Synthesis of C3-Substituted N1-tert-Butyl 1,2,4-Triazinium Salts via the Liebeskind-Srogl Reaction for Fluorogenic Labeling of Live Cells
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
38224304
PubMed Central
PMC11494656
DOI
10.1021/acs.joc.3c02454
Knihovny.cz E-zdroje
- MeSH
- fluorescenční barviva * chemie chemická syntéza MeSH
- kumariny chemie chemická syntéza MeSH
- lidé MeSH
- molekulární struktura MeSH
- soli * chemie MeSH
- triaziny * chemie chemická syntéza MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fluorescenční barviva * MeSH
- kumariny MeSH
- soli * MeSH
- triaziny * MeSH
We recently described the development and application of a new bioorthogonal conjugation, the triazinium ligation. To explore the wider application of this reaction, in this work, we introduce a general method for synthesizing C3-substituted triazinium salts based on the Liebeskind-Srogl cross-coupling reaction and catalytic thioether reduction. These methods enabled the synthesis of triazinium derivatives for investigating the effect of different substituents on the ligation kinetics and stability of the compounds under biologically relevant conditions. Finally, we demonstrate that the combination of a coumarin fluorophore attached to position C3 with a C5-(4-methoxyphenyl) substituent yields a fluorogenic triazinium probe suitable for no-wash, live-cell labeling. The developed methodology represents a promising synthetic approach to the late-stage modification of triazinium salts, potentially widening their applications in bioorthogonal reactions.
Zobrazit více v PubMed
Oliveira B. L.; Guo Z.; Bernardes G. J. L. Inverse electron demand Diels–Alder reactions in chemical biology. Chem. Soc. Rev. 2017, 46 (16), 4895–4950. 10.1039/C7CS00184C. PubMed DOI
Battigelli A.; Almeida B.; Shukla A. Recent Advances in Bioorthogonal Click Chemistry for Biomedical Applications. Bioconjugate Chem. 2022, 33 (2), 263–271. 10.1021/acs.bioconjchem.1c00564. PubMed DOI
Yang J.; Zhu B.; Ran C. The Application of Bio-orthogonality for In Vivo Animal Imaging. Chem. Biomed. Eng. 2023, 1 (5), 434–447. 10.1021/cbmi.3c00033. PubMed DOI PMC
Liong M.; Fernandez-Suarez M.; Issadore D.; Min C.; Tassa C.; Reiner T.; Fortune S. M.; Toner M.; Lee H.; Weissleder R. Specific Pathogen Detection Using Bioorthogonal Chemistry and Diagnostic Magnetic Resonance. Bioconjugate Chem. 2011, 22 (12), 2390–2394. 10.1021/bc200490r. PubMed DOI PMC
Spitzberg J. D.; Ferguson S.; Yang K. S.; Peterson H. M.; Carlson J. C. T.; Weissleder R. Multiplexed analysis of EV reveals specific biomarker composition with diagnostic impact. Nat. Commun. 2023, 14 (1), 1239.10.1038/s41467-023-36932-z. PubMed DOI PMC
Ko J.; Wilkovitsch M.; Oh J.; Kohler R. H.; Bolli E.; Pittet M. J.; Vinegoni C.; Sykes D. B.; Mikula H.; Weissleder R.; Carlson J. C. T. Spatiotemporal multiplexed immunofluorescence imaging of living cells and tissues with bioorthogonal cycling of fluorescent probes. Nat. Biotechnol. 2022, 40 (11), 1654–1662. 10.1038/s41587-022-01339-6. PubMed DOI PMC
Cañeque T.; Müller S.; Rodriguez R. Visualizing biologically active small molecules in cells using click chemistry. Nat. Rev. Chem. 2018, 2, 202–215. 10.1038/s41570-018-0030-x. DOI
Nguyen S. S.; Prescher J. A. Developing bioorthogonal probes to span a spectrum of reactivities. Nat. Rev. Chem. 2020, 4 (9), 476–489. 10.1038/s41570-020-0205-0. PubMed DOI PMC
Kozma E.; Bojtar M.; Kele P. Bioorthogonally Assisted Phototherapy: Recent Advances and Prospects. Angew. Chem., Int. Ed. 2023, 135, e20230319810.1002/ange.202303198. PubMed DOI
Bauer D.; Cornejo M. A.; Hoang T. T.; Lewis J. S.; Zeglis B. M. Click Chemistry and Radiochemistry: An Update. Bioconjugate Chem. 2023, 34 (11), 1925–1950. 10.1021/acs.bioconjchem.3c00286. PubMed DOI PMC
Zhong X.; Yan J.; Ding X.; Su C.; Xu Y.; Yang M. Recent Advances in Bioorthogonal Click Chemistry for Enhanced PET and SPECT Radiochemistry. Bioconjugate Chem. 2023, 34 (3), 457–476. 10.1021/acs.bioconjchem.2c00583. PubMed DOI
Devaraj N. K. The Future of Bioorthogonal Chemistry. ACS Cent. Sci. 2018, 4 (8), 952–959. 10.1021/acscentsci.8b00251. PubMed DOI PMC
Blackman M. L.; Royzen M.; Fox J. M. Tetrazine Ligation: Fast Bioconjugation Based on Inverse-Electron-Demand Diels–Alder Reactivity. J. Am. Chem. Soc. 2008, 130 (41), 13518–13519. 10.1021/ja8053805. PubMed DOI PMC
Zhao G. X.; Li Z. T.; Zhang R. S.; Zhou L. M.; Zhao H. B.; Jiang H. F. Tetrazine bioorthogonal chemistry derived in vivo imaging. Front. Mol. Biosci. 2022, 9, 105582310.3389/fmolb.2022.1055823. PubMed DOI PMC
McFarland J. M.; Alečković M.; Coricor G.; Srinivasan S.; Tso M.; Lee J.; Nguyen T.-H.; Mejía Oneto J. M. Click Chemistry Selectively Activates an Auristatin Protodrug with either Intratumoral or Systemic Tumor-Targeting Agents. ACS Cent. Sci. 2023, 9 (7), 1400–1408. 10.1021/acscentsci.3c00365. PubMed DOI PMC
Mitry M. M. A.; Greco F.; Osborn H. M. I. In Vivo Applications of Bioorthogonal Reactions: Chemistry and Targeting Mechanisms. Chem. - Eur. J. 2023, 29 (20), e20220394210.1002/chem.202203942. PubMed DOI
Peplow M. ‘Clicked’ drugs: researchers prove the remarkable chemistry in humans. Nat. Biotechnol. 2023, 41 (7), 883–885. 10.1038/s41587-023-01860-2. PubMed DOI
Row R. D.; Prescher J. A. Constructing New Bioorthogonal Reagents and Reactions. Acc. Chem. Res. 2018, 51 (5), 1073–1081. 10.1021/acs.accounts.7b00606. PubMed DOI PMC
Knall A. C.; Slugovc C. Inverse electron demand Diels-Alder (iEDDA)-initiated conjugation: a (high) potential click chemistry scheme. Chem. Soc. Rev. 2013, 42 (12), 5131–5142. 10.1039/c3cs60049a. PubMed DOI
Novák Z.; Kotschy A. First cross-coupling reactions on tetrazines. Org. Lett. 2003, 5 (19), 3495–3497. 10.1021/ol035312w. PubMed DOI
Sun H.; Xue Q.; Zhang C.; Wu H.; Feng P. Derivatization based on tetrazine scaffolds: synthesis of tetrazine derivatives and their biomedical applications. Org. Chem. Front. 2022, 9 (2), 481–498. 10.1039/D1QO01324F. DOI
Bender A. M.; Chopko T. C.; Bridges T. M.; Lindsley C. W. Preparation of Unsymmetrical 1,2,4,5-Tetrazines via a Mild Suzuki Cross-Coupling Reaction. Org. Lett. 2017, 19 (20), 5693–5696. 10.1021/acs.orglett.7b02868. PubMed DOI
Ros E.; Prades A.; Forson D.; Smyth J.; Verdaguer X.; Pouplana L. R. d.; Riera A. Synthesis of 3-alkyl-6-methyl-1,2,4,5-tetrazines via a Sonogashira-type cross-coupling reaction. Chem. Commun. 2020, 56 (75), 11086–11089. 10.1039/D0CC03482G. PubMed DOI
Wu H.; Yang J.; Šečkutė J.; Devaraj N. K. In Situ Synthesis of Alkenyl Tetrazines for Highly Fluorogenic Bioorthogonal Live-Cell Imaging Probes. Angew. Chem., Int. Ed. 2014, 53 (23), 5805–5809. 10.1002/anie.201400135. PubMed DOI PMC
Lambert W. D.; Fang Y.; Mahapatra S.; Huang Z.; am Ende C. W.; Fox J. M. Installation of Minimal Tetrazines through Silver-Mediated Liebeskind–Srogl Coupling with Arylboronic Acids. J. Am. Chem. Soc. 2019, 141 (43), 17068–17074. 10.1021/jacs.9b08677. PubMed DOI PMC
Xie Y.; Fang Y.; Huang Z.; Tallon A. M.; am Ende C. W.; Fox J. M. Divergent Synthesis of Monosubstituted and Unsymmetrical 3,6-Disubstituted Tetrazines from Carboxylic Ester Precursors. Angew. Chem., Int. Ed. 2020, 59 (39), 16967–16973. 10.1002/anie.202005569. PubMed DOI PMC
Slachtova V.; Bellova S.; La-Venia A.; Galeta J.; Dracinsky M.; Chalupsky K.; Dvorakova A.; Mertlikova-Kaiserova H.; Rukovansky P.; Dzijak R.; Vrabel M. Triazinium Ligation: Bioorthogonal Reaction of N1-Alkyl 1,2,4-Triazinium Salts. Angew. Chem., Int. Ed. 2023, 62 (36), e202306828.10.1002/anie.202306828. PubMed DOI
An initial version of this work was deposited in chemRxiv on October 27, 2023 10.26434/chemrxiv-2023-lpf8m. DOI
Galeta J.; Šlachtová V.; Dračínský M.; Vrabel M. Regio- and Diastereoselective 1,3-Dipolar Cycloadditions of 1,2,4-Triazin-1-ium Ylides: a Straightforward Synthetic Route to Polysubstituted Pyrrolo[2,1-f][1,2,4]triazines. ACS Omega 2022, 7 (24), 21233–21238. 10.1021/acsomega.2c02276. PubMed DOI PMC
Markovic T.; Rocke B. N.; Blakemore D. C.; Mascitti V.; Willis M. C. Pyridine sulfinates as general nucleophilic coupling partners in palladium-catalyzed cross-coupling reactions with aryl halides. Chem. Sci. 2017, 8 (6), 4437–4442. 10.1039/C7SC00675F. PubMed DOI PMC
Svatunek D.; Wilkovitsch M.; Hartmann L.; Houk K. N.; Mikula H. Uncovering the Key Role of Distortion in Bioorthogonal Tetrazine Tools That Defy the Reactivity/Stability Trade-Off. J. Am. Chem. Soc. 2022, 144 (18), 8171–8177. 10.1021/jacs.2c01056. PubMed DOI PMC
Devaraj N. K.; Weissleder R. Biomedical Applications of Tetrazine Cycloadditions. Acc. Chem. Res. 2011, 44 (9), 816–827. 10.1021/ar200037t. PubMed DOI PMC
Modak A.; Maiti D. Metal catalyzed defunctionalization reactions. Org. Biomol. Chem. 2016, 14 (1), 21–35. 10.1039/C5OB01949D. PubMed DOI
Wu Z.-C.; Boger D. L. Synthesis, Characterization, and Cycloaddition Reactivity of a Monocyclic Aromatic 1,2,3,5-Tetrazine. J. Am. Chem. Soc. 2019, 141 (41), 16388–16397. 10.1021/jacs.9b07744. PubMed DOI PMC
Jemas A.; Xie Y. X.; Pigga J. E.; Caplan J. L.; am Ende C. W.; Fox J. M. Catalytic Activation of Bioorthogonal Chemistry with Light (CABL) Enables Rapid, Spatiotemporally Controlled Labeling and No-Wash, Subcellular 3D-Patterning in Live Cells Using Long Wavelength Light. J. Am. Chem. Soc. 2022, 144 (4), 1647–1662. 10.1021/jacs.1c10390. PubMed DOI PMC
Karver M. R.; Weissleder R.; Hilderbrand S. A. Synthesis and Evaluation of a Series of 1,2,4,5-Tetrazines for Bioorthogonal Conjugation. Bioconjugate Chem. 2011, 22 (11), 2263–2270. 10.1021/bc200295y. PubMed DOI PMC
Meimetis L. G.; Carlson J. C. T.; Giedt R. J.; Kohler R. H.; Weissleder R. Ultrafluorogenic Coumarin-Tetrazine Probes for Real-Time Biological Imaging. Angew. Chem., Int. Ed. 2014, 53 (29), 7531–7534. 10.1002/anie.201403890. PubMed DOI PMC
Galeta J.; Dzijak R.; Obořil J.; Dračínský M.; Vrabel M. A Systematic Study of Coumarin–Tetrazine Light-Up Probes for Bioorthogonal Fluorescence Imaging. Chem. - Eur. J. 2020, 26 (44), 9945–9953. 10.1002/chem.202001290. PubMed DOI PMC
Carlson J. C. T.; Meimetis L. G.; Hilderbrand S. A.; Weissleder R. BODIPY-Tetrazine Derivatives as Superbright Bioorthogonal Turn-on Probes. Angew. Chem., Int. Ed. 2013, 52 (27), 6917–6920. 10.1002/anie.201301100. PubMed DOI PMC
Siegl S. J.; Galeta J.; Dzijak R.; Dračínský M.; Vrabel M. Bioorthogonal Fluorescence Turn-On Labeling Based on Bicyclononyne–Tetrazine Cycloaddition Reactions that Form Pyridazine Products. ChemPlusChem. 2019, 84 (5), 493–497. 10.1002/cplu.201900176. PubMed DOI PMC