trans-Cyclooctene- and Bicyclononyne-Linked Nucleotides for Click Modification of DNA with Fluorogenic Tetrazines and Live Cell Metabolic Labeling and Imaging
Status Publisher Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
36972479
PubMed Central
PMC10119924
DOI
10.1021/acs.bioconjchem.3c00064
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
A series of 2'-deoxyribonucleoside triphosphates (dNTPs) bearing 2- or 4-linked trans-cyclooctene (TCO) or bicyclononyne (BCN) tethered through a shorter propargylcarbamate or longer triethyleneglycol-based spacer were designed and synthesized. They were found to be good substrates for KOD XL DNA polymerase for primer extension enzymatic synthesis of modified oligonucleotides. We systematically tested and compared the reactivity of TCO- and BCN-modified nucleotides and DNA with several fluorophore-containing tetrazines in inverse electron-demand Diels-Alder (IEDDA) click reactions to show that the longer linker is crucial for efficient labeling. The modified dNTPs were transported into live cells using the synthetic transporter SNTT1, incubated for 1 h, and then treated with tetrazine conjugates. The PEG3-linked 4TCO and BCN nucleotides showed efficient incorporation into genomic DNA and good reactivity in the IEDDA click reaction with tetrazines to allow staining of DNA and imaging of DNA synthesis in live cells within time periods as short as 15 min. The BCN-linked nucleotide in combination with TAMRA-linked (TAMRA = carboxytetramethylrhodamine) tetrazine was also efficiently used for staining of DNA for flow cytometry. This methodology is a new approach for in cellulo metabolic labeling and imaging of DNA synthesis which is shorter, operationally simple, and overcomes several problems of previously used methods.
Zobrazit více v PubMed
Ligasová A.; Koberna K. DNA Replication: From Radioisotopes to Click Chemistry. Molecules 2018, 23, 3007.10.3390/molecules23113007. PubMed DOI PMC
Gratzner H. G. Monoclonal antibody to 5-bromo- and 5-iododeoxyuridine: A new reagent for detection of DNA replication. Science 1982, 218, 474–475. 10.1126/science.7123245. PubMed DOI
Salic A.; Mitchison T. J. A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 2415–2420. 10.1073/pnas.0712168105. PubMed DOI PMC
Zawada Z.; Tatar A.; Mocilac P.; Budesinsky M.; Kraus T. Transport of Nucleoside Triphosphates into Cells by Artificial Molecular Transporters. Angew. Chem., Int. Ed. 2018, 130, 10039–10043. 10.1002/ange.201801306. PubMed DOI
Güixens-Gallardo P.; Zawada Z.; Matyašovský J.; Dziuba D.; Pohl R.; Kraus T.; Hocek M. Brightly Fluorescent 2′-Deoxyribonucleoside Triphosphates Bearing Methylated Bodipy Fluorophore for in Cellulo Incorporation to DNA, Imaging, and Flow Cytometry. Bioconjugate Chem. 2018, 29, 3906–3912. 10.1021/acs.bioconjchem.8b00721. PubMed DOI
Kužmová E.; Zawada Z.; Navrátil M.; Günterová J.; Kraus T. Flow cytometric determination of cell cycle progression via direct labeling of replicated DNA. Anal. Biochem. 2021, 614, 114002.10.1016/j.ab.2020.114002. PubMed DOI
Schreier V. N.; Loehr M. O.; Deng T.; Lattmann E.; Hajnal A.; Neuhauss S. C. F.; Luedtke N. W. Fluorescent dATP for DNA Synthesis In Vivo. ACS Chem. Biol. 2020, 15, 2996–3003. 10.1021/acschembio.0c00654. PubMed DOI
Schreier V. N.; Loehr M. O.; Lattmann E.; Luedtke N. W. Active uptake and trafficking of nucleoside triphosphates in vivo. ACS Chem. Biol. 2022, 17, 1799–1810. 10.1021/acschembio.2c00153. PubMed DOI
Rieder U.; Luedtke N. W. Alkene-tetrazine ligation for imaging cellular DNA. Angew. Chem., Int. Ed. 2014, 126, 9322–9326. 10.1002/ange.201403580. PubMed DOI
Loehr M. O.; Luedtke N. W. A Kinetic and Fluorogenic Enhancement Strategy for Labeling of Nucleic Acids. Angew. Chem., Int. Ed. 2022, 61, e20211293110.1002/anie.202112931. PubMed DOI
Wu Y.; Guo G.; Zheng J.; Xing D.; Zhang T. Fluorogenic “Photoclick” Labeling and Imaging of DNA with Coumarin-Fused Tetrazole in Vivo. ACS Sens. 2019, 4, 44–51. 10.1021/acssensors.8b00565. PubMed DOI
Kuba M. P.; Pohl R.; Kraus T.; Hocek M. Nucleotides Bearing Red Viscosity-Sensitive Dimethoxy-bodipy Fluorophore for Enzymatic Incorporation and DNA Labelling. Bioconjugate Chem. 2023, 34, 133–139. 10.1021/acs.bioconjchem.2c00547. PubMed DOI
Kuba M.; Kraus T.; Pohl R.; Hocek M. Nucleotide-Bearing Benzylidene-Tetrahydroxanthylium Near-IR Fluorophore for Sensing DNA Replication, Secondary Structures and Interactions. Chem.—Eur. J. 2020, 26, 11950–11954. 10.1002/chem.202003192. PubMed DOI PMC
Matyasovsky J.; Tack L.; Palagyi A.; Kuba M.; Pohl R.; Kraus T.; Guixens-Gallardo P.; Hocek M. Nucleotides bearing aminophenyl- or aminonaphthyl-3-methoxychromone solvatochromic fluorophores for the enzymatic construction of DNA probes for the detection of protein-DNA binding. Org. Biomol. Chem. 2021, 19, 9966–9974. 10.1039/d1ob02098f. PubMed DOI
Güixens-Gallardo P.; Hocek M. Acetophenyl-thienyl-aniline-linked nucleotide for construction of solvatochromic fluorescence light-up DNA probes sensing protein-DNA interactions. Chem.—Eur. J. 2021, 27, 7090–7093. 10.1002/chem.202100575. PubMed DOI
Fantoni N. Z.; El-Sagheer A. H.; Brown T. A Hitchhiker’s Guide to Click-Chemistry with Nucleic Acids. Chem. Rev. 2021, 121, 7122–7154. 10.1021/acs.chemrev.0c00928. PubMed DOI
Krell K.; Harijan D.; Ganz D.; Doll L.; Wagenknecht H.-A. Postsynthetic Modifications of DNA and RNA by Means of Copper-Free Cycloadditions as Bioorthogonal Reactions. Bioconjugate Chem. 2020, 31, 990–1011. 10.1021/acs.bioconjchem.0c00072. PubMed DOI
Geng P.; List E.; Rönicke F.; Wagenknecht H.-A. Two-Factor Fluorogenicity of Tetrazine-Modified Cyanine-Styryl Dyes for Bioorthogonal Labelling of DNA. Chem.—Eur. J. 2022, 29, e20220315610.1002/chem.202203156. PubMed DOI PMC
Bujalska A.; Basran K.; Luedtke N. W. [4 + 2] and [2 + 4] cycloaddition reactions on single- and double-stranded DNA: a dual-reactive nucleoside. RSC Chem. Biol. 2022, 3, 698–701. 10.1039/d2cb00062h. PubMed DOI PMC
Tera M.; Glasauer S. M. K.; Luedtke N. W. Vivo Incorporation of Azide Groups into DNA by Using Membrane-Permeable Nucleotide Triesters. Chembiochem 2018, 19, 1939–1943. 10.1002/cbic.201800351. PubMed DOI
Ren X.; Gerowska M.; El-Sagheer A. H.; Brown T. Enzymatic incorporation and fluorescent labelling of cyclooctyne-modified deoxyuridine triphosphates in DNA. Bioorg. Med. Chem. 2014, 22, 4384–4390. 10.1016/j.bmc.2014.05.050. PubMed DOI
Wang K.; Wang D.; Ji K.; Chen W.; Zheng Y.; Dai C.; Wang B. Post-synthesis DNA modifications using a trans-cyclooctene click handle. Org. Biomol. Chem. 2015, 13, 909–915. 10.1039/c4ob02031f. PubMed DOI PMC
Ren X.; El-Sagheer A. H.; Brown T. Azide and trans-cyclooctene dUTPs: incorporation into DNA probes and fluorescent click-labelling. Analyst 2015, 140, 2671–2678. 10.1039/c5an00158g. PubMed DOI
Ren X.; El-Sagheer A. H.; Brown T. Efficient enzymatic synthesis and dual-colour fluorescent labelling of DNA probes using long chain azido-dUTP and BCN dyes. Nucleic Acids Res. 2016, 44, e7910.1093/nar/gkw028. PubMed DOI PMC
Ploschik D.; Rönicke F.; Beike H.; Strasser R.; Wagenknecht H.-A. DNA Primer Extension with Cyclopropenylated 7-Deaza-2’-deoxyadenosine and Efficient Bioorthogonal Labeling in Vitro and in Living Cells. Chembiochem 2018, 19, 1949–1953. 10.1002/cbic.201800354. PubMed DOI
Merkel M.; Arndt S.; Ploschik D.; Cserép G. B.; Wenge U.; Kele P.; Wagenknecht H.-A. Scope and Limitations of Typical Copper-Free Bioorthogonal Reactions with DNA: Reactive 2’-Deoxyuridine Triphosphates for Postsynthetic Labeling. J. Org. Chem. 2016, 81, 7527–7538. 10.1021/acs.joc.6b01205. PubMed DOI
Galeta J.; Dzijak R.; Oboril J.; Dracinsky M.; Vrabel M. A Systematic Study of Coumarin-Tetrazine Light-Up Probes for Bioorthogonal Fluorescence Imaging. Chem.—Eur. J. 2020, 26, 9945–9953. 10.1002/chem.202001290. PubMed DOI PMC
Nadler A.; Schultz C. The power of fluorogenic probes. Angew. Chem., Int. Ed. 2013, 52, 2408–2410. 10.1002/anie.201209733. PubMed DOI
Garg N. K.; Woodroofe C. C.; Lacenere C. J.; Quake S. R.; Stoltz B. M. A ligand-free solid-supported system for Sonogashira couplings: applications in nucleoside chemistry. Chem. Commun. 2005, 4551–4553. 10.1039/b505737j. PubMed DOI
Jäger S.; Rasched G.; Kornreich-Leshem H.; Engeser M.; Thum O.; Famulok M. A Versatile Toolbox for Variable DNA Functionalization at High Density. J. Am. Chem. Soc. 2005, 127, 15071–15082. 10.1021/ja051725b. PubMed DOI
Akoka S.; Barantin L.; Trierweiler M. Concentration Measurement by Proton NMR Using the ERETIC Method. Anal. Chem. 1999, 71, 2554–2557. 10.1021/ac981422i. PubMed DOI
Vázquez A.; Dzijak R.; Dračínský M.; Rampmaier R.; Siegl S. J.; Vrabel M. Mechanism-Based Fluorogenic Trans-Cyclooctene–Tetrazine Cycloaddition. Angew. Chem., Int. Ed. 2017, 129, 1354–1357. 10.1002/ange.201610491. PubMed DOI PMC
Bakkum T.; van Leeuwen T.; Sarris A. J. C.; van Elsland D. M.; Poulcharidis D.; Overkleeft H. S.; van Kasteren S. I. Quantification of bioorthogonal stability in immune phagocytes using flow cytometry reveals rapid degradation of strained alkynes. ACS Chem. Biol. 2018, 13, 1173–1179. 10.1021/acschembio.8b00355. PubMed DOI PMC
Fang Y.; Judkins J. C.; Boyd S. J.; Am Ende C. W.; Rohlfing K.; Huang Z.; Xie Y.; Johnson D. S.; Fox J. M. Studies on the Stability and Stabilization of trans-Cyclooctenes through Radical Inhibition and Silver (I) Metal Complexation. Tetrahedron 2019, 75, 4307–4317. 10.1016/j.tet.2019.05.038. PubMed DOI PMC
Karver M. R.; Weissleder R.; Hilderbrand S. A. Synthesis and Evaluation of a Series of 1,2,4,5-Tetrazines for Bioorthogonal Conjugation. Bioconjugate Chem. 2011, 22, 2263–2270. 10.1021/bc200295y. PubMed DOI PMC
Liu D. S.; Tangpeerachaikul A.; Selvaraj R.; Taylor M. T.; Fox J. M.; Ting A. Y. Diels–Alder Cycloaddition for Fluorophore Targeting to Specific Proteins inside Living Cells. J. Am. Chem. Soc. 2012, 134, 792–795. 10.1021/ja209325n. PubMed DOI PMC
Bioorthogonal Chemistry in Cellular Organelles