Bioorthogonal Fluorescence Turn-On Labeling Based on Bicyclononyne-Tetrazine Cycloaddition Reactions that Form Pyridazine Products
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31245251
PubMed Central
PMC6582594
DOI
10.1002/cplu.201900176
PII: CPLU201900176
Knihovny.cz E-zdroje
- Klíčová slova
- Diels-Alder reactions, cyclic alkynes, cycloaddition reactions, fluorogenic probes, tetrazines,
- MeSH
- cykloadiční reakce MeSH
- fluorescenční barviva chemie MeSH
- heterocyklické sloučeniny monocyklické chemie MeSH
- konfokální mikroskopie MeSH
- lidé MeSH
- můstkové bicyklické sloučeniny chemie MeSH
- nádorové buněčné linie MeSH
- pyridaziny chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fluorescenční barviva MeSH
- heterocyklické sloučeniny monocyklické MeSH
- můstkové bicyklické sloučeniny MeSH
- pyridaziny MeSH
Fluorogenic bioorthogonal reactions enable visualization of biomolecules with excellent signal-to-noise ratio. A bicyclononyne-tetrazine ligation that produces fluorescent pyridazine products has been developed. In stark contrast to previous approaches, the formation of the dye is an inherent result of the chemical reaction and no additional fluorophores are needed in the reagents. The crucial structural elements that determine dye formation are electron-donating groups present in the starting tetrazine unit. The newly formed pyridazine fluorophores show interesting photophysical properties the fluorescence intensity increase in the reaction can reach an excellent 900-fold. Model imaging experiments demonstrate the application potential of this new fluorogenic bioorthogonal reaction.
Zobrazit více v PubMed
Dedecker P., De Schryver F. C., Hofkens J., J. Am. Chem. Soc. 2013, 135, 2387–2402; PubMed
Rodriguez E. A., Campbell R. E., Lin J. Y., Lin M. Z., Miyawaki A., Palmer A. E., Shu X. K., Zhang J., Tsien R. Y., Trends Biochem. Sci. 2017, 42, 111–129. PubMed PMC
Specht E. A., Braselmann E., Palmer A. E., Annu. Rev. Physiol. 2017, 79, 93–117; PubMed
Terai T., Nagano T., Pflug. Arch. Eur. J. Phy. 2013, 465, 347–359. PubMed
Le Droumaguet C., Wang C., Wang Q., Chem. Soc. Rev. 2010, 39, 1233–1239; PubMed
Nadler A., Schultz C., Angew. Chem. Int. Ed. 2013, 52, 2408–2410; PubMed
Angew. Chem. 2013, 125, 2466–2469.
Lemieux G. A., de Graffenried C. L., Bertozzi C. R., J. Am. Chem. Soc. 2003, 125, 4708–4709; PubMed
Sivakumar K., Xie F., Cash B. M., Long S., Barnhill H. N., Wang Q., Org. Lett. 2004, 6, 4603–4606; PubMed
Shieh P., Siegrist M. S., Cullen A. J., Bertozzi C. R., Proc. Natl. Acad. Sci. 2014, 111, 5456–5461; PubMed PMC
Friscourt F., Fahrni C. J., Boons G. J., Chem. Eur. J. 2015, 21, 13996–14001; PubMed PMC
Herner A., Girona G. E., Nikic I., Kallay M., Lemke E. A., Kele P., Bioconjugate Chem. 2014, 25, 1370–1374; PubMed
Shie J. J., Liu Y. C., Hsiao J. C., Fang J. M., Wong C. H., Chem. Commun. 2017, 53, 1490–1493; PubMed
Demeter O., Kormos A., Koehler C., Mezo G., Nemeth K., Kozma E., Takacs L. B., Lemke E. A., Kele P., Bioconjugate Chem. 2017, 28, 1552–1559; PubMed
Decuypere E., Riomet M., Sallustrau A., Bregant S., Thai R., Pieters G., Clavier G., Audisio D., Taran F., Chem. Commun. 2018, 54, 10758–10761; PubMed
Song W., Wang Y., Qu J., Madden M. M., Lin Q., Angew. Chem. Int. Ed. 2008, 47, 2832–2835; PubMed
Angew. Chem. 2008, 120, 2874–2877;
Kozma E., Kele P., Org. Biomol. Chem. 2019, 17, 215–233. PubMed
Oliveira B. L., Guo Z., Bernardes G. J. L., Chem. Soc. Rev. 2017, 46, 4895–4950; PubMed
Knall A. C., Slugovc C., Chem. Soc. Rev. 2013, 42, 5131–5142; PubMed
Selvaraj R., Fox J. M., Curr. Opin. Chem. Biol. 2013, 17, 753–760. PubMed PMC
Devaraj N. K., Hilderbrand S., Upadhyay R., Mazitschek R., Weissleder R., Angew. Chem. Int. Ed. 2010, 49, 2869–2872; PubMed PMC
Angew. Chem. 2010, 122, 2931–2934;
Wu H. X., Yang J., Seckute J., Devaraj N. K., Angew. Chem. Int. Ed. 2014, 53, 5805–5809; PubMed PMC
Angew. Chem. 2014, 126, 5915–5919;
Kozma E., Girona G. E., Paci G., Lemke E. A., Kele P., Chem. Commun. 2017, 53, 6696–6699; PubMed
Wieczorek A., Werther P., Euchner J., Wombacher R., Chem. Sci. 2017, 8, 1506–1510; PubMed PMC
Lee Y., Cho W., Sung J., Kim E., Park S. B., J. Am. Chem. Soc. 2018, 140, 974–983; PubMed
Wieczorek A., Buckup T., Wombacher R., Org. Biomol. Chem. 2014, 12, 4177–4185; PubMed
Meimetis L. G., Carlson J. C. T., Giedt R. J., Kohler R. H., Weissleder R., Angew. Chem. Int. Ed. 2014, 53, 7531–7534; PubMed PMC
Angew. Chem. 2014, 126, 7661–7664; PubMed
Knorr G., Kozma E., Herner A., Lemke E. A., Kele P., Chem. Eur. J. 2016, 22, 8972–8979. PubMed
Shang X., Song X., Faller C., Lai R., Li H., Cerny R., Niu W., Guo J., Chem. Sci. 2017, 8, 1141–1145; PubMed PMC
Vazquez A., Dzijak R., Dracinsky M., Rampmaier R., Siegl S. J., Vrabel M., Angew. Chem. Int. Ed. 2017, 56, 1334–1337; PubMed PMC
Angew. Chem. 2017, 129, 1354–1357;
Siegl S. J., Vazquez A., Dzijak R., Dracinsky M., Galeta J., Rampmaier R., Klepetarova B., Vrabel M., Chem. Eur. J. 2018, 24, 2426–2432. PubMed
Siegl S. J., Galeta J., Dzijak R., Vazquez A., Del Rio-Villanueva M., Dracinsky M., Vrabel M., ChemBioChem 2019, 20, 886–890. PubMed PMC
Klymchenko A. S., Acc. Chem. Res. 2017, 50, 366–375. PubMed
Wang D., Chen W., Zheng Y., Dai C., Wang K., Ke B., Wang B., Org. Biomol. Chem. 2014, 12, 3950–3955. PubMed PMC
Vrabel M., Kolle P., Brunner K. M., Gattner M. J., Lopez-Carrillo V., de Vivie-Riedle R., Carell T., Chem. Eur. J. 2013, 19, 13309–13312; PubMed
Knall A. C., Hollauf M., Slugovc C., Tetrahedron Lett. 2014, 55, 4763–4766. PubMed PMC
Plass T., Milles S., Koehler C., Szymanski J., Mueller R., Wiessler M., Schultz C., Lemke E. A., Angew. Chem. Int. Ed. 2012, 51, 4166–4170; PubMed
Angew. Chem. 2012, 124, 4242–4246;
Kaya E., Vrabel M., Deiml C., Prill S., Fluxa V. S., Carell T., Angew. Chem. Int. Ed. 2012, 51, 4466–4469; PubMed
Angew. Chem. 2012, 124, 4542–4545;
Lang K., Davis L., Torres-Kolbus J., Chou C. J., Deiters A., Chin J. W., Nat. Chem. 2012, 4, 298–304. PubMed PMC
Goldstein I. J., Poretz R. D., in The Lectins. Properties, Functions, and Applications in Biology and Medicine., Vol. 32 (Eds.: I. E. Liener, N. Sharon, I. J. Goldstein), Elsevier, 1986, pp. 33–247.
Zielonka J., Joseph J., Sikora A., Hardy M., Ouari O., Vasquez-Vivar J., Cheng G., Lopez M., Kalyanaraman B., Chem. Rev. 2017, 117, 10043–10120. PubMed PMC
Bedard F., Girard A., Biron E., Int. J. Pept. Res. Ther. 2013, 19, 13–23.
Carlson J. C. T., Mikula H., Weissleder R., J. Am. Chem. Soc. 2018, 140, 3603–3612; PubMed PMC
Versteegen R. M., Ten Hoeve W., Rossin R., de Geus M. A. R., Janssen H. M., Robillard M. S., Angew. Chem. Int. Ed. 2018, 57, 10494–10499.; Angew. Chem 2018, 130, 10654-10659. PubMed