trans-Cyclooctene- and Bicyclononyne-Linked Nucleotides for Click Modification of DNA with Fluorogenic Tetrazines and Live Cell Metabolic Labeling and Imaging

. 2023 Mar 27 ; 34 (4) : 772-80. [epub] 20230327

Status Publisher Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36972479

A series of 2'-deoxyribonucleoside triphosphates (dNTPs) bearing 2- or 4-linked trans-cyclooctene (TCO) or bicyclononyne (BCN) tethered through a shorter propargylcarbamate or longer triethyleneglycol-based spacer were designed and synthesized. They were found to be good substrates for KOD XL DNA polymerase for primer extension enzymatic synthesis of modified oligonucleotides. We systematically tested and compared the reactivity of TCO- and BCN-modified nucleotides and DNA with several fluorophore-containing tetrazines in inverse electron-demand Diels-Alder (IEDDA) click reactions to show that the longer linker is crucial for efficient labeling. The modified dNTPs were transported into live cells using the synthetic transporter SNTT1, incubated for 1 h, and then treated with tetrazine conjugates. The PEG3-linked 4TCO and BCN nucleotides showed efficient incorporation into genomic DNA and good reactivity in the IEDDA click reaction with tetrazines to allow staining of DNA and imaging of DNA synthesis in live cells within time periods as short as 15 min. The BCN-linked nucleotide in combination with TAMRA-linked (TAMRA = carboxytetramethylrhodamine) tetrazine was also efficiently used for staining of DNA for flow cytometry. This methodology is a new approach for in cellulo metabolic labeling and imaging of DNA synthesis which is shorter, operationally simple, and overcomes several problems of previously used methods.

Zobrazit více v PubMed

Ligasová A.; Koberna K. DNA Replication: From Radioisotopes to Click Chemistry. Molecules 2018, 23, 3007.10.3390/molecules23113007. PubMed DOI PMC

Gratzner H. G. Monoclonal antibody to 5-bromo- and 5-iododeoxyuridine: A new reagent for detection of DNA replication. Science 1982, 218, 474–475. 10.1126/science.7123245. PubMed DOI

Salic A.; Mitchison T. J. A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 2415–2420. 10.1073/pnas.0712168105. PubMed DOI PMC

Zawada Z.; Tatar A.; Mocilac P.; Budesinsky M.; Kraus T. Transport of Nucleoside Triphosphates into Cells by Artificial Molecular Transporters. Angew. Chem., Int. Ed. 2018, 130, 10039–10043. 10.1002/ange.201801306. PubMed DOI

Güixens-Gallardo P.; Zawada Z.; Matyašovský J.; Dziuba D.; Pohl R.; Kraus T.; Hocek M. Brightly Fluorescent 2′-Deoxyribonucleoside Triphosphates Bearing Methylated Bodipy Fluorophore for in Cellulo Incorporation to DNA, Imaging, and Flow Cytometry. Bioconjugate Chem. 2018, 29, 3906–3912. 10.1021/acs.bioconjchem.8b00721. PubMed DOI

Kužmová E.; Zawada Z.; Navrátil M.; Günterová J.; Kraus T. Flow cytometric determination of cell cycle progression via direct labeling of replicated DNA. Anal. Biochem. 2021, 614, 114002.10.1016/j.ab.2020.114002. PubMed DOI

Schreier V. N.; Loehr M. O.; Deng T.; Lattmann E.; Hajnal A.; Neuhauss S. C. F.; Luedtke N. W. Fluorescent dATP for DNA Synthesis In Vivo. ACS Chem. Biol. 2020, 15, 2996–3003. 10.1021/acschembio.0c00654. PubMed DOI

Schreier V. N.; Loehr M. O.; Lattmann E.; Luedtke N. W. Active uptake and trafficking of nucleoside triphosphates in vivo. ACS Chem. Biol. 2022, 17, 1799–1810. 10.1021/acschembio.2c00153. PubMed DOI

Rieder U.; Luedtke N. W. Alkene-tetrazine ligation for imaging cellular DNA. Angew. Chem., Int. Ed. 2014, 126, 9322–9326. 10.1002/ange.201403580. PubMed DOI

Loehr M. O.; Luedtke N. W. A Kinetic and Fluorogenic Enhancement Strategy for Labeling of Nucleic Acids. Angew. Chem., Int. Ed. 2022, 61, e20211293110.1002/anie.202112931. PubMed DOI

Wu Y.; Guo G.; Zheng J.; Xing D.; Zhang T. Fluorogenic “Photoclick” Labeling and Imaging of DNA with Coumarin-Fused Tetrazole in Vivo. ACS Sens. 2019, 4, 44–51. 10.1021/acssensors.8b00565. PubMed DOI

Kuba M. P.; Pohl R.; Kraus T.; Hocek M. Nucleotides Bearing Red Viscosity-Sensitive Dimethoxy-bodipy Fluorophore for Enzymatic Incorporation and DNA Labelling. Bioconjugate Chem. 2023, 34, 133–139. 10.1021/acs.bioconjchem.2c00547. PubMed DOI

Kuba M.; Kraus T.; Pohl R.; Hocek M. Nucleotide-Bearing Benzylidene-Tetrahydroxanthylium Near-IR Fluorophore for Sensing DNA Replication, Secondary Structures and Interactions. Chem.—Eur. J. 2020, 26, 11950–11954. 10.1002/chem.202003192. PubMed DOI PMC

Matyasovsky J.; Tack L.; Palagyi A.; Kuba M.; Pohl R.; Kraus T.; Guixens-Gallardo P.; Hocek M. Nucleotides bearing aminophenyl- or aminonaphthyl-3-methoxychromone solvatochromic fluorophores for the enzymatic construction of DNA probes for the detection of protein-DNA binding. Org. Biomol. Chem. 2021, 19, 9966–9974. 10.1039/d1ob02098f. PubMed DOI

Güixens-Gallardo P.; Hocek M. Acetophenyl-thienyl-aniline-linked nucleotide for construction of solvatochromic fluorescence light-up DNA probes sensing protein-DNA interactions. Chem.—Eur. J. 2021, 27, 7090–7093. 10.1002/chem.202100575. PubMed DOI

Fantoni N. Z.; El-Sagheer A. H.; Brown T. A Hitchhiker’s Guide to Click-Chemistry with Nucleic Acids. Chem. Rev. 2021, 121, 7122–7154. 10.1021/acs.chemrev.0c00928. PubMed DOI

Krell K.; Harijan D.; Ganz D.; Doll L.; Wagenknecht H.-A. Postsynthetic Modifications of DNA and RNA by Means of Copper-Free Cycloadditions as Bioorthogonal Reactions. Bioconjugate Chem. 2020, 31, 990–1011. 10.1021/acs.bioconjchem.0c00072. PubMed DOI

Geng P.; List E.; Rönicke F.; Wagenknecht H.-A. Two-Factor Fluorogenicity of Tetrazine-Modified Cyanine-Styryl Dyes for Bioorthogonal Labelling of DNA. Chem.—Eur. J. 2022, 29, e20220315610.1002/chem.202203156. PubMed DOI PMC

Bujalska A.; Basran K.; Luedtke N. W. [4 + 2] and [2 + 4] cycloaddition reactions on single- and double-stranded DNA: a dual-reactive nucleoside. RSC Chem. Biol. 2022, 3, 698–701. 10.1039/d2cb00062h. PubMed DOI PMC

Tera M.; Glasauer S. M. K.; Luedtke N. W. Vivo Incorporation of Azide Groups into DNA by Using Membrane-Permeable Nucleotide Triesters. Chembiochem 2018, 19, 1939–1943. 10.1002/cbic.201800351. PubMed DOI

Ren X.; Gerowska M.; El-Sagheer A. H.; Brown T. Enzymatic incorporation and fluorescent labelling of cyclooctyne-modified deoxyuridine triphosphates in DNA. Bioorg. Med. Chem. 2014, 22, 4384–4390. 10.1016/j.bmc.2014.05.050. PubMed DOI

Wang K.; Wang D.; Ji K.; Chen W.; Zheng Y.; Dai C.; Wang B. Post-synthesis DNA modifications using a trans-cyclooctene click handle. Org. Biomol. Chem. 2015, 13, 909–915. 10.1039/c4ob02031f. PubMed DOI PMC

Ren X.; El-Sagheer A. H.; Brown T. Azide and trans-cyclooctene dUTPs: incorporation into DNA probes and fluorescent click-labelling. Analyst 2015, 140, 2671–2678. 10.1039/c5an00158g. PubMed DOI

Ren X.; El-Sagheer A. H.; Brown T. Efficient enzymatic synthesis and dual-colour fluorescent labelling of DNA probes using long chain azido-dUTP and BCN dyes. Nucleic Acids Res. 2016, 44, e7910.1093/nar/gkw028. PubMed DOI PMC

Ploschik D.; Rönicke F.; Beike H.; Strasser R.; Wagenknecht H.-A. DNA Primer Extension with Cyclopropenylated 7-Deaza-2’-deoxyadenosine and Efficient Bioorthogonal Labeling in Vitro and in Living Cells. Chembiochem 2018, 19, 1949–1953. 10.1002/cbic.201800354. PubMed DOI

Merkel M.; Arndt S.; Ploschik D.; Cserép G. B.; Wenge U.; Kele P.; Wagenknecht H.-A. Scope and Limitations of Typical Copper-Free Bioorthogonal Reactions with DNA: Reactive 2’-Deoxyuridine Triphosphates for Postsynthetic Labeling. J. Org. Chem. 2016, 81, 7527–7538. 10.1021/acs.joc.6b01205. PubMed DOI

Galeta J.; Dzijak R.; Oboril J.; Dracinsky M.; Vrabel M. A Systematic Study of Coumarin-Tetrazine Light-Up Probes for Bioorthogonal Fluorescence Imaging. Chem.—Eur. J. 2020, 26, 9945–9953. 10.1002/chem.202001290. PubMed DOI PMC

Nadler A.; Schultz C. The power of fluorogenic probes. Angew. Chem., Int. Ed. 2013, 52, 2408–2410. 10.1002/anie.201209733. PubMed DOI

Garg N. K.; Woodroofe C. C.; Lacenere C. J.; Quake S. R.; Stoltz B. M. A ligand-free solid-supported system for Sonogashira couplings: applications in nucleoside chemistry. Chem. Commun. 2005, 4551–4553. 10.1039/b505737j. PubMed DOI

Jäger S.; Rasched G.; Kornreich-Leshem H.; Engeser M.; Thum O.; Famulok M. A Versatile Toolbox for Variable DNA Functionalization at High Density. J. Am. Chem. Soc. 2005, 127, 15071–15082. 10.1021/ja051725b. PubMed DOI

Akoka S.; Barantin L.; Trierweiler M. Concentration Measurement by Proton NMR Using the ERETIC Method. Anal. Chem. 1999, 71, 2554–2557. 10.1021/ac981422i. PubMed DOI

Vázquez A.; Dzijak R.; Dračínský M.; Rampmaier R.; Siegl S. J.; Vrabel M. Mechanism-Based Fluorogenic Trans-Cyclooctene–Tetrazine Cycloaddition. Angew. Chem., Int. Ed. 2017, 129, 1354–1357. 10.1002/ange.201610491. PubMed DOI PMC

Bakkum T.; van Leeuwen T.; Sarris A. J. C.; van Elsland D. M.; Poulcharidis D.; Overkleeft H. S.; van Kasteren S. I. Quantification of bioorthogonal stability in immune phagocytes using flow cytometry reveals rapid degradation of strained alkynes. ACS Chem. Biol. 2018, 13, 1173–1179. 10.1021/acschembio.8b00355. PubMed DOI PMC

Fang Y.; Judkins J. C.; Boyd S. J.; Am Ende C. W.; Rohlfing K.; Huang Z.; Xie Y.; Johnson D. S.; Fox J. M. Studies on the Stability and Stabilization of trans-Cyclooctenes through Radical Inhibition and Silver (I) Metal Complexation. Tetrahedron 2019, 75, 4307–4317. 10.1016/j.tet.2019.05.038. PubMed DOI PMC

Karver M. R.; Weissleder R.; Hilderbrand S. A. Synthesis and Evaluation of a Series of 1,2,4,5-Tetrazines for Bioorthogonal Conjugation. Bioconjugate Chem. 2011, 22, 2263–2270. 10.1021/bc200295y. PubMed DOI PMC

Liu D. S.; Tangpeerachaikul A.; Selvaraj R.; Taylor M. T.; Fox J. M.; Ting A. Y. Diels–Alder Cycloaddition for Fluorophore Targeting to Specific Proteins inside Living Cells. J. Am. Chem. Soc. 2012, 134, 792–795. 10.1021/ja209325n. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Bioorthogonal Chemistry in Cellular Organelles

. 2023 Dec 16 ; 382 (1) : 2. [epub] 20231216

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...