20067–20075. PubMed
Seiler JA, Conti C, Syed A, Aladjem MI, Pommier Y (2007) The intra-S-phase checkpoint affects both DNA replication initiation and elongation: single-cell and -DNA fiber analyses. Mol Cell Biol 27: 5806–5818. PubMed PMC
Ageno M, Dore E, Frontali C (1969) The alkaline denaturation of DNA. Biophys J 9: 1281–1311. PubMed PMC
Jackson DA, Pombo A (1998) Replicon clusters are stable units of chromosome structure: evidence that nuclear organization contributes to the efficient activation and propagation of S phase in human cells. J Cell Biol 140: 1285–1295. PubMed PMC
Stanojcic S, Lemaitre JM, Brodolin K, Danis E, Mechali M (2008) In Xenopus egg extracts, DNA replication initiates preferentially at or near asymmetric AT sequences. Mol Cell Biol 28: 5265–5274. PubMed PMC
Ligasová A, Strunin D, Liboska R, Rosenberg I, Koberna K (2012) Atomic Scissors: A New Method of Tracking the 5-Bromo-2′-Deoxyuridine-Labeled DNA in Situ. PLoS One: In press. PubMed PMC
Salic A, Mitchison TJ (2008) A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc Natl Acad Sci U S A 105: 2415–2420. PubMed PMC
Wu JC, Wang DX, Huang ZT, Wang MX (2010) Synthesis of diverse N,O-bridged calix[1]arene[4]pyridine-C(60) dyads and triads and formation of intramolecular self-inclusion complexes. J Org Chem 75: 8604–8614. PubMed
Behrens CH, Sharpless KB (1985) Selective Transformations of 2,3-Epoxy Alcohols and Related Derivatives - Strategies for Nucleophilic-Attack at Carbon-3 or Carbon-2. J Org Chem 50: 5696–5704.
Ligasová A, Koberna K (2010) In situ reverse transcription: the magic of strength and anonymity. Nucleic Acids Res 38: e167. PubMed PMC
Bradford JA, Clarke ST (2011) Dual-pulse labeling using 5-ethynyl-2′-deoxyuridine (EdU) and 5-bromo-2′-deoxyuridine (BrdU) in flow cytometry. Curr Protoc Cytom 55: 1–15. PubMed
Barr PJ, Nolan PA, Santi DV, Robins MJ (1981) Inhibition of thymidylate synthetase by 5-alkynyl-2′-deoxyuridylates. J Med Chem 24: 1385–1388. PubMed
Qu D, Wang G, Wang Z, Zhou L, Chi W, et al. (2011) 5-Ethynyl-2′-deoxycytidine as a new agent for DNA labeling: detection of proliferating cells. Anal Biochem 417: 112–121. PubMed
Basic Methods of Cell Cycle Analysis
DNA Replication: From Radioisotopes to Click Chemistry
Dr Jekyll and Mr Hyde: a strange case of 5-ethynyl-2'-deoxyuridine and 5-ethynyl-2'-deoxycytidine
A fatal combination: a thymidylate synthase inhibitor with DNA damaging activity
A New Method of the Visualization of the Double-Stranded Mitochondrial and Nuclear DNA