Mechanism-Based Fluorogenic trans-Cyclooctene-Tetrazine Cycloaddition

. 2017 Jan 24 ; 56 (5) : 1334-1337. [epub] 20161227

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid28026913

The development of fluorogenic reactions which lead to the formation of fluorescent products from two nonfluorescent starting materials is highly desirable, but challenging. Reported herein is a new concept of fluorescent product formation upon the inverse electron-demand Diels-Alder reaction of 1,2,4,5-tetrazines with particular trans-cyclooctene (TCO) isomers. In sharp contrast to known fluorogenic reagents the presented chemistry leads to the rapid formation of unprecedented fluorescent 1,4-dihydropyridazines so that the fluorophore is built directly upon the chemical reaction. Attachment of an extra fluorophore moiety is therefore not needed. The photochemical properties of the resulting dyes can be easily tuned by changing the substitution pattern of the starting 1,2,4,5-tetrazine. We support the claim with NMR measurements and rationalize the data by computational study. Cell-labeling experiments were performed to demonstrate the potential of the fluorogenic reaction for bioimaging.

Zobrazit více v PubMed

Kikuchi K., Chem. Soc. Rev. 2010, 39, 2048–2053; PubMed

Lavis L. D., Raines R. T., ACS Chem. Biol. 2014, 9, 855–866; PubMed PMC

Nagano T., Proc. Jpn. Acad. Ser. B 2010, 86, 837–847. PubMed PMC

Nadler A., Schultz C., Angew. Chem. Int. Ed. 2013, 52, 2408–2410; PubMed

Angew. Chem. 2013, 125, 2466–2469;

Le Droumaguet C., Wang C., Wang Q., Chem. Soc. Rev. 2010, 39, 1233–1239. PubMed

Sletten E. M., Bertozzi C. R., Angew. Chem. Int. Ed. 2009, 48, 6974–6998; PubMed PMC

Angew. Chem. 2009, 121, 7108–7133;

Debets M. F., van Hest J. C. M., Rutjes F. P. T. J., Org. Biomol. Chem. 2013, 11, 6439–6455; PubMed

Grammel M., Hang H. C., Nat. Chem. Biol. 2013, 9, 475–484; PubMed PMC

McKay C. S., Finn M. G., Chem. Biol. 2014, 21, 1075–1101; PubMed PMC

Spicer C. D., Davis B. G., Nat. Commun. 2014, 5, 4740; PubMed

Boutureira O., Bernardes G. J., Chem. Rev. 2015, 115, 2174–2195; PubMed

Jewett J. C., Bertozzi C. R., Chem. Soc. Rev. 2010, 39, 1272–1279; PubMed PMC

Takaoka Y., Ojida A., Hamachi I., Angew. Chem. Int. Ed. 2013, 52, 4088–4106; PubMed

Angew. Chem. 2013, 125, 4182–4200;

Cycloadditions in Bioorthogonal Chemistry, Vol. 374 (Eds.: M. Vrabel, T. Carell), Springer, Zürich, 2016, pp. 1–157.

Blackman M. L., Royzen M., Fox J. M., J. Am. Chem. Soc. 2008, 130, 13518–13519; PubMed PMC

Devaraj N. K., Weissleder R., Hilderbrand S. A., Bioconjugate Chem. 2008, 19, 2297–2299; PubMed PMC

Devaraj N. K., Upadhyay R., Haun J. B., Hilderbrand S. A., Weissleder R., Angew. Chem. Int. Ed. 2009, 48, 7013–7016; PubMed PMC

Angew. Chem. 2009, 121, 7147–7150;

Knall A. C., Slugovc C., Chem. Soc. Rev. 2013, 42, 5131–5142; PubMed

Chen W., Wang D., Dai C., Hamelberg D., Wang B., Chem. Commun. 2012, 48, 1736–1738. PubMed

Devaraj N. K., Hilderbrand S., Upadhyay R., Mazitschek R., Weissleder R., Angew. Chem. Int. Ed. 2010, 49, 2869–2872; PubMed PMC

Angew. Chem. 2010, 122, 2931–2934;

Meimetis L. G., Carlson J. C., Giedt R. J., Kohler R. H., Weissleder R., Angew. Chem. Int. Ed. 2014, 53, 7531–7534; PubMed PMC

Angew. Chem. 2014, 126, 7661–7664; PubMed

Wu H., Yang J., Seckute J., Devaraj N. K., Angew. Chem. Int. Ed. 2014, 53, 5805–5809; PubMed PMC

Angew. Chem. 2014, 126, 5915–5919;

Wieczorek A., Buckup T., Wombacher R., Org. Biomol. Chem. 2014, 12, 4177–4185; PubMed

Yang J., Seckute J., Cole C. M., Devaraj N. K., Angew. Chem. Int. Ed. 2012, 51, 7476–7479; PubMed PMC

Angew. Chem. 2012, 124, 7594–7597.

Karver M. R., Weissleder R., Hilderbrand S. A., Bioconjugate Chem. 2011, 22, 2263–2270; PubMed PMC

Liu D. S., Tangpeerachaikul A., Selvaraj R., Taylor M. T., Fox J. M., Ting A. Y., J. Am. Chem. Soc. 2012, 134, 792–795; PubMed PMC

Yang J., Liang Y., Seckute J., Houk K. N., Devaraj N. K., Chem. Eur. J. 2014, 20, 3365–3375. PubMed PMC

Kaya E., Vrabel M., Deiml C., Prill S., Fluxa V. S., Carell T., Angew. Chem. Int. Ed. 2012, 51, 4466–4469; PubMed

Angew. Chem. 2012, 124, 4542–4545;

Wang X. S., Lee Y. J., Liu W. R., Chem. Commun. 2014, 50, 3176–3179; PubMed

Wang Y., Vera C. I., Lin Q., Org. Lett. 2007, 9, 4155–4158; PubMed

Song W., Wang Y., Qu J., Lin Q., J. Am. Chem. Soc. 2008, 130, 9654–9655; PubMed

Song W., Wang Y., Qu J., Madden M. M., Lin Q., Angew. Chem. Int. Ed. 2008, 47, 2832–2835; PubMed

Angew. Chem. 2008, 120, 2874–2877;

Yu Z., Ohulchanskyy T. Y., An P., Prasad P. N., Lin Q., J. Am. Chem. Soc. 2013, 135, 16766–16769; PubMed PMC

Yu Z., Ho L. Y., Lin Q., J. Am. Chem. Soc. 2011, 133, 11912–11915. PubMed PMC

“Fluorogenic protein labeling using a genetically encoded unstrained alkene”: X. Shang et al., Chem. Sci 2016, DOI: 10.1039/C6SC03635J. PubMed DOI PMC

Royzen M., Yap G. P., Fox J. M., J. Am. Chem. Soc. 2008, 130, 3760–3761. PubMed

Taylor M. T., Blackman M. L., Dmitrenko O., Fox J. M., J. Am. Chem. Soc. 2011, 133, 9646–9649; PubMed PMC

Darko A., Wallace S., Dmitrenko O., Machovina M. M., Mehl R. A., Chin J. W., Fox J. M., Chem. Sci. 2014, 5, 3770–3776. PubMed PMC

See the Supporting Information for further details.

Stanovnik B., Tišler M., Katritzky A. R., Denisko O. V. in Advances in Heterocyclic Chemistry, Vol. 81 (Ed.: R. K. Alan), Academic Press, New York, 2001, pp. 253–303.

Selvaraj R., Fox J. M., Curr. Opin. Chem. Biol. 2013, 17, 753–760. PubMed PMC

Schiff P. B., Horwitz S. B., Proc. Natl. Acad. Sci. USA 1980, 77, 1561–1565. PubMed PMC

Rin Jean S., Tulumello D. V., Wisnovsky S. P., Lei E. K., Pereira M. P., Kelley S. O., ACS Chem. Biol. 2014, 9, 323–333. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...