A Systematic Study of Coumarin-Tetrazine Light-Up Probes for Bioorthogonal Fluorescence Imaging

. 2020 Aug 06 ; 26 (44) : 9945-9953. [epub] 20200714

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32339341

Grantová podpora
19-13811S Grantová Agentura České Republiky
677465 European Research Council - International

Fluorescent probes that light-up upon reaction with complementary bioorthogonal reagents are superior tools for no-wash fluorogenic bioimaging applications. In this work, a thorough study is presented on a set of seventeen structurally diverse coumarin-tetrazine probes that produce fluorescent dyes with exceptional turn-on ratios when reacted with trans-cyclooctene (TCO) and bicyclononyne (BCN) dienophiles. In general, formation of the fully aromatic pyridazine-containing dyes resulting from the reaction with BCN was found superior in terms of fluorogenicity. However, evaluation of the probes in cellular imaging experiments revealed that other factors, such as reaction kinetics and good cell permeability, prevail over the fluorescence turn-on properties. The best compound identified in this study showed excellent performance in live cell-labeling experiments and enabled no-wash fluorogenic imaging on a timescale of seconds.

Zobrazit více v PubMed

Sarkar I., Mishra A. K., Appl. Spectrosc. Rev. 2018, 53, 552–601;

Qin L. H., Hu W., Long Y. Q., Tetrahedron Lett. 2018, 59, 2214–2228;

King M., Wagner A., Bioconjugate Chem. 2014, 25, 825–839; PubMed

Debets M. F., van Hest J. C. M., Rutjes F. P. J. T., Org. Biomol. Chem. 2013, 11, 6439–6455; PubMed

Baskin J. M., Bertozzi C. R., Qsar Comb. Sci. 2007, 26, 1211–1219.

de Moliner F., Kielland N., Lavilla R., Vendrell M., Angew. Chem. Int. Ed. 2017, 56, 3758–3769; PubMed PMC

Angew. Chem. 2017, 129, 3812–3823;

Wang L., Frei M. S., Salim A., Johnsson K., J. Am. Chem. Soc. 2019, 141, 2770–2781; PubMed

Liu P. F., Mu X. Y., Zhang X. D., Ming D., Bioconjugate Chem. 2020, 31, 260–275; PubMed

Specht E. A., Braselmann E., Palmer A. E., Annu. Rev. Physiol. 2017, 79, 93–117; PubMed

Fu Y. H., Finney N. S., Rsc Adv. 2018, 8, 29051–29061. PubMed PMC

Nagano T., P. Jpn. Acad. Ser. B 2010, 86, 837–847; PubMed PMC

Guo Z. Q., Park S., Yoon J., Shin I., Chem. Soc. Rev. 2014, 43, 16–29; PubMed

Shang H. M., Chen H., Tang Y. H., Ma Y. Y., Lin W. Y., Biosens. Bioelectron. 2017, 95, 81–86. PubMed

Li H. L., Vaughan J. C., Chem. Rev. 2018, 118, 9412–9454. PubMed PMC

Nadler A., Schultz C., Angew. Chem. Int. Ed. 2013, 52, 2408–2410; PubMed

Angew. Chem. 2013, 125, 2466–2469;

Kozma E., Kele P., Org. Biomol. Chem. 2019, 17, 215–233. PubMed

Kozma E., Demeter O., Kele P., ChemBioChem 2017, 18, 486–501; PubMed PMC

Németh E., Knorr G., Németh K., Kele P., Biomolecules 2020, 10, 397. PubMed PMC

Devaraj N. K., Hilderbrand S., Upadhyay R., Mazitschek R., Weissleder R., Angew. Chem. Int. Ed. 2010, 49, 2869–2872; PubMed PMC

Angew. Chem. 2010, 122, 2931–2934.

Carlson J. C. T., Meimetis L. G., Hilderbrand S. A., Weissleder R., Angew. Chem. Int. Ed. 2013, 52, 6917–6920; PubMed PMC

Angew. Chem. 2013, 125, 7055–7058;

Wu D., O'Shea D. F., Chem. Commun. 2017, 53, 10804–10807. PubMed

Wu H. X., Yang J., Seckute J., Devaraj N. K., Angew. Chem. Int. Ed. 2014, 53, 5805–5809; PubMed PMC

Angew. Chem. 2014, 126, 5915–5919;

Wieczorek A., Werther P., Euchner J., Wombacher R., Chem. Sci. 2017, 8, 1506–1510; PubMed PMC

Kozma E., Girona G. E., Paci G., Lemke E. A., Kele P., Chem. Commun. 2017, 53, 6696–6699; PubMed

Beliu G., Kurz A. J., Kuhlemann A. C., Behringer-Pliess L., Meub M., Wolf N., Seibel J., Shi Z. D., Schnermann M., Grimm J. B., Lavis L. D., Doose S., Sauer M., Commun. Biol. 2019, 2, 261; PubMed PMC

Wieczorek A., Buckup T., Wombacher R., Org. Biomol. Chem. 2014, 12, 4177–4185. PubMed

Knorr G., Kozma E., Schaart J. M., Nemeth K., Torok G., Kele P., Bioconjugate Chem. 2018, 29, 1312–1318. PubMed

Meimetis L. G., Carlson J. C., Giedt R. J., Kohler R. H., Weissleder R., Angew. Chem. Int. Ed. 2014, 53, 7531–7534; PubMed PMC

Angew. Chem. 2014, 126, 7661–7664. PubMed

Qu Y., Pander P., Vybornyi O., Vasylieva M., Guillot R., Miomandre F., Dias F. B., Skabara P., Data P., Clavier G., Audebert P., J. Org. Chem. 2020, 85, 3407–3416; PubMed

Lee Y., Cho W., Sung J., Kim E., Park S. B., J. Am. Chem. Soc. 2018, 140, 974–983. PubMed

Vázquez A., Dzijak R., Dracinsky M., Rampmaier R., Siegl S. J., Vrabel M., Angew. Chem. Int. Ed. 2017, 56, 1334–1337; PubMed PMC

Angew. Chem. 2017, 129, 1354–1357;

Shang X., Song X., Faller C., Lai R., Li H., Cerny R., Niu W., Guo J., Chem. Sci. 2017, 8, 1141–1145; PubMed PMC

Siegl S. J., Galeta J., Dzijak R., Vazquez A., Del Rio-Villanueva M., Dracinsky M., Vrabel M., ChemBioChem 2019, 20, 886–890. PubMed PMC

Qu Y. Y., Sauvage F. X., Clavier G., Miomandre F., Audebert P., Angew. Chem. Int. Ed. 2018, 57, 12057–12061; PubMed

Angew. Chem. 2018, 130, 12233–12237.

Agarwal P., Beahm B. J., Shieh P., Bertozzi C. R., Angew. Chem. Int. Ed. 2015, 54, 11504–11510; PubMed PMC

Angew. Chem. 2015, 127, 11666–11672.

Siegl S. J., Dzijak R., Vazquez A., Pohl R., Vrabel M., Chem. Sci. 2017, 8, 3593–3598. PubMed PMC

Bojtár M., Kormos A., Kis-Petik K., Kellermayer M., Kele P., Org. Lett. 2019, 21, 9410–9414; PubMed

Jun Y. W., Kim H. R., Reo Y. J., Dai M., Ahn K. H., Chem. Sci. 2017, 8, 7696–7704. PubMed PMC

Fan X., Ge Y., Lin F., Yang Y., Zhang G., Ngai W. S., Lin Z., Zheng S., Wang J., Zhao J., Li J., Chen P. R., Angew. Chem. Int. Ed. 2016, 55, 14046–14050; PubMed

Angew. Chem. 2016, 128, 14252–14256;

Carlson J. C. T., Mikula H., Weissleder R., J. Am. Chem. Soc. 2018, 140, 3603–3612; PubMed PMC

Versteegen R. M., Ten Hoeve W., Rossin R., de Geus M. A. R., Janssen H. M., Robillard M. S., Angew. Chem. Int. Ed. 2018, 57, 10494–10499; PubMed

Angew. Chem. 2018, 130, 10654–10659;

Versteegen R. M., Rossin R., ten Hoeve W., Janssen H. M., Robillard M. S., Angew. Chem. Int. Ed. 2013, 52, 14112–14116; PubMed

Angew. Chem. 2013, 125, 14362–14366.

Grimm J. B., Muthusamy A. K., Liang Y., Brown T. A., Lemon W. C., Patel R., Lu R., Macklin J. J., Keller P. J., Ji N., Lavis L. D., Nat. Methods 2017, 14, 987–994; PubMed PMC

Grimm J. B., English B. P., Chen J., Slaughter J. P., Zhang Z., Revyakin A., Patel R., Macklin J. J., Normanno D., Singer R. H., Lionnet T., Lavis L. D., Nat. Methods 2015, 12, 244–250. PubMed PMC

Ye Z., Yang W., Wang C., Zheng Y., Chi W., Liu X., Huang Z., Li X., Xiao Y., J. Am. Chem. Soc. 2019, 141, 14491–14495; PubMed

Lv X., Gao C., Han T., Shi H., Guo W., Chem. Commun. 2020, 56, 715–718. PubMed

Morawski O., Kielesinski L., Gryko D. T., Sobolewski A., Chem. Eur. J. 2020, 26, 7281–7291; PubMed

Singha S., Kim D., Roy B., Sambasivan S., Moon H., Rao A. S., Kim J. Y., Joo T., Park J. W., Rhee Y. M., Wang T., Kim K. H., Shin Y. H., Jung J., Ahn K. H., Chem. Sci. 2015, 6, 4335–4342. PubMed PMC

Würth C., Grabolle M., Pauli J., Spieles M., Resch-Genger U., Nat. Protoc. 2013, 8, 1535–1550. PubMed

Liu X., Qiao Q., Tian W., Liu W., Chen J., Lang M. J., Xu Z., J. Am. Chem. Soc. 2016, 138, 6960–6963. PubMed

Bassolino G., Nancoz C., Thiel Z., Bois E., Vauthey E., Rivera-Fuentes P., Chem. Sci. 2018, 9, 387–391. PubMed PMC

Wang C., Qiao Q. L., Chi W. J., Chen J., Liu W. J., Tan D., McKechnie S., Lyu D., Jiang X. F., Zhou W., Xu N., Zhang Q. S., Xu Z. C., Liu X. G., Angew. Chem. Int. Ed. 2020, 59, 10160–10172; PubMed

Angew. Chem. 2020, 132, 10246–10258.

Selvaraj R., Fox J. M., Curr. Opin. Chem. Biol. 2013, 17, 753–760; PubMed PMC

Wang D. Z., Chen W. X., Zheng Y. Q., Dai C. F., Wang K., Ke B. W., Wang B. H., Org. Biomol. Chem. 2014, 12, 3950–3955. PubMed PMC

Vakuliuk O., Jun Y. W., Vygranenko K., Clermont G., Reo Y. J., Blanchard-Desce M., Ahn K. H., Gryko D. T., Chem. Eur. J. 2019, 25, 13354–13362. PubMed

Murphy M. P., BBA-Bioenergetics 2008, 1777, 1028–1031. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...