An Extended Approach for the Development of Fluorogenic trans-Cyclooctene-Tetrazine Cycloadditions

. 2019 Apr 01 ; 20 (7) : 886-890. [epub] 20190307

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30561884

Inverse-electron-demand Diels-Alder (iEDDA) cycloaddition between 1,2,4,5-tetrazines and strained dienophiles belongs among the most popular bioconjugation reactions. In addition to its fast kinetics, this cycloaddition can be tailored to produce fluorescent products from non-fluorescent starting materials. Here we show that even the reaction intermediates formed in iEDDA cycloaddition can lead to the formation of new types of fluorophores. The influence of various substituents on their photophysical properties and the generality of the approach with use of various trans-cyclooctene derivatives were studied. Model bioimaging experiments demonstrate the application potential of fluorogenic iEDDA cycloaddition.

Zobrazit více v PubMed

Baskin J. M., Bertozzi C. R., QSAR Comb. Sci. 2007, 26, 1211–1219;

Debets M. F., van Hest J. C. M., Rutjes F. P. J. T., Org. Biomol. Chem. 2013, 11, 6439–6455; PubMed

King M., Wagner A., Bioconjugate Chem. 2014, 25, 825–839; PubMed

Lim R. K. V., Lin Q., Chem. Commun. 2010, 46, 1589–1600; PubMed PMC

Sletten E. M., Bertozzi C. R., Angew. Chem. Int. Ed. 2009, 48, 6974–6998; PubMed PMC

Angew. Chem. 2009, 121, 7108–7133.

Kluger R., J. Am. Chem. Soc. 2010, 132, 6611–6612;

Nwe K., Brechbiel M. W., Cancer Biother. Radiopharm. 2009, 24, 289–302; PubMed PMC

Spicer C. D., Davis B. G., Nat. Commun. 2014, 5, 4740; PubMed

Spicer C. D., Pashuck E. T., Stevens M. M., Chem. Rev. 2018, 118, 7702–7743; PubMed PMC

Xi W., Scott T. F., Kloxin C. J., Bowman C. N., Adv. Funct. Mater. 2014, 24, 2572–2590;

Topics in Current Chemistry, Vol. 374: Cycloadditions in Bioorthogonal Chemistry (Eds.: M. Vrabel, T. Carell), Springer, Switzerland, 2016. PubMed

Le Droumaguet C., Wang C., Wang Q., Chem. Soc. Rev. 2010, 39, 1233–1239; PubMed

Nadler A., Schultz C., Angew. Chem. Int. Ed. 2013, 52, 2408–2410; PubMed

Angew. Chem. 2013, 125, 2466–2469.

Devaraj N. K., Hilderbrand S., Upadhyay R., Mazitschek R., Weissleder R., Angew. Chem. Int. Ed. 2010, 49, 2869–2872; PubMed PMC

Angew. Chem. 2010, 122, 2931–2934;

Wu H. X., Yang J., Seckute J., Devaraj N. K., Angew. Chem. Int. Ed. 2014, 53, 5805–5809; PubMed PMC

Angew. Chem. 2014, 126, 5915–5919;

Wieczorek A., Werther P., Euchner J., Wombacher R., Chem. Sci. 2017, 8, 1506–1510; PubMed PMC

Kozma E., Girona G. E., Paci G., Lemke E. A., Kele P., Chem. Commun. 2017, 53, 6696–6699; PubMed

Kozma E., Demeter O., Kele P., ChemBioChem 2017, 18, 486–501; PubMed PMC

Knorr G., Kozma E., Schaart J. M., Nemeth K., Torok G., Kele P., Bioconjugate Chem. 2018, 29, 1312–1318. PubMed

Yu Z., Ohulchanskyy T. Y., An P., Prasad P. N., Lin Q., J. Am. Chem. Soc. 2013, 135, 16766–16769; PubMed PMC

Kaya E., Vrabel M., Deiml C., Prill S., Fluxa V. S., Carell T., Angew. Chem. Int. Ed. 2012, 51, 4466–4469; PubMed

Angew. Chem. 2012, 124, 4542–4545;

Song W., Wang Y., Qu J., Madden M. M., Lin Q., Angew. Chem. Int. Ed. 2008, 47, 2832–2835; PubMed

Angew. Chem. 2008, 120, 2874–2877;

Song W., Wang Y., Qu J., Lin Q., J. Am. Chem. Soc. 2008, 130, 9654–9655. PubMed

Siegl S. J., Dzijak R., Vázquez A., Pohl R., Vrabel M., Chem. Sci. 2017, 8, 3593–3598. PubMed PMC

Shang X., Song X., Faller C., Lai R., Li H., Cerny R., Niu W., Guo J., Chem. Sci. 2017, 8, 1141–1145; PubMed PMC

Vázquez A., Dzijak R., Dracinsky M., Rampmaier R., Siegl S. J., Vrabel M., Angew. Chem. Int. Ed. 2017, 56, 1334–1337; PubMed PMC

Angew. Chem. 2017, 129, 1354–1357.

Siegl S. J., Vázquez A., Dzijak R., Dračínský M., Galeta J., Rampmaier R., Klepetářová B., Vrabel M., Chem. Eur. J. 2018, 24, 2426–2432. PubMed

Blackman M. L., Royzen M., Fox J. M., J. Am. Chem. Soc. 2008, 130, 13518–13519. PubMed PMC

Grimm J. B., Muthusamy A. K., Liang Y. J., Brown T. A., Lemon W. C., Patel R., Lu R. W., Macklin J. J., Keller P. J., Ji N., Lavis L. D., Nat. Methods 2017, 14, 987–994; PubMed PMC

Grimm J. B., English B. P., Chen J. J., Slaughter J. P., Zhang Z. J., Revyakin A., Patel R., Macklin J. J., Normanno D., Singer R. H., Lionnet T., Lavis L. D., Nat. Methods 2015, 12, 244–250. PubMed PMC

Rossin R., van den Bosch S. M., ten Hoeve W., Carvelli M., Versteegen R. M., Lub J., Robillard M. S., Bioconjugate Chem. 2013, 24, 1210–1217. PubMed

Taylor M. T., Blackman M. L., Dmitrenko O., Fox J. M., J. Am. Chem. Soc. 2011, 133, 9646–9649; PubMed PMC

Darko A., Wallace S., Dmitrenko O., Machovina M. M., Mehl R. A., Chin J. W., Fox J. M., Chem. Sci. 2014, 5, 3770–3776; PubMed PMC

Versteegen R. M., Rossin R., ten Hoeve W., Janssen H. M., Robillard M. S., Angew. Chem. Int. Ed. 2013, 52, 14112–14116; PubMed

Angew. Chem. 2013, 125, 14362–14366.

Zielonka J., Joseph J., Sikora A., Hardy M., Ouari O., Vasquez-Vivar J., Cheng G., Lopez M., Kalyanaraman B., Chem. Rev. 2017, 117, 10043–10120. PubMed PMC

Goldstein I. J., Poretz R. D. in The Lectins: Properties, Functions, and Applications in Biology and Medicine., Vol. 32 (Eds.: I. E. Liener, N. Sharon, I. J. Goldstein), Academic Press, Orlando, 1986, pp. 33–247.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...