Mechanism-Based Fluorogenic trans-Cyclooctene-Tetrazine Cycloaddition
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28026913
PubMed Central
PMC5299526
DOI
10.1002/anie.201610491
Knihovny.cz E-zdroje
- Klíčová slova
- bioorthogonal chemistry, click reactions, cycloaddition, heterocycles, imaging agents,
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The development of fluorogenic reactions which lead to the formation of fluorescent products from two nonfluorescent starting materials is highly desirable, but challenging. Reported herein is a new concept of fluorescent product formation upon the inverse electron-demand Diels-Alder reaction of 1,2,4,5-tetrazines with particular trans-cyclooctene (TCO) isomers. In sharp contrast to known fluorogenic reagents the presented chemistry leads to the rapid formation of unprecedented fluorescent 1,4-dihydropyridazines so that the fluorophore is built directly upon the chemical reaction. Attachment of an extra fluorophore moiety is therefore not needed. The photochemical properties of the resulting dyes can be easily tuned by changing the substitution pattern of the starting 1,2,4,5-tetrazine. We support the claim with NMR measurements and rationalize the data by computational study. Cell-labeling experiments were performed to demonstrate the potential of the fluorogenic reaction for bioimaging.
Zobrazit více v PubMed
Kikuchi K., Chem. Soc. Rev. 2010, 39, 2048–2053; PubMed
Lavis L. D., Raines R. T., ACS Chem. Biol. 2014, 9, 855–866; PubMed PMC
Nagano T., Proc. Jpn. Acad. Ser. B 2010, 86, 837–847. PubMed PMC
Nadler A., Schultz C., Angew. Chem. Int. Ed. 2013, 52, 2408–2410; PubMed
Angew. Chem. 2013, 125, 2466–2469;
Le Droumaguet C., Wang C., Wang Q., Chem. Soc. Rev. 2010, 39, 1233–1239. PubMed
Sletten E. M., Bertozzi C. R., Angew. Chem. Int. Ed. 2009, 48, 6974–6998; PubMed PMC
Angew. Chem. 2009, 121, 7108–7133;
Debets M. F., van Hest J. C. M., Rutjes F. P. T. J., Org. Biomol. Chem. 2013, 11, 6439–6455; PubMed
Grammel M., Hang H. C., Nat. Chem. Biol. 2013, 9, 475–484; PubMed PMC
McKay C. S., Finn M. G., Chem. Biol. 2014, 21, 1075–1101; PubMed PMC
Spicer C. D., Davis B. G., Nat. Commun. 2014, 5, 4740; PubMed
Boutureira O., Bernardes G. J., Chem. Rev. 2015, 115, 2174–2195; PubMed
Jewett J. C., Bertozzi C. R., Chem. Soc. Rev. 2010, 39, 1272–1279; PubMed PMC
Takaoka Y., Ojida A., Hamachi I., Angew. Chem. Int. Ed. 2013, 52, 4088–4106; PubMed
Angew. Chem. 2013, 125, 4182–4200;
Cycloadditions in Bioorthogonal Chemistry, Vol. 374 (Eds.: M. Vrabel, T. Carell), Springer, Zürich, 2016, pp. 1–157.
Blackman M. L., Royzen M., Fox J. M., J. Am. Chem. Soc. 2008, 130, 13518–13519; PubMed PMC
Devaraj N. K., Weissleder R., Hilderbrand S. A., Bioconjugate Chem. 2008, 19, 2297–2299; PubMed PMC
Devaraj N. K., Upadhyay R., Haun J. B., Hilderbrand S. A., Weissleder R., Angew. Chem. Int. Ed. 2009, 48, 7013–7016; PubMed PMC
Angew. Chem. 2009, 121, 7147–7150;
Knall A. C., Slugovc C., Chem. Soc. Rev. 2013, 42, 5131–5142; PubMed
Chen W., Wang D., Dai C., Hamelberg D., Wang B., Chem. Commun. 2012, 48, 1736–1738. PubMed
Devaraj N. K., Hilderbrand S., Upadhyay R., Mazitschek R., Weissleder R., Angew. Chem. Int. Ed. 2010, 49, 2869–2872; PubMed PMC
Angew. Chem. 2010, 122, 2931–2934;
Meimetis L. G., Carlson J. C., Giedt R. J., Kohler R. H., Weissleder R., Angew. Chem. Int. Ed. 2014, 53, 7531–7534; PubMed PMC
Angew. Chem. 2014, 126, 7661–7664; PubMed
Wu H., Yang J., Seckute J., Devaraj N. K., Angew. Chem. Int. Ed. 2014, 53, 5805–5809; PubMed PMC
Angew. Chem. 2014, 126, 5915–5919;
Wieczorek A., Buckup T., Wombacher R., Org. Biomol. Chem. 2014, 12, 4177–4185; PubMed
Yang J., Seckute J., Cole C. M., Devaraj N. K., Angew. Chem. Int. Ed. 2012, 51, 7476–7479; PubMed PMC
Angew. Chem. 2012, 124, 7594–7597.
Karver M. R., Weissleder R., Hilderbrand S. A., Bioconjugate Chem. 2011, 22, 2263–2270; PubMed PMC
Liu D. S., Tangpeerachaikul A., Selvaraj R., Taylor M. T., Fox J. M., Ting A. Y., J. Am. Chem. Soc. 2012, 134, 792–795; PubMed PMC
Yang J., Liang Y., Seckute J., Houk K. N., Devaraj N. K., Chem. Eur. J. 2014, 20, 3365–3375. PubMed PMC
Kaya E., Vrabel M., Deiml C., Prill S., Fluxa V. S., Carell T., Angew. Chem. Int. Ed. 2012, 51, 4466–4469; PubMed
Angew. Chem. 2012, 124, 4542–4545;
Wang X. S., Lee Y. J., Liu W. R., Chem. Commun. 2014, 50, 3176–3179; PubMed
Wang Y., Vera C. I., Lin Q., Org. Lett. 2007, 9, 4155–4158; PubMed
Song W., Wang Y., Qu J., Lin Q., J. Am. Chem. Soc. 2008, 130, 9654–9655; PubMed
Song W., Wang Y., Qu J., Madden M. M., Lin Q., Angew. Chem. Int. Ed. 2008, 47, 2832–2835; PubMed
Angew. Chem. 2008, 120, 2874–2877;
Yu Z., Ohulchanskyy T. Y., An P., Prasad P. N., Lin Q., J. Am. Chem. Soc. 2013, 135, 16766–16769; PubMed PMC
Yu Z., Ho L. Y., Lin Q., J. Am. Chem. Soc. 2011, 133, 11912–11915. PubMed PMC
“Fluorogenic protein labeling using a genetically encoded unstrained alkene”: X. Shang et al., Chem. Sci 2016, DOI: 10.1039/C6SC03635J. PubMed DOI PMC
Royzen M., Yap G. P., Fox J. M., J. Am. Chem. Soc. 2008, 130, 3760–3761. PubMed
Taylor M. T., Blackman M. L., Dmitrenko O., Fox J. M., J. Am. Chem. Soc. 2011, 133, 9646–9649; PubMed PMC
Darko A., Wallace S., Dmitrenko O., Machovina M. M., Mehl R. A., Chin J. W., Fox J. M., Chem. Sci. 2014, 5, 3770–3776. PubMed PMC
See the Supporting Information for further details.
Stanovnik B., Tišler M., Katritzky A. R., Denisko O. V. in Advances in Heterocyclic Chemistry, Vol. 81 (Ed.: R. K. Alan), Academic Press, New York, 2001, pp. 253–303.
Selvaraj R., Fox J. M., Curr. Opin. Chem. Biol. 2013, 17, 753–760. PubMed PMC
Schiff P. B., Horwitz S. B., Proc. Natl. Acad. Sci. USA 1980, 77, 1561–1565. PubMed PMC
Rin Jean S., Tulumello D. V., Wisnovsky S. P., Lei E. K., Pereira M. P., Kelley S. O., ACS Chem. Biol. 2014, 9, 323–333. PubMed
Bioorthogonal Chemistry in Cellular Organelles
A Systematic Study of Coumarin-Tetrazine Light-Up Probes for Bioorthogonal Fluorescence Imaging
An Extended Approach for the Development of Fluorogenic trans-Cyclooctene-Tetrazine Cycloadditions