DNA Replication: From Radioisotopes to Click Chemistry

. 2018 Nov 17 ; 23 (11) : . [epub] 20181117

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid30453631

Grantová podpora
LO1304 Ministerstvo Školství, Mládeže a Tělovýchovy
15-31604A Agentura Pro Zdravotnický Výzkum České Republiky
CZ.02.1.01/0.0/0.0/16_019/0000868 European Regional Development Fund

The replication of nuclear and mitochondrial DNA are basic processes assuring the doubling of the genetic information of eukaryotic cells. In research of the basic principles of DNA replication, and also in the studies focused on the cell cycle, an important role is played by artificially-prepared nucleoside and nucleotide analogues that serve as markers of newly synthesized DNA. These analogues are incorporated into the DNA during DNA replication, and are subsequently visualized. Several methods are used for their detection, including the highly popular click chemistry. This review aims to provide the readers with basic information about the various possibilities of the detection of replication activity using nucleoside and nucleotide analogues, and to show the strengths and weaknesses of those different detection systems, including click chemistry for microscopic studies.

Zobrazit více v PubMed

Dahm R. Discovering DNA: Friedrich Miescher and the early years of nucleic acid research. Hum. Genet. 2008;122:565–581. doi: 10.1007/s00439-007-0433-0. PubMed DOI

Avery O.T., Macleod C.M., McCarty M. Studies on the Chemical Nature of the Substance Inducing Transformation of Pneumococcal Types: Induction of Transformation by a Desoxyribonucleic Acid Fraction Isolated from Pneumococcus Type Iii. J. Exp. Med. 1944;79:137–158. doi: 10.1084/jem.79.2.137. PubMed DOI PMC

Hershey A.D., Chase M. Independent functions of viral protein and nucleic acid in growth of bacteriophage. J. Gen. Physiol. 1952;36:39–56. doi: 10.1085/jgp.36.1.39. PubMed DOI PMC

Watson J.D., Crick F.H. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature. 1953;171:737–738. doi: 10.1038/171737a0. PubMed DOI

Baker T.A., Bell S.P. Polymerases and the replisome: Machines within machines. Cell. 1998;92:295–305. doi: 10.1016/S0092-8674(00)80923-X. PubMed DOI

Hand R. Eucaryotic DNA: Organization of the genome for replication. Cell. 1978;15:317–325. doi: 10.1016/0092-8674(78)90001-6. PubMed DOI

Johnson A., O’Donnell M. Cellular DNA replicases: Components and dynamics at the replication fork. Annu. Rev. Biochem. 2005;74:283–315. doi: 10.1146/annurev.biochem.73.011303.073859. PubMed DOI

Pope B.D., Gilbert D.M. The replication domain model: Regulating replicon firing in the context of large-scale chromosome architecture. J. Mol. Biol. 2013;425:4690–4695. doi: 10.1016/j.jmb.2013.04.014. PubMed DOI PMC

Reichard P., Estborn B. Utilization of desoxyribosides in the synthesis of polynucleotides. J. Biol. Chem. 1951;188:839–846. PubMed

Downing M., Schweigert B.S. Role of vitamin B12 in nucleic acid metabolism. IV. Metabolism of C14-labeled thymidine by Lactobacillus leichmannii. J. Biol. Chem. 1956;220:521–526. PubMed

Friedkin M., Tilson D., Roberts D. Studies of deoxyribonucleic acid biosynthesis in embryonic tissues with thymidine-C14. J. Biol. Chem. 1956;220:627–637. PubMed

Friedkin M., Wood H.I. Utilization of thymidine-C14 by bone marrow cells and isolated thymus nuclei. J. Biol. Chem. 1956;220:639–651. PubMed

Taylor J.H., Woods P.S., Hughes W.L. The Organization and Duplication of Chromosomes as Revealed by Autoradiographic Studies Using Tritium-Labeled Thymidinee. Proc. Natl. Acad. Sci. USA. 1957;43:122–128. doi: 10.1073/pnas.43.1.122. PubMed DOI PMC

Barthe N., Maîtrejean S., Cardona A. High-Resolution Beta Imaging. In: L’Annunziata M.F., editor. Handbook of Radioactivity Analysis. 3rd ed. Elsevier Inc.; Waltham, MA, USA: 2012. pp. 1209–1242.

Cairns J. The bacterial chromosome and its manner of replication as seen by autoradiography. J. Mol. Biol. 1963;6:208–213. doi: 10.1016/S0022-2836(63)80070-4. PubMed DOI

Cairns J. Autoradiography of HeLa cell DNA. J. Mol. Biol. 1966;15:372–373. doi: 10.1016/S0022-2836(66)80233-4. PubMed DOI

Huberman J.A., Riggs A.D. Autoradiography of chromosomal DNA fibers from Chinese hamster cells. Proc. Natl. Acad. Sci. USA. 1966;55:599–606. doi: 10.1073/pnas.55.3.599. PubMed DOI PMC

Ribas-Mundo M. DNA replication patterns of normal human leukocyte cultures. Time sequence of DNA synthesis in relation to the H3-thymidine incorporation over the nucleolus. Blood. 1966;28:891–900. PubMed

Okazaki R., Okazaki T., Sakabe K., Sugimoto K., Sugino A. Mechanism of DNA chain growth. I. Possible discontinuity and unusual secondary structure of newly synthesized chains. Proc. Natl. Acad. Sci. USA. 1968;59:598–605. doi: 10.1073/pnas.59.2.598. PubMed DOI PMC

Okazaki T., Okazaki R. Mechanism of DNA chain growth. IV. Direction of synthesis of T4 short DNA chains as revealed by exonucleolytic degradation. Proc. Natl. Acad. Sci. USA. 1969;64:1242–1248. doi: 10.1073/pnas.64.4.1242. PubMed DOI PMC

Sugimoto K., Okazaki T., Imae Y., Okazaki R. Mechanism of DNA chain growth, III. Equal annealing of T4 nascent short DNA chains with the separated complementary strands of the phage DNA. Proc. Natl. Acad. Sci. USA. 1969;63:1343–1350. doi: 10.1073/pnas.63.4.1343. PubMed DOI PMC

Sugimoto K., Okazaki T., Okazaki R. Mechanism of DNA chain growth, II. Accumulation of newly synthesized short chains in E. coli infected with ligase-defective T4 phages. Proc. Natl. Acad. Sci. USA. 1968;60:1356–1362. doi: 10.1073/pnas.60.4.1356. PubMed DOI PMC

Hay E.D., Revel J.P. The fine structure of the DNP component of the nucleus. An electron microscopic study utilizing autoradiography to localize DNA synthesis. J. Cell Biol. 1963;16:29–51. doi: 10.1083/jcb.16.1.29. PubMed DOI PMC

Milner G.R. Nuclear morphology and the ultrastructural localization of deoxyribonucleic acid synthesis during interphase. J. Cell Sci. 1969;4:569–582. PubMed

Beltz R.E., Visser D.W. Growth Inhibition of Escherichia-Coli by New Thymidine Analogs. J. Am. Chem. Soc. 1955;77:736–738. doi: 10.1021/ja01608a053. DOI

Djordjevic B., Szybalski W. Genetics of human cell lines: III. Incorporation of 5-bromo- and 5-iododeoxyuridine into the deoxyribonucleic acid of human cells and its effect on radiation sensitivity. J. Exp. Med. 1960;112:509–531. doi: 10.1084/jem.112.3.509. PubMed DOI PMC

Eidinoff M.L., Cheong L., Rich M.A. Incorporation of unnatural pyrimidine bases into deoxyribonucleic acid of mammalian cells. Science. 1959;129:1550–1551. doi: 10.1126/science.129.3362.1550. PubMed DOI

Hakala M.T. Mode of action of 5-bromodeoxyuridine on mammalian cells in culture. J. Biol. Chem. 1959;234:3072–3076. PubMed

Szybalski W., Djordjevic B. Radiation Sensitivity of Chemically Modified Human Cells. Genetics. 1959;44:540–541.

Bischoff R., Holtzer H. Inhibition of myoblast fusion after one round of DNA synthesis in 5-bromodeoxyuridine. J. Cell Biol. 1970;44:134–150. doi: 10.1083/jcb.44.1.134. PubMed DOI PMC

Sawicki D.L., Erlanger B.F., Beiser S.M. Immunochemical detection of minor bases in nucleic acids. Science. 1971;174:70–72. doi: 10.1126/science.174.4004.70. PubMed DOI

Gratzner H.G., Leif R.C., Ingram D.J., Castro A. The use of antibody specific for bromodeoxyuridine for the immunofluorescent determination of DNA replication in single cells and chromosomes. Exp. Cell Res. 1975;95:88–94. doi: 10.1016/0014-4827(75)90612-6. PubMed DOI

Latt S.A. Microfluorometric detection of deoxyribonucleic acid replication in human metaphase chromosomes. Proc. Natl. Acad. Sci. USA. 1973;70:3395–3399. doi: 10.1073/pnas.70.12.3395. PubMed DOI PMC

Bohmer R.M., Ellwart J. Cell cycle analysis by combining the 5-bromodeoxyuridine/33258 Hoechst technique with DNA-specific ethidium bromide staining. Cytometry. 1981;2:31–34. doi: 10.1002/cyto.990020107. PubMed DOI

Crissman H.A., Steinkamp J.A. A new method for rapid and sensitive detection of bromodeoxyuridine in DNA-replicating cells. Exp. Cell Res. 1987;173:256–261. doi: 10.1016/0014-4827(87)90350-8. PubMed DOI

Darzynkiewicz Z., Traganos F., Zhao H., Halicka H.D., Li J. Cytometry of DNA replication and RNA synthesis: Historical perspective and recent advances based on “click chemistry”. Cytometry A. 2011;79:328–337. doi: 10.1002/cyto.a.21048. PubMed DOI PMC

Ageno M., Dore E., Frontali C. The alkaline denaturation of DNA. Biophys. J. 1969;9:1281–1311. doi: 10.1016/S0006-3495(69)86452-0. PubMed DOI PMC

Dimitrova D.S., Berezney R. The spatio-temporal organization of DNA replication sites is identical in primary, immortalized and transformed mammalian cells. J. Cell Sci. 2002;115:4037–4051. doi: 10.1242/jcs.00087. PubMed DOI

Jackson D.A., Pombo A. Replicon clusters are stable units of chromosome structure: Evidence that nuclear organization contributes to the efficient activation and propagation of S phase in human cells. J. Cell Biol. 1998;140:1285–1295. doi: 10.1083/jcb.140.6.1285. PubMed DOI PMC

Kennedy B.K., Barbie D.A., Classon M., Dyson N., Harlow E. Nuclear organization of DNA replication in primary mammalian cells. Genes Dev. 2000;14:2855–2868. doi: 10.1101/gad.842600. PubMed DOI PMC

Koberna K., Ligasová A., Malínsky J., Pliss A., Siegel A.J., Cvačková Z., Fidlerová H., Mašata M., Fialová M., Raška I., et al. Electron microscopy of DNA replication in 3-D: Evidence for similar-sized replication foci throughout S-phase. J. Cell. Biochem. 2005;94:126–138. doi: 10.1002/jcb.20300. PubMed DOI

Ligasová A., Strunin D., Liboska R., Rosenberg I., Koberna K. Atomic Scissors: A New Method of Tracking the 5-Bromo-2′-Deoxyuridine-Labeled DNA In Situ. PLoS ONE. 2012;7:e52584. doi: 10.1371/journal.pone.0052584. PubMed DOI PMC

Humbert C., Santisteban M.S., Usson Y., Robert-Nicoud M. Intranuclear co-location of newly replicated DNA and PCNA by simultaneous immunofluorescent labelling and confocal microscopy in MCF-7 cells. Pt 1J. Cell Sci. 1992;103:97–103. PubMed

Sasaki K., Adachi S., Yamamoto T., Murakami T., Tanaka K., Takahashi M. Effects of denaturation with HCl on the immunological staining of bromodeoxyuridine incorporated into DNA. Cytometry. 1988;9:93–96. doi: 10.1002/cyto.990090115. PubMed DOI

Dolbeare F., Gray J.W. Use of Restriction Endonucleases and Exonuclease-Iii to Expose Halogenated Pyrimidines for Immunochemical Staining. Cytometry. 1988;9:631–635. doi: 10.1002/cyto.990090619. PubMed DOI

Fox M.H., Arndt-Jovin D.J., Jovin T.M., Baumann P.H., Robert-Nicoud M. Spatial and temporal distribution of DNA replication sites localized by immunofluorescence and confocal microscopy in mouse fibroblasts. Pt 2J. Cell Sci. 1991;99:247–253. PubMed

Ligasová A., Konečný P., Frydrych I., Koberna K. Looking for ugly ducklings: The role of the stability of BrdU-antibody complex and the improved method of the detection of DNA replication. PLoS ONE. 2017;12:e0174893. doi: 10.1371/journal.pone.0174893. PubMed DOI PMC

Ligasová A., Konečný P., Frydrych I., Koberna K. Cell cycle profiling by image and flow cytometry: The optimised protocol for the detection of replicational activity using 5-Bromo-2′-deoxyuridine, low concentration of hydrochloric acid and exonuclease III. PLoS ONE. 2017;12:e0175880. doi: 10.1371/journal.pone.0175880. PubMed DOI PMC

Li X., Darzynkiewicz Z. Labelling DNA strand breaks with BrdUTP. Detection of apoptosis and cell proliferation. Cell Prolif. 1995;28:571–579. doi: 10.1111/j.1365-2184.1995.tb00045.x. PubMed DOI

Li X., Melamed M.R., Darzynkiewicz Z. Detection of apoptosis and DNA replication by differential labeling of DNA strand breaks with fluorochromes of different color. Exp. Cell Res. 1996;222:28–37. doi: 10.1006/excr.1996.0004. PubMed DOI

Visser D.W., Frisch D.M., Huang B. Synthesis of 5-chlorodeoxyuridine and a comparative study of 5-halodeoxyuridines in E. coli. Biochem. Pharmacol. 1960;5:157–164. doi: 10.1016/0006-2952(60)90017-4. PubMed DOI

Prusoff W.H. Synthesis and biological activities of iododeoxyuridine, an analog of thymidine. Biochim. Biophys. Acta. 1959;32:295–296. doi: 10.1016/0006-3002(59)90597-9. PubMed DOI

Aten J.A., Bakker P.J., Stap J., Boschman G.A., Veenhof C.H. DNA double labelling with IdUrd and CldUrd for spatial and temporal analysis of cell proliferation and DNA replication. Histochem. J. 1992;24:251–259. doi: 10.1007/BF01046839. PubMed DOI

Malínský J., Koberna K., Staněk D., Mašata M., Votruba I., Raška I. The supply of exogenous deoxyribonucleotides accelerates the speed of the replication fork in early S-phase. J. Cell Sci. 2001;114:747–750. PubMed

Schwab R.A., Niedzwiedz W. Visualization of DNA replication in the vertebrate model system DT40 using the DNA fiber technique. J. Vis. Exp. 2011;56 doi: 10.3791/3255. PubMed DOI PMC

Techer H., Koundrioukoff S., Azar D., Wilhelm T., Carignon S., Brison O., Debatisse M., Le Tallec B. Replication dynamics: Biases and robustness of DNA fiber analysis. J. Mol. Biol. 2013;425:4845–4855. doi: 10.1016/j.jmb.2013.03.040. PubMed DOI

Kronenwett U., Castro J., Roblick U.J., Fujioka K., Ostring C., Faridmoghaddam F., Laytragoon-Lewin N., Tribukait B., Auer G. Expression of cyclins A, E and topoisomerase II alpha correlates with centrosome amplification and genomic instability and influences the reliability of cytometric S-phase determination. BMC Cell Biol. 2003;4:8. doi: 10.1186/1471-2121-4-8. PubMed DOI PMC

Lam H.Y., Yusoff K., Yeap S.K., Subramani T., Abd-Aziz S., Omar A.R., Alitheen N.B. Immunomodulatory effects of Newcastle disease virus AF2240 strain on human peripheral blood mononuclear cells. Int. J. Med. Sci. 2014;11:1240–1247. doi: 10.7150/ijms.8170. PubMed DOI PMC

Tarasov K.V., Tarasova Y.S., Tam W.L., Riordon D.R., Elliott S.T., Kania G., Li J.L., Yamanaka S., Crider D.G., Testa G., et al. B-MYB Is Essential for Normal Cell Cycle Progression and Chromosomal Stability of Embryonic Stem Cells. PLoS ONE. 2008;3:e2478. doi: 10.1371/journal.pone.0002478. PubMed DOI PMC

Wu Y., Zhang S., Xu Q., Zou H., Zhou W., Cai F., Li T., Song W. Regulation of global gene expression and cell proliferation by APP. Sci. Rep. 2016;6:22460. doi: 10.1038/srep22460. PubMed DOI PMC

Zhao J., Liu T., Jin S.B., Tomilin N., Castro J., Shupliakov O., Lendahl U., Nister M. The novel conserved mitochondrial inner-membrane protein MTGM regulates mitochondrial morphology and cell proliferation. J. Cell Sci. 2009;122:2252–2262. doi: 10.1242/jcs.038513. PubMed DOI

Dolbeare F., Gratzner H., Pallavicini M.G., Gray J.W. Flow cytometric measurement of total DNA content and incorporated bromodeoxyuridine. Proc. Natl. Acad. Sci. USA. 1983;80:5573–5577. doi: 10.1073/pnas.80.18.5573. PubMed DOI PMC

Dolbeare F., Selden J.R. Immunochemical Quantitation of Bromodeoxyuridine—Application to Cell-Cycle Kinetics. Methods Cell Biol. 1994;41:297–316. PubMed

Nakamura H., Morita T., Sato C. Structural organizations of replicon domains during DNA synthetic phase in the mammalian nucleus. Exp. Cell Res. 1986;165:291–297. doi: 10.1016/0014-4827(86)90583-5. PubMed DOI

Nakayasu H., Berezney R. Mapping replicational sites in the eucaryotic cell nucleus. J. Cell Biol. 1989;108:1–11. doi: 10.1083/jcb.108.1.1. PubMed DOI PMC

Okeefe R.T., Henderson S.C., Spector D.L. Dynamic Organization of DNA-Replication in Mammalian-Cell Nuclei-Spatially and Temporally Defined Replication of Chromosome-Specific Alpha-Satellite DNA-Sequences. J. Cell Biol. 1992;116:1095–1110. doi: 10.1083/jcb.116.5.1095. PubMed DOI PMC

Fetni R., Drouin R., Richer C.L., Lemieux N. Complementary replication R- and G-band patterns induced by cell blocking at the R-band/G-band transition, a possible regulatory checkpoint within the S phase of the cell cycle. Cytogenet. Genome Res. 1996;75:172–179. doi: 10.1159/000134472. PubMed DOI

Aten J.A., Stap J., Hoebe R., Bakker P.J. Application and detection of IdUrd and CldUrd as two independent cell-cycle markers. Methods Cell Biol. 1994;41:317–326. PubMed

Pollack A., Terry N.H., Van N.T., Meistrich M.L. Flow cytometric analysis of two incorporated halogenated thymidine analogues and DNA in a mouse mammary tumor grown in vivo. Cytometry. 1993;14:168–172. doi: 10.1002/cyto.990140208. PubMed DOI

Davis A.F., Clayton D.A. In situ localization of mitochondrial DNA replication in intact mammalian cells. J. Cell Biol. 1996;135:883–893. doi: 10.1083/jcb.135.4.883. PubMed DOI PMC

Lentz S.I., Edwards J.L., Backus C., McLean L.L., Haines K.M., Feldman E.L. Mitochondrial DNA (mtDNA) Biogenesis: Visualization and Duel Incorporation of BrdU and EdU Into Newly Synthesized mtDNA In Vitro. J. Histochem. Cytochem. 2010;58:207–218. doi: 10.1369/jhc.2009.954701. PubMed DOI PMC

Magnusson J., Orth M., Lestienne P., Taanman J.W. Replication of mitochondrial DNA occurs throughout the mitochondria of cultured human cells. Exp. Cell Res. 2003;289:133–142. doi: 10.1016/S0014-4827(03)00249-0. PubMed DOI

Mazzotti G., Rizzoli R., Galanzi A., Papa S., Vitale M., Falconi M., Neri L.M., Zini N., Maraldi N.M. High-resolution detection of newly synthesized DNA by anti-bromodeoxyuridine antibodies identifies specific chromatin domains. J. Histochem. Cytochem. 1990;38:13–22. doi: 10.1177/38.1.2403578. PubMed DOI

Raska I., Koberna K., Jarnik M., Petrasovicova V., Bednar J., Raska K., Jr., Bravo R. Ultrastructural immunolocalization of cyclin/PCNA in synchronized 3T3 cells. Exp. Cell Res. 1989;184:81–89. doi: 10.1016/0014-4827(89)90366-2. PubMed DOI

Albagli O., Lindon C., Lantoine D., Quief S., Puvion E., Pinset C., Puvion-Dutilleul F. DNA replication progresses on the periphery of nuclear aggregates formed by the BCL6 transcription factor. Mol. Cell. Biol. 2000;20:8560–8570. doi: 10.1128/MCB.20.22.8560-8570.2000. PubMed DOI PMC

Salic A., Mitchison T.J. A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc. Natl. Acad. Sci. USA. 2008;105:2415–2420. doi: 10.1073/pnas.0712168105. PubMed DOI PMC

Barr P.J., Jones A.S., Serafinowski P., Walker R.T. Synthesis of Nucleosides Derived from 5-Ethynyluracil and 5-Ethynyl-Cytosine. J. Chem. Soc. Perkin Trans. 1. 1978;10:1263–1267. doi: 10.1039/p19780001263. DOI

Perman J., Sharma R.A., Bobek M. Synthesis of 1-(2-Deoxy-Beta-D-Erythro-Pentofuranosyl)-5-Ethynyl-1,2,3,4-Tetrahydropyrimidine-2,4-Dione (5-Ethynyl-2′-Deoxyuridine) Tetrahedron Lett. 1976;17:2427–2430. doi: 10.1016/0040-4039(76)90010-1. DOI

Cristofoli W.A., Wiebe L.I., De Clercq E., Andrei G., Snoeck R., Balzarini J., Knaus E.E. 5-alkynyl analogs of arabinouridine and 2′-deoxyuridine: Cytostatic activity against herpes simplex virus and varicella-zoster thymidine kinase gene-transfected cells. J. Med. Chem. 2007;50:2851–2857. doi: 10.1021/jm0701472. PubMed DOI

De Clercq E., Descamps J., De Somer P., Barr P.J., Jones A.S., Walker R.T. (E)-5-(2-Bromovinyl)-2′-deoxyuridine: A potent and selective anti-herpes agent. Proc. Natl. Acad. Sci. USA. 1979;76:2947–2951. doi: 10.1073/pnas.76.6.2947. PubMed DOI PMC

Shealy Y.F., Odell C.A., Arnett G., Shannon W.M. Synthesis and Antiviral Activity of the Carbocyclic Analogs of 5-Ethyl-2′-Deoxyuridine and of 5-Ethynyl-2′-Deoxyuridine. J. Med. Chem. 1986;29:79–84. doi: 10.1021/jm00151a013. PubMed DOI

Walker R.T., Barr P.J., Clereq E.D., Descamps J., Jones A.S., Serafinowski P. The synthesis and properties of some antiviral nucleosides. Nucleic Acids Res. 1978;1:s103–s108. doi: 10.1093/nar/1.suppl_1.s103. DOI

Meneni S., Ott I., Sergeant C.D., Sniady A., Gust R., Dembinski R. 5-Alkynyl-2′-deoxyuridines: Chromatography-free synthesis and cytotoxicity evaluation against human breast cancer cells. Bioorg. Med. Chem. 2007;15:3082–3088. doi: 10.1016/j.bmc.2007.01.048. PubMed DOI PMC

Walker R.T., Jones A.S., De Clercq E., Descamps J., Allaudeen H.S., Kozarich J.W. The synthesis and properties of some 5-substituted uracil derivatives. Nucleic Acids Symp. Ser. 1980:s95–102. PubMed

Barr P.J., Nolan P.A., Santi D.V., Robins M.J. Inhibition of Thymidylate Synthetase by 5-Alkynyl-2′-Deoxyuridylates. J. Med. Chem. 1981;24:1385–1388. doi: 10.1021/jm00144a003. PubMed DOI

Rostovtsev V.V., Green L.G., Fokin V.V., Sharpless K.B. A stepwise huisgen cycloaddition process: Copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem. Int. Ed. Engl. 2002;41:2596–2599. doi: 10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4. PubMed DOI

Tornoe C.W., Christensen C., Meldal M. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem. 2002;67:3057–3064. doi: 10.1021/jo011148j. PubMed DOI

Aparicio T., Megias D., Mendez J. Visualization of the MCM DNA helicase at replication factories before the onset of DNA synthesis. Chromosoma. 2012;121:499–507. doi: 10.1007/s00412-012-0381-x. PubMed DOI

Endaya B., Cavanagh B., Alowaidi F., Walker T., de Pennington N., Ng J.M., Lam P.Y., Mackay-Sim A., Neuzil J., Meedeniya A.C. Isolating dividing neural and brain tumour cells for gene expression profiling. J. Neurosci. Meth. 2016;257:121–133. doi: 10.1016/j.jneumeth.2015.09.020. PubMed DOI

Petruk S., Sedkov Y., Johnston D.M., Hodgson J.W., Black K.L., Kovermann S.K., Beck S., Canaani E., Brock H.W., Mazo A. TrxG and PcG proteins but not methylated histones remain associated with DNA through replication. Cell. 2012;150:922–933. doi: 10.1016/j.cell.2012.06.046. PubMed DOI PMC

Poujol F., Monneret G., Friggeri A., Rimmele T., Malcus C., Poitevin-Later F., Pachot A., Lepape A., Textoris J., Venet F. Flow cytometric evaluation of lymphocyte transformation test based on 5-ethynyl-2′deoxyuridine incorporation as a clinical alternative to tritiated thymidine uptake measurement. J. Immunol. Methods. 2014;415:71–79. doi: 10.1016/j.jim.2014.10.006. PubMed DOI

Kohlmeier F., Maya-Mendoza A., Jackson D.A. EdU induces DNA damage response and cell death in mESC in culture. Chromosome Res. 2013;21:87–100. doi: 10.1007/s10577-013-9340-5. PubMed DOI PMC

Ligasová A., Strunin D., Friedecký D., Adam T., Koberna K. A fatal combination: A thymidylate synthase inhibitor with DNA damaging activity. PLoS ONE. 2015;10:e0117459. doi: 10.1371/journal.pone.0117459. PubMed DOI PMC

Ross H.H., Rahman M., Levkoff L.H., Millette S., Martin-Carreras T., Dunbar E.M., Reynolds B.A., Laywell E.D. Ethynyldeoxyuridine (EdU) suppresses in vitro population expansion and in vivo tumor progression of human glioblastoma cells. J. Neurooncol. 2011;105:485–498. doi: 10.1007/s11060-011-0621-6. PubMed DOI PMC

Zhao H., Halicka H.D., Li J.W., Biela E., Berniak K., Dobrucki J., Darzynkiewicz Z. DNA Damage Signaling, Impairment of Cell Cycle Progression, and Apoptosis Triggered by 5-Ethynyl-2′-deoxyuridine Incorporated into DNA. Cytom. Part A. 2013;83:979–988. doi: 10.1002/cyto.a.22396. PubMed DOI PMC

Baskin J.M., Prescher J.A., Laughlin S.T., Agard N.J., Chang P.V., Miller I.A., Lo A., Codelli J.A., Bertozzi C.R. Copper-free click chemistry for dynamic in vivo imaging. Proc. Natl. Acad. Sci. USA. 2007;104:16793–16797. doi: 10.1073/pnas.0707090104. PubMed DOI PMC

Henderson L., Bortone D.S., Lim C., Zambon A.C. Classic “broken cell” techniques and newer live cell methods for cell cycle assessment. Am. J. Physiol. Cell Physiol. 2013;304:C927–C938. doi: 10.1152/ajpcell.00006.2013. PubMed DOI PMC

Hong V., Steinmetz N.F., Manchester M., Finn M.G. Labeling Live Cells by Copper-Catalyzed Alkyne-Azide Click Chemistry. Bioconjugate Chem. 2010;21:1912–1916. doi: 10.1021/bc100272z. PubMed DOI PMC

Loschberger A., Niehorster T., Sauer M. Click chemistry for the conservation of cellular structures and fluorescent proteins: ClickOx. Biotechnol. J. 2014;9:693–697. doi: 10.1002/biot.201400026. PubMed DOI

Liboska R., Ligasová A., Strunin D., Rosenberg I., Koberna K. Most anti-BrdU antibodies react with 2′-deoxy-5-ethynyluridine—The method for the effective suppression of this cross-reactivity. PLoS ONE. 2012;7:e51679. doi: 10.1371/journal.pone.0051679. PubMed DOI PMC

Bradford J.A., Clarke S.T. Dual-pulse labeling using 5-ethynyl-2′-deoxyuridine (EdU) and 5-bromo-2′-deoxyuridine (BrdU) in flow cytometry. Curr. Protoc. Cytom. 2011;55:7–38. doi: 10.1002/0471142956.cy0738s55. PubMed DOI

Ngo J.T., Adams S.R., Deerinck T.J., Boassa D., Rodriguez-Rivera F., Palida S.F., Bertozzi C.R., Ellisman M.H., Tsien R.Y. Click-EM for imaging metabolically tagged nonprotein biomolecules. Nat. Chem. Biol. 2016;12:459–465. doi: 10.1038/nchembio.2076. PubMed DOI PMC

Lloyd D.R., Phillips D.H. Oxidative DNA damage mediated by copper(II), iron(II) and nickel(II) fenton reactions: Evidence for site-specific mechanisms in the formation of double-strand breaks, 8-hydroxydeoxyguanosine and putative intrastrand cross-links. Mutat. Res. 1999;424:23–36. doi: 10.1016/S0027-5107(99)00005-6. PubMed DOI

Reed C.J., Douglas K.T. Single-strand cleavage of DNA by Cu(II) and thiols: A powerful chemical DNA-cleaving system. Biochem. Biophys. Res. Commun. 1989;162:1111–1117. doi: 10.1016/0006-291X(89)90788-2. PubMed DOI

Stoewe R., Prutz W.A. Copper-catalyzed DNA damage by ascorbate and hydrogen peroxide: Kinetics and yield. Free Radic. Biol. Med. 1987;3:97–105. doi: 10.1016/S0891-5849(87)80003-5. PubMed DOI

Clarke S.T., Calderon V., Bradford J.A. Click Chemistry for Analysis of Cell Proliferation in Flow Cytometry. Curr. Protoc. Cytom. 2017;82:7–49. doi: 10.1002/cpcy.24. PubMed DOI

Diermeier-Daucher S., Brockhoff G. Dynamic proliferation assessment in flow cytometry. Curr Protoc. Cell Biol. 2010;48:8.6.1–8.6.23. doi: 10.1002/0471143030.cb0806s48. PubMed DOI

Diermeier-Daucher S., Clarke S.T., Hill D., Vollmann-Zwerenz A., Bradford J.A., Brockhoff G. Cell type specific applicability of 5-ethynyl-2′-deoxyuridine (EdU) for dynamic proliferation assessment in flow cytometry. Cytome. A. 2009;75:535–546. doi: 10.1002/cyto.a.20712. PubMed DOI

Hoshi O., Ushiki T. Replication Banding Patterns in Human Chromosomes Detected Using 5-ethynyl-2′-deoxyuridine Incorporation. Acta. Histochem. Cytochem. 2011;44:233–237. doi: 10.1267/ahc.11029. PubMed DOI PMC

Haines K.M., Feldman E.L., Lentz S.I. Visualization of mitochondrial DNA replication in individual cells by EdU signal amplification. J. Vis. Exp. 2010;45:e2147. doi: 10.3791/2147. PubMed DOI PMC

Sirbu B.M., Couch F.B., Feigerle J.T., Bhaskara S., Hiebert S.W., Cortez D. Analysis of protein dynamics at active, stalled, and collapsed replication forks. Genes Dev. 2011;25:1320–1327. doi: 10.1101/gad.2053211. PubMed DOI PMC

Kaykov A., Taillefumier T., Bensimon A., Nurse P. Molecular Combing of Single DNA Molecules on the 10 Megabase Scale. Sci. Rep. 2016;6:19636. doi: 10.1038/srep19636. PubMed DOI PMC

Qu D., Wang G., Wang Z., Zhou L., Chi W., Cong S., Ren X., Liang P., Zhang B. 5-Ethynyl-2′-deoxycytidine as a new agent for DNA labeling: Detection of proliferating cells. Anal. Biochem. 2011;417:112–121. doi: 10.1016/j.ab.2011.05.037. PubMed DOI

Ligasová A., Liboska R., Friedecký D., Mičová K., Adam T., Oždian T., Rosenberg I., Koberna K. Dr Jekyll and Mr Hyde: A strange case of 5-ethynyl-2′-deoxyuridine and 5-ethynyl-2′-deoxycytidine. Open Biol. 2016;6:150172. doi: 10.1098/rsob.150172. PubMed DOI PMC

Neef A.B., Luedtke N.W. Dynamic metabolic labeling of DNA in vivo with arabinosyl nucleosides. Proc. Natl. Acad. Sci. USA. 2011;108:20404–20409. doi: 10.1073/pnas.1101126108. PubMed DOI PMC

Neef A.B., Samain F., Luedtke N.W. Metabolic labeling of DNA by purine analogues in vivo. Chembiochem. 2012;13:1750–1753. doi: 10.1002/cbic.201200253. PubMed DOI

Seo S., Onizuka K., Nishioka C., Takahashi E., Tsuneda S., Abe H., Ito Y. Phosphorylated 5-ethynyl-2′-deoxyuridine for advanced DNA labeling. Org. Biomol. Chem. 2015;13:4589–4595. doi: 10.1039/C5OB00199D. PubMed DOI

Rieder U., Luedtke N.W. Alkene-Tetrazine Ligation for Imaging Cellular DNA. Angew. Chem. Int. Ed. 2014;53:9168–9172. doi: 10.1002/anie.201403580. PubMed DOI

Koberna K., Staněk D., Malínský J., Eltsov M., Pliss A., Čtrnáctá V., Cermanová S., Raška I. Nuclear organization studied with the help of a hypotonic shift: Its use permits hydrophilic molecules to enter into living cells. Chromosoma. 1999;108:325–335. doi: 10.1007/s004120050384. PubMed DOI

Zink D., Sadoni N., Stelzer E. Visualizing chromatin and chromosomes in living cells. Methods. 2003;29:42–50. doi: 10.1016/S1046-2023(02)00289-X. PubMed DOI

Ligasová A., Raška I., Koberna K. Organization of human replicon: Singles or zipping couples? J. Struct. Biol. 2009;165:204–213. doi: 10.1016/j.jsb.2008.11.004. PubMed DOI PMC

Okada C.Y., Rechsteiner M. Introduction of macromolecules into cultured mammalian cells by osmotic lysis of pinocytic vesicles. Cell. 1982;29:33–41. doi: 10.1016/0092-8674(82)90087-3. PubMed DOI

Schermelleh L., Solovei I., Zink D., Cremer T. Two-color fluorescence labeling of early and mid-to-late replicating chromatin in living cells. Chromosome Res. 2001;9:77–80. doi: 10.1023/A:1026799818566. PubMed DOI

Graessmann M., Graessmann A. Microinjection of tissue culture cells. Methods Enzymol. 1983;101:482–492. PubMed

Pepperkok R., Ansorge W. Direct Visualization of DNA-Replication Sites in Living Cells by Microinjection of Fluorescein-Conjugated Dutps. Methods Mol. Cell. Biol. 1995;5:112–117.

Zink D., Cremer T., Saffrich R., Fischer R., Trendelenburg M.F., Ansorge W., Stelzer E.H. Structure and dynamics of human interphase chromosome territories in vivo. Hum. Genet. 1998;102:241–251. doi: 10.1007/s004390050686. PubMed DOI

Ligasová A., Liboska R., Rosenberg I., Koberna K. The Fingerprint of Anti-Bromodeoxyuridine Antibodies and Its Use for the Assessment of Their Affinity to 5-Bromo-2′-Deoxyuridine in Cellular DNA under Various Conditions. PLoS ONE. 2015;10:e0132393. doi: 10.1371/journal.pone.0132393. PubMed DOI PMC

Manders E.M., Kimura H., Cook P.R. Direct imaging of DNA in living cells reveals the dynamics of chromosome formation. J. Cell Biol. 1999;144:813–821. doi: 10.1083/jcb.144.5.813. PubMed DOI PMC

Maya-Mendoza A., Olivares-Chauvet P., Kohlmeier F., Jackson D.A. Visualising chromosomal replication sites and replicons in mammalian cells. Methods. 2012;57:140–148. doi: 10.1016/j.ymeth.2012.05.006. PubMed DOI

Maya-Mendoza A., Petermann E., Gillespie D.A., Caldecott K.W., Jackson D.A. Chk1 regulates the density of active replication origins during the vertebrate S phase. EMBO J. 2007;26:2719–2731. doi: 10.1038/sj.emboj.7601714. PubMed DOI PMC

Zawada Z., Tatar A., Mocilac P., Budesinsky M., Kraus T. Transport of Nucleoside Triphosphates into Cells by Artificial Molecular Transporters. Angew. Chem. Int. Ed. Engl. 2018;57:9891–9895. doi: 10.1002/anie.201801306. PubMed DOI

Philimonenko A.A., Hodny Z., Jackson D.A., Hozak P. The microarchitecture of DNA replication domains. Histochem. Cell Biol. 2006;125:103–117. doi: 10.1007/s00418-005-0090-0. PubMed DOI

Hoy C.A., Lewis E.D., Schimke R.T. Perturbation of DNA-Replication and Cell-Cycle Progression by Commonly Used [H-3] Thymidine Labeling Protocols. Mol. Cell. Biol. 1990;10:1584–1592. doi: 10.1128/MCB.10.4.1584. PubMed DOI PMC

Beck H.P. Radiotoxicity of Incorporated [3H]Thymidine as Studied by Autoradiography and Flow-Cytometry-Consequences for the Interpretation of Flm Data. Cell Prolif. 1981;14:163–177. doi: 10.1111/j.1365-2184.1981.tb00521.x. PubMed DOI

Ehmann U.K., Williams J.R., Nagle W.A., Brown J.A., Belli J.A., Lett J.T. Perturbations in Cell-Cycle Progression from Radioactive DNA Precursors. Nature. 1975;258:633–636. doi: 10.1038/258633a0. PubMed DOI

Bianco J.N., Poli J., Saksouk J., Bacal J., Silva M.J., Yoshida K., Lin Y.L., Tourriere H., Lengronne A., Pasero P. Analysis of DNA replication profiles in budding yeast and mammalian cells using DNA combing. Methods. 2012;57:149–157. doi: 10.1016/j.ymeth.2012.04.007. PubMed DOI

Cavanagh B.L., Walker T., Norazit A., Meedeniya A.C. Thymidine analogues for tracking DNA synthesis. Molecules. 2011;16:7980–7993. doi: 10.3390/molecules16097980. PubMed DOI PMC

Zeng C.B., Pan F.H., Jones L.A., Lim M.M., Griffin E.A., Sheline Y.I., Mintun M.A., Holtzman D.M., Mach R.H. Evaluation of 5-ethynyl-2′-deoxyuridine staining as a sensitive and reliable method for studying cell proliferation in the adult nervous system. Brain Res. 2010;1319:21–32. doi: 10.1016/j.brainres.2009.12.092. PubMed DOI PMC

Pai C.C., Kearsey S.E. A Critical Balance: DNTPs and the Maintenance of Genome Stability. Genes. 2017;8 doi: 10.3390/genes8020057. PubMed DOI PMC

Beckman R.A., Loeb L.A. Multi-stage proofreading in DNA replication. Q. Rev. Biophys. 1993;26:225–331. doi: 10.1017/S0033583500002869. PubMed DOI

Kunkel T.A., Bebenek K. DNA replication fidelity. Annu. Rev. Biochem. 2000;69:497–529. doi: 10.1146/annurev.biochem.69.1.497. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...