A Systematic Study of Coumarin-Tetrazine Light-Up Probes for Bioorthogonal Fluorescence Imaging
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
19-13811S
Grantová Agentura České Republiky
677465
European Research Council - International
PubMed
32339341
PubMed Central
PMC7497033
DOI
10.1002/chem.202001290
Knihovny.cz E-zdroje
- Klíčová slova
- click chemistry, coumarins, fluorescence, live cell bioimaging, tetrazines,
- MeSH
- fluorescenční barviva analýza MeSH
- heterocyklické sloučeniny analýza MeSH
- konfokální mikroskopie MeSH
- kumariny analýza MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- optické zobrazování * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fluorescenční barviva MeSH
- heterocyklické sloučeniny MeSH
- kumariny MeSH
Fluorescent probes that light-up upon reaction with complementary bioorthogonal reagents are superior tools for no-wash fluorogenic bioimaging applications. In this work, a thorough study is presented on a set of seventeen structurally diverse coumarin-tetrazine probes that produce fluorescent dyes with exceptional turn-on ratios when reacted with trans-cyclooctene (TCO) and bicyclononyne (BCN) dienophiles. In general, formation of the fully aromatic pyridazine-containing dyes resulting from the reaction with BCN was found superior in terms of fluorogenicity. However, evaluation of the probes in cellular imaging experiments revealed that other factors, such as reaction kinetics and good cell permeability, prevail over the fluorescence turn-on properties. The best compound identified in this study showed excellent performance in live cell-labeling experiments and enabled no-wash fluorogenic imaging on a timescale of seconds.
Zobrazit více v PubMed
Sarkar I., Mishra A. K., Appl. Spectrosc. Rev. 2018, 53, 552–601;
Qin L. H., Hu W., Long Y. Q., Tetrahedron Lett. 2018, 59, 2214–2228;
King M., Wagner A., Bioconjugate Chem. 2014, 25, 825–839; PubMed
Debets M. F., van Hest J. C. M., Rutjes F. P. J. T., Org. Biomol. Chem. 2013, 11, 6439–6455; PubMed
Baskin J. M., Bertozzi C. R., Qsar Comb. Sci. 2007, 26, 1211–1219.
de Moliner F., Kielland N., Lavilla R., Vendrell M., Angew. Chem. Int. Ed. 2017, 56, 3758–3769; PubMed PMC
Angew. Chem. 2017, 129, 3812–3823;
Wang L., Frei M. S., Salim A., Johnsson K., J. Am. Chem. Soc. 2019, 141, 2770–2781; PubMed
Liu P. F., Mu X. Y., Zhang X. D., Ming D., Bioconjugate Chem. 2020, 31, 260–275; PubMed
Specht E. A., Braselmann E., Palmer A. E., Annu. Rev. Physiol. 2017, 79, 93–117; PubMed
Fu Y. H., Finney N. S., Rsc Adv. 2018, 8, 29051–29061. PubMed PMC
Nagano T., P. Jpn. Acad. Ser. B 2010, 86, 837–847; PubMed PMC
Guo Z. Q., Park S., Yoon J., Shin I., Chem. Soc. Rev. 2014, 43, 16–29; PubMed
Shang H. M., Chen H., Tang Y. H., Ma Y. Y., Lin W. Y., Biosens. Bioelectron. 2017, 95, 81–86. PubMed
Li H. L., Vaughan J. C., Chem. Rev. 2018, 118, 9412–9454. PubMed PMC
Nadler A., Schultz C., Angew. Chem. Int. Ed. 2013, 52, 2408–2410; PubMed
Angew. Chem. 2013, 125, 2466–2469;
Kozma E., Kele P., Org. Biomol. Chem. 2019, 17, 215–233. PubMed
Kozma E., Demeter O., Kele P., ChemBioChem 2017, 18, 486–501; PubMed PMC
Németh E., Knorr G., Németh K., Kele P., Biomolecules 2020, 10, 397. PubMed PMC
Devaraj N. K., Hilderbrand S., Upadhyay R., Mazitschek R., Weissleder R., Angew. Chem. Int. Ed. 2010, 49, 2869–2872; PubMed PMC
Angew. Chem. 2010, 122, 2931–2934.
Carlson J. C. T., Meimetis L. G., Hilderbrand S. A., Weissleder R., Angew. Chem. Int. Ed. 2013, 52, 6917–6920; PubMed PMC
Angew. Chem. 2013, 125, 7055–7058;
Wu D., O'Shea D. F., Chem. Commun. 2017, 53, 10804–10807. PubMed
Wu H. X., Yang J., Seckute J., Devaraj N. K., Angew. Chem. Int. Ed. 2014, 53, 5805–5809; PubMed PMC
Angew. Chem. 2014, 126, 5915–5919;
Wieczorek A., Werther P., Euchner J., Wombacher R., Chem. Sci. 2017, 8, 1506–1510; PubMed PMC
Kozma E., Girona G. E., Paci G., Lemke E. A., Kele P., Chem. Commun. 2017, 53, 6696–6699; PubMed
Beliu G., Kurz A. J., Kuhlemann A. C., Behringer-Pliess L., Meub M., Wolf N., Seibel J., Shi Z. D., Schnermann M., Grimm J. B., Lavis L. D., Doose S., Sauer M., Commun. Biol. 2019, 2, 261; PubMed PMC
Wieczorek A., Buckup T., Wombacher R., Org. Biomol. Chem. 2014, 12, 4177–4185. PubMed
Knorr G., Kozma E., Schaart J. M., Nemeth K., Torok G., Kele P., Bioconjugate Chem. 2018, 29, 1312–1318. PubMed
Meimetis L. G., Carlson J. C., Giedt R. J., Kohler R. H., Weissleder R., Angew. Chem. Int. Ed. 2014, 53, 7531–7534; PubMed PMC
Angew. Chem. 2014, 126, 7661–7664. PubMed
Qu Y., Pander P., Vybornyi O., Vasylieva M., Guillot R., Miomandre F., Dias F. B., Skabara P., Data P., Clavier G., Audebert P., J. Org. Chem. 2020, 85, 3407–3416; PubMed
Lee Y., Cho W., Sung J., Kim E., Park S. B., J. Am. Chem. Soc. 2018, 140, 974–983. PubMed
Vázquez A., Dzijak R., Dracinsky M., Rampmaier R., Siegl S. J., Vrabel M., Angew. Chem. Int. Ed. 2017, 56, 1334–1337; PubMed PMC
Angew. Chem. 2017, 129, 1354–1357;
Shang X., Song X., Faller C., Lai R., Li H., Cerny R., Niu W., Guo J., Chem. Sci. 2017, 8, 1141–1145; PubMed PMC
Siegl S. J., Galeta J., Dzijak R., Vazquez A., Del Rio-Villanueva M., Dracinsky M., Vrabel M., ChemBioChem 2019, 20, 886–890. PubMed PMC
Qu Y. Y., Sauvage F. X., Clavier G., Miomandre F., Audebert P., Angew. Chem. Int. Ed. 2018, 57, 12057–12061; PubMed
Angew. Chem. 2018, 130, 12233–12237.
Agarwal P., Beahm B. J., Shieh P., Bertozzi C. R., Angew. Chem. Int. Ed. 2015, 54, 11504–11510; PubMed PMC
Angew. Chem. 2015, 127, 11666–11672.
Siegl S. J., Dzijak R., Vazquez A., Pohl R., Vrabel M., Chem. Sci. 2017, 8, 3593–3598. PubMed PMC
Bojtár M., Kormos A., Kis-Petik K., Kellermayer M., Kele P., Org. Lett. 2019, 21, 9410–9414; PubMed
Jun Y. W., Kim H. R., Reo Y. J., Dai M., Ahn K. H., Chem. Sci. 2017, 8, 7696–7704. PubMed PMC
Fan X., Ge Y., Lin F., Yang Y., Zhang G., Ngai W. S., Lin Z., Zheng S., Wang J., Zhao J., Li J., Chen P. R., Angew. Chem. Int. Ed. 2016, 55, 14046–14050; PubMed
Angew. Chem. 2016, 128, 14252–14256;
Carlson J. C. T., Mikula H., Weissleder R., J. Am. Chem. Soc. 2018, 140, 3603–3612; PubMed PMC
Versteegen R. M., Ten Hoeve W., Rossin R., de Geus M. A. R., Janssen H. M., Robillard M. S., Angew. Chem. Int. Ed. 2018, 57, 10494–10499; PubMed
Angew. Chem. 2018, 130, 10654–10659;
Versteegen R. M., Rossin R., ten Hoeve W., Janssen H. M., Robillard M. S., Angew. Chem. Int. Ed. 2013, 52, 14112–14116; PubMed
Angew. Chem. 2013, 125, 14362–14366.
Grimm J. B., Muthusamy A. K., Liang Y., Brown T. A., Lemon W. C., Patel R., Lu R., Macklin J. J., Keller P. J., Ji N., Lavis L. D., Nat. Methods 2017, 14, 987–994; PubMed PMC
Grimm J. B., English B. P., Chen J., Slaughter J. P., Zhang Z., Revyakin A., Patel R., Macklin J. J., Normanno D., Singer R. H., Lionnet T., Lavis L. D., Nat. Methods 2015, 12, 244–250. PubMed PMC
Ye Z., Yang W., Wang C., Zheng Y., Chi W., Liu X., Huang Z., Li X., Xiao Y., J. Am. Chem. Soc. 2019, 141, 14491–14495; PubMed
Lv X., Gao C., Han T., Shi H., Guo W., Chem. Commun. 2020, 56, 715–718. PubMed
Morawski O., Kielesinski L., Gryko D. T., Sobolewski A., Chem. Eur. J. 2020, 26, 7281–7291; PubMed
Singha S., Kim D., Roy B., Sambasivan S., Moon H., Rao A. S., Kim J. Y., Joo T., Park J. W., Rhee Y. M., Wang T., Kim K. H., Shin Y. H., Jung J., Ahn K. H., Chem. Sci. 2015, 6, 4335–4342. PubMed PMC
Würth C., Grabolle M., Pauli J., Spieles M., Resch-Genger U., Nat. Protoc. 2013, 8, 1535–1550. PubMed
Liu X., Qiao Q., Tian W., Liu W., Chen J., Lang M. J., Xu Z., J. Am. Chem. Soc. 2016, 138, 6960–6963. PubMed
Bassolino G., Nancoz C., Thiel Z., Bois E., Vauthey E., Rivera-Fuentes P., Chem. Sci. 2018, 9, 387–391. PubMed PMC
Wang C., Qiao Q. L., Chi W. J., Chen J., Liu W. J., Tan D., McKechnie S., Lyu D., Jiang X. F., Zhou W., Xu N., Zhang Q. S., Xu Z. C., Liu X. G., Angew. Chem. Int. Ed. 2020, 59, 10160–10172; PubMed
Angew. Chem. 2020, 132, 10246–10258.
Selvaraj R., Fox J. M., Curr. Opin. Chem. Biol. 2013, 17, 753–760; PubMed PMC
Wang D. Z., Chen W. X., Zheng Y. Q., Dai C. F., Wang K., Ke B. W., Wang B. H., Org. Biomol. Chem. 2014, 12, 3950–3955. PubMed PMC
Vakuliuk O., Jun Y. W., Vygranenko K., Clermont G., Reo Y. J., Blanchard-Desce M., Ahn K. H., Gryko D. T., Chem. Eur. J. 2019, 25, 13354–13362. PubMed
Murphy M. P., BBA-Bioenergetics 2008, 1777, 1028–1031. PubMed
Bioorthogonal Chemistry in Cellular Organelles
Structurally Redesigned Bioorthogonal Reagents for Mitochondria-Specific Prodrug Activation