An Extended Approach for the Development of Fluorogenic trans-Cyclooctene-Tetrazine Cycloadditions
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30561884
PubMed Central
PMC6471176
DOI
10.1002/cbic.201800711
Knihovny.cz E-zdroje
- Klíčová slova
- bioorthogonal chemistry, click chemistry, cycloaddition, heterocycles, tetrazines,
- MeSH
- cykloadiční reakce MeSH
- cyklooktany chemie MeSH
- fluorescenční barviva chemická syntéza chemie MeSH
- fluorescenční mikroskopie metody MeSH
- HeLa buňky MeSH
- heterocyklické sloučeniny bicyklické chemická syntéza chemie MeSH
- heterocyklické sloučeniny monocyklické chemie MeSH
- konfokální mikroskopie metody MeSH
- lidé MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cyklooktany MeSH
- fluorescenční barviva MeSH
- heterocyklické sloučeniny bicyklické MeSH
- heterocyklické sloučeniny monocyklické MeSH
Inverse-electron-demand Diels-Alder (iEDDA) cycloaddition between 1,2,4,5-tetrazines and strained dienophiles belongs among the most popular bioconjugation reactions. In addition to its fast kinetics, this cycloaddition can be tailored to produce fluorescent products from non-fluorescent starting materials. Here we show that even the reaction intermediates formed in iEDDA cycloaddition can lead to the formation of new types of fluorophores. The influence of various substituents on their photophysical properties and the generality of the approach with use of various trans-cyclooctene derivatives were studied. Model bioimaging experiments demonstrate the application potential of fluorogenic iEDDA cycloaddition.
Zobrazit více v PubMed
Baskin J. M., Bertozzi C. R., QSAR Comb. Sci. 2007, 26, 1211–1219;
Debets M. F., van Hest J. C. M., Rutjes F. P. J. T., Org. Biomol. Chem. 2013, 11, 6439–6455; PubMed
King M., Wagner A., Bioconjugate Chem. 2014, 25, 825–839; PubMed
Lim R. K. V., Lin Q., Chem. Commun. 2010, 46, 1589–1600; PubMed PMC
Sletten E. M., Bertozzi C. R., Angew. Chem. Int. Ed. 2009, 48, 6974–6998; PubMed PMC
Angew. Chem. 2009, 121, 7108–7133.
Kluger R., J. Am. Chem. Soc. 2010, 132, 6611–6612;
Nwe K., Brechbiel M. W., Cancer Biother. Radiopharm. 2009, 24, 289–302; PubMed PMC
Spicer C. D., Davis B. G., Nat. Commun. 2014, 5, 4740; PubMed
Spicer C. D., Pashuck E. T., Stevens M. M., Chem. Rev. 2018, 118, 7702–7743; PubMed PMC
Xi W., Scott T. F., Kloxin C. J., Bowman C. N., Adv. Funct. Mater. 2014, 24, 2572–2590;
Topics in Current Chemistry, Vol. 374: Cycloadditions in Bioorthogonal Chemistry (Eds.: M. Vrabel, T. Carell), Springer, Switzerland, 2016. PubMed
Le Droumaguet C., Wang C., Wang Q., Chem. Soc. Rev. 2010, 39, 1233–1239; PubMed
Nadler A., Schultz C., Angew. Chem. Int. Ed. 2013, 52, 2408–2410; PubMed
Angew. Chem. 2013, 125, 2466–2469.
Devaraj N. K., Hilderbrand S., Upadhyay R., Mazitschek R., Weissleder R., Angew. Chem. Int. Ed. 2010, 49, 2869–2872; PubMed PMC
Angew. Chem. 2010, 122, 2931–2934;
Wu H. X., Yang J., Seckute J., Devaraj N. K., Angew. Chem. Int. Ed. 2014, 53, 5805–5809; PubMed PMC
Angew. Chem. 2014, 126, 5915–5919;
Wieczorek A., Werther P., Euchner J., Wombacher R., Chem. Sci. 2017, 8, 1506–1510; PubMed PMC
Kozma E., Girona G. E., Paci G., Lemke E. A., Kele P., Chem. Commun. 2017, 53, 6696–6699; PubMed
Kozma E., Demeter O., Kele P., ChemBioChem 2017, 18, 486–501; PubMed PMC
Knorr G., Kozma E., Schaart J. M., Nemeth K., Torok G., Kele P., Bioconjugate Chem. 2018, 29, 1312–1318. PubMed
Yu Z., Ohulchanskyy T. Y., An P., Prasad P. N., Lin Q., J. Am. Chem. Soc. 2013, 135, 16766–16769; PubMed PMC
Kaya E., Vrabel M., Deiml C., Prill S., Fluxa V. S., Carell T., Angew. Chem. Int. Ed. 2012, 51, 4466–4469; PubMed
Angew. Chem. 2012, 124, 4542–4545;
Song W., Wang Y., Qu J., Madden M. M., Lin Q., Angew. Chem. Int. Ed. 2008, 47, 2832–2835; PubMed
Angew. Chem. 2008, 120, 2874–2877;
Song W., Wang Y., Qu J., Lin Q., J. Am. Chem. Soc. 2008, 130, 9654–9655. PubMed
Siegl S. J., Dzijak R., Vázquez A., Pohl R., Vrabel M., Chem. Sci. 2017, 8, 3593–3598. PubMed PMC
Shang X., Song X., Faller C., Lai R., Li H., Cerny R., Niu W., Guo J., Chem. Sci. 2017, 8, 1141–1145; PubMed PMC
Vázquez A., Dzijak R., Dracinsky M., Rampmaier R., Siegl S. J., Vrabel M., Angew. Chem. Int. Ed. 2017, 56, 1334–1337; PubMed PMC
Angew. Chem. 2017, 129, 1354–1357.
Siegl S. J., Vázquez A., Dzijak R., Dračínský M., Galeta J., Rampmaier R., Klepetářová B., Vrabel M., Chem. Eur. J. 2018, 24, 2426–2432. PubMed
Blackman M. L., Royzen M., Fox J. M., J. Am. Chem. Soc. 2008, 130, 13518–13519. PubMed PMC
Grimm J. B., Muthusamy A. K., Liang Y. J., Brown T. A., Lemon W. C., Patel R., Lu R. W., Macklin J. J., Keller P. J., Ji N., Lavis L. D., Nat. Methods 2017, 14, 987–994; PubMed PMC
Grimm J. B., English B. P., Chen J. J., Slaughter J. P., Zhang Z. J., Revyakin A., Patel R., Macklin J. J., Normanno D., Singer R. H., Lionnet T., Lavis L. D., Nat. Methods 2015, 12, 244–250. PubMed PMC
Rossin R., van den Bosch S. M., ten Hoeve W., Carvelli M., Versteegen R. M., Lub J., Robillard M. S., Bioconjugate Chem. 2013, 24, 1210–1217. PubMed
Taylor M. T., Blackman M. L., Dmitrenko O., Fox J. M., J. Am. Chem. Soc. 2011, 133, 9646–9649; PubMed PMC
Darko A., Wallace S., Dmitrenko O., Machovina M. M., Mehl R. A., Chin J. W., Fox J. M., Chem. Sci. 2014, 5, 3770–3776; PubMed PMC
Versteegen R. M., Rossin R., ten Hoeve W., Janssen H. M., Robillard M. S., Angew. Chem. Int. Ed. 2013, 52, 14112–14116; PubMed
Angew. Chem. 2013, 125, 14362–14366.
Zielonka J., Joseph J., Sikora A., Hardy M., Ouari O., Vasquez-Vivar J., Cheng G., Lopez M., Kalyanaraman B., Chem. Rev. 2017, 117, 10043–10120. PubMed PMC
Goldstein I. J., Poretz R. D. in The Lectins: Properties, Functions, and Applications in Biology and Medicine., Vol. 32 (Eds.: I. E. Liener, N. Sharon, I. J. Goldstein), Academic Press, Orlando, 1986, pp. 33–247.
A Systematic Study of Coumarin-Tetrazine Light-Up Probes for Bioorthogonal Fluorescence Imaging