Plant AtEH/Pan1 proteins drive autophagosome formation at ER-PM contact sites with actin and endocytic machinery

. 2019 Nov 13 ; 10 (1) : 5132. [epub] 20191113

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31723129

Grantová podpora
P01 CA095616 NCI NIH HHS - United States

Odkazy

PubMed 31723129
PubMed Central PMC6853982
DOI 10.1038/s41467-019-12782-6
PII: 10.1038/s41467-019-12782-6
Knihovny.cz E-zdroje

The Arabidopsis EH proteins (AtEH1/Pan1 and AtEH2/Pan1) are components of the endocytic TPLATE complex (TPC) which is essential for endocytosis. Both proteins are homologues of the yeast ARP2/3 complex activator, Pan1p. Here, we show that these proteins are also involved in actin cytoskeleton regulated autophagy. Both AtEH/Pan1 proteins localise to the plasma membrane and autophagosomes. Upon induction of autophagy, AtEH/Pan1 proteins recruit TPC and AP-2 subunits, clathrin, actin and ARP2/3 proteins to autophagosomes. Increased expression of AtEH/Pan1 proteins boosts autophagosome formation, suggesting independent and redundant pathways for actin-mediated autophagy in plants. Moreover, AtEHs/Pan1-regulated autophagosomes associate with ER-PM contact sites (EPCS) where AtEH1/Pan1 interacts with VAP27-1. Knock-down expression of either AtEH1/Pan1 or VAP27-1 makes plants more susceptible to nutrient depleted conditions, indicating that the autophagy pathway is perturbed. In conclusion, we identify the existence of an autophagy-dependent pathway in plants to degrade endocytic components, starting at the EPCS through the interaction among AtEH/Pan1, actin cytoskeleton and the EPCS resident protein VAP27-1.

Zobrazit více v PubMed

Liu Y, Bassham DC. Autophagy: pathways for self-eating in plant cells. Annu Rev. Plant Biol. 2012;63:215–237. doi: 10.1146/annurev-arplant-042811-105441. PubMed DOI

Zhuang X, Chung KP, Luo M, Jiang L. Autophagosome biogenesis and the endoplasmic reticulum: a plant perspective. Trends Plant Sci. 2018;23:677–692. doi: 10.1016/j.tplants.2018.05.002. PubMed DOI

Xiong Y, Contento AL, Bassham DC. Disruption of autophagy results in constitutive oxidative stress in Arabidopsis. Autophagy. 2007;3:257–258. doi: 10.4161/auto.3847. PubMed DOI

Zhuang X, Cui Y, Gao C, Jiang L. Endocytic and autophagic pathways crosstalk in plants. Curr. Opin. Plant Biol. 2015;28:39–47. doi: 10.1016/j.pbi.2015.08.010. PubMed DOI

Kulich I, et al. Arabidopsis exocyst subcomplex containing subunit EXO70B1 is involved in autophagy-related transport to the vacuole. Traffic (Cph., Den.) 2013;14:1155–1165. PubMed

Pecenkova T, Markovic V, Sabol P, Kulich I, Zarsky V. Exocyst and autophagy-related membrane trafficking in plants. J. Exp. Bot. 2017;69:47–57. doi: 10.1093/jxb/erx363. PubMed DOI

van Gisbergen PA, Bezanilla M. Plant formins: membrane anchors for actin polymerization. Trends Cell Biol. 2013;23:227–233. doi: 10.1016/j.tcb.2012.12.001. PubMed DOI

Dyachok J, et al. Plasma membrane-associated SCAR complex subunits promote cortical F-actin accumulation and normal growth characteristics in Arabidopsis roots. Mol. Plant. 2008;1:990–1006. doi: 10.1093/mp/ssn059. PubMed DOI

Zhang C, et al. The endoplasmic reticulum is a reservoir for WAVE/SCAR regulatory complex signaling in the Arabidopsis leaf. Plant Physiol. 2013;162:689–706. doi: 10.1104/pp.113.217422. PubMed DOI PMC

Wang P, Hawkins TJ, Hussey PJ. Connecting membranes to the actin cytoskeleton. Curr. Opin. Plant Biol. 2017;40:71–76. doi: 10.1016/j.pbi.2017.07.008. PubMed DOI

Wang P, Richardson C, Hawes C, Hussey PJ. Arabidopsis NAP1 regulates the formation of autophagosomes. Curr. Biol. 2016;26:2060–2069. doi: 10.1016/j.cub.2016.06.008. PubMed DOI

Kast DJ, Dominguez R. The cytoskeleton-autophagy connection. Curr. Biol. 2017;27:R318–R326. doi: 10.1016/j.cub.2017.02.061. PubMed DOI PMC

Hohfeld J. Autophagy: press and push for destruction. Curr. Biol. 2016;26:R703–R705. doi: 10.1016/j.cub.2016.06.017. PubMed DOI

Kruppa AJ, Kendrick-Jones J, Buss F. Myosins, actin and autophagy. Traffic. 2016;17:878–890. doi: 10.1111/tra.12410. PubMed DOI PMC

Kast DJ, Zajac AL, Holzbaur EL, Ostap EM, Dominguez R. WHAMM directs the Arp2/3 complex to the ER for autophagosome biogenesis through an actin comet tail mechanism. Curr. Biol. 2015;25:1791–1797. doi: 10.1016/j.cub.2015.05.042. PubMed DOI PMC

Coutts AS, La Thangue NB. Actin nucleation by WH2 domains at the autophagosome. Nat. Commun. 2014;6:7888. doi: 10.1038/ncomms8888. PubMed DOI PMC

Deeks MJ, Hussey PJ. Arp2/3 and SCAR: plants move to the fore. Nat. Rev. Mol. Cell Biol. 2005;6:954–964. doi: 10.1038/nrm1765. PubMed DOI

Toshima, J. Y. et al. Yeast Eps15-like endocytic protein Pan1p regulates the interaction between endocytic vesicles, endosomes and the actin cytoskeleton. eLife5, 10.7554/eLife.10276 (2016). PubMed PMC

Duncan MC, Cope MJ, Goode BL, Wendland B, Drubin DG. Yeast Eps15-like endocytic protein, Pan1p, activates the Arp2/3 complex. Nat. Cell Biol. 2001;3:687–690. doi: 10.1038/35083087. PubMed DOI

Zhang Y, et al. Change your TPLATE, change your fate: plant CME and beyond. Trends Plant Sci. 2015;20:41–48. doi: 10.1016/j.tplants.2014.09.002. PubMed DOI

Gadeyne A, et al. The TPLATE adaptor complex drives clathrin-mediated endocytosis in plants. Cell. 2014;156:691–704. doi: 10.1016/j.cell.2014.01.039. PubMed DOI

Van Damme D, et al. Somatic cytokinesis and pollen maturation in Arabidopsis depend on TPLATE, which has domains similar to coat proteins. Plant Cell. 2006;18:3502–3518. doi: 10.1105/tpc.106.040923. PubMed DOI PMC

Hirst J, et al. Characterization of TSET, an ancient and widespread membrane trafficking complex. eLife. 2014;3:e02866. doi: 10.7554/eLife.02866. PubMed DOI PMC

Wang P, Hawes C, Hussey PJ. Plant endoplasmic reticulum-plasma membrane contact sites. Trends Plant Sci. 2017;22:289–297. doi: 10.1016/j.tplants.2016.11.008. PubMed DOI

Wang P, et al. Plant VAP27 proteins: domain characterization, intracellular localization and role in plant development. New Phytol. 2016;210:1311–1326. doi: 10.1111/nph.13857. PubMed DOI

Wang P, et al. The plant cytoskeleton, NET3C, and VAP27 mediate the link between the plasma membrane and endoplasmic reticulum. Curr. Biol. 2014;24:1397–1405. doi: 10.1016/j.cub.2014.05.003. PubMed DOI

Perez-Sancho J, et al. Stitching organelles: organization and function of specialized membrane contact sites in plants. Trends Cell Biol. 2016;26:705–717. doi: 10.1016/j.tcb.2016.05.007. PubMed DOI

Molino D, Nascimbeni AC, Giordano F, Codogno P, Morel E. ER-driven membrane contact sites: evolutionary conserved machineries for stress response and autophagy regulation? Communicative Integr. Biol. 2017;10:e1401699. doi: 10.1080/19420889.2017.1401699. PubMed DOI PMC

Veltman DM, Insall RH. WASP family proteins: their evolution and its physiological implications. Mol. Biol. Cell. 2010;21:2880–2893. doi: 10.1091/mbc.e10-04-0372. PubMed DOI PMC

Sanchez-Rodriguez C, et al. The cellulose synthases are cargo of the TPLATE adaptor complex. Mol. Plant. 2018;11:346–349. doi: 10.1016/j.molp.2017.11.012. PubMed DOI

Toshima J, Toshima JY, Martin AC, Drubin DG. Phosphoregulation of Arp2/3-dependent actin assembly during receptor-mediated endocytosis. Nat. Cell Biol. 2005;7:246–254. doi: 10.1038/ncb1229. PubMed DOI

Svenning S, Lamark T, Krause K, Johansen T. Plant NBR1 is a selective autophagy substrate and a functional hybrid of the mammalian autophagic adapters NBR1 and p62/SQSTM1. Autophagy. 2011;7:993–1010. doi: 10.4161/auto.7.9.16389. PubMed DOI PMC

Liu C, Shen W, Yang C, Zeng L, Gao C. Knowns and unknowns of plasma membrane protein degradation in plants. Plant Sci. 2018;272:55–61. doi: 10.1016/j.plantsci.2018.04.008. PubMed DOI

Nascimbeni AC, et al. ER-plasma membrane contact sites contribute to autophagosome biogenesis by regulation of local PI3P synthesis. EMBO J. 2017;36:2018–2033. doi: 10.15252/embj.201797006. PubMed DOI PMC

Blommaart EF, Krause U, Schellens JP, Vreeling-Sindelarova H, Meijer AJ. The phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002 inhibit autophagy in isolated rat hepatocytes. Eur. J. Biochem. 1997;243:240–246. doi: 10.1111/j.1432-1033.1997.0240a.x. PubMed DOI

Axe EL, et al. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J. Cell Biol. 2008;182:685–701. doi: 10.1083/jcb.200803137. PubMed DOI PMC

Wang Y, et al. Disruption of microtubules in plants suppresses macroautophagy and triggers starch excess-associated chloroplast autophagy. Autophagy. 2015;11:2259–2274. doi: 10.1080/15548627.2015.1113365. PubMed DOI PMC

Bassham DC. Methods for analysis of autophagy in plants. Methods. 2015;75:181–188. doi: 10.1016/j.ymeth.2014.09.003. PubMed DOI

Gomez-Suaga P, et al. The ER-mitochondria tethering complex VAPB-PTPIP51 regulates autophagy. Curr. Biol. 2017;27:371–385. doi: 10.1016/j.cub.2016.12.038. PubMed DOI PMC

Siao W, Wang P, Voigt B, Hussey PJ, Baluska F. Arabidopsis SYT1 maintains stability of cortical endoplasmic reticulum networks and VAP27-1-enriched endoplasmic reticulum-plasma membrane contact sites. J. Exp. Bot. 2016;67:6161–6171. doi: 10.1093/jxb/erw381. PubMed DOI PMC

Perez-Sancho J, et al. The Arabidopsis synaptotagmin1 is enriched in endoplasmic reticulum-plasma membrane contact sites and confers cellular resistance to mechanical stresses. Plant Physiol. 2015;168:132–143. doi: 10.1104/pp.15.00260. PubMed DOI PMC

Loewen CJ, Young BP, Tavassoli S, Levine TP. Inheritance of cortical ER in yeast is required for normal septin organization. J. Cell Biol. 2007;179:467–483. doi: 10.1083/jcb.200708205. PubMed DOI PMC

Stefano G, et al. Plant endocytosis requires the ER membrane-anchored proteins VAP27-1 and VAP27-3. Cell Rep. 2018;23:2299–2307. doi: 10.1016/j.celrep.2018.04.091. PubMed DOI

Stephani, M. & Dagdas, Y. Plant selective autophagy—still an uncharted territory with a lot of hidden gems. J. Mol. Biol. 10.1016/j.jmb.2019.06.028 (2019). PubMed

Wang P, Hussey PJ. Plant ER-PM contact sites in endocytosis and autophagy: does the local composition of membrane phospholipid play a role? Front. plant Sci. 2019;10:23. doi: 10.3389/fpls.2019.00023. PubMed DOI PMC

Lee E, et al. Ionic stress enhances ER-PM connectivity via phosphoinositide-associated SYT1 contact site expansion in Arabidopsis. Proc. Natl Acad. Sci. USA. 2019;116:1420–1429. doi: 10.1073/pnas.1818099116. PubMed DOI PMC

Zhuang X, et al. A BAR-domain protein SH3P2, which binds to phosphatidylinositol 3-phosphate and ATG8, regulates autophagosome formation in Arabidopsis. Plant Cell. 2013;25:4596–4615. doi: 10.1105/tpc.113.118307. PubMed DOI PMC

Altschul SF, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–3402. doi: 10.1093/nar/25.17.3389. PubMed DOI PMC

Letunic I, Bork P. 20 years of the SMART protein domain annotation resource. Nucleic Acids Res. 2018;46:D493–D496. doi: 10.1093/nar/gkx922. PubMed DOI PMC

Katoh Kazutaka, Rozewicki John, Yamada Kazunori D. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics. 2017;20(4):1160–1166. doi: 10.1093/bib/bbx108. PubMed DOI PMC

Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ. Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics. 2009;25:1189–1191. doi: 10.1093/bioinformatics/btp033. PubMed DOI PMC

Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22:2688–2690. doi: 10.1093/bioinformatics/btl446. PubMed DOI

Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19:1572–1574. doi: 10.1093/bioinformatics/btg180. PubMed DOI

Guindon S, et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 2010;59:307–321. doi: 10.1093/sysbio/syq010. PubMed DOI

Crooks GE, Hon G, Chandonia JM, Brenner SE. WebLogo: a sequence logo generator. Genome Res. 2004;14:1188–1190. doi: 10.1101/gr.849004. PubMed DOI PMC

Karimi M, Depicker A, Hilson P. Recombinational cloning with plant gateway vectors. Plant Physiol. 2007;145:1144–1154. doi: 10.1104/pp.107.106989. PubMed DOI PMC

Ingouff M, et al. Live-cell analysis of DNA methylation during sexual reproduction in Arabidopsis reveals context and sex-specific dynamics controlled by noncanonical RdDM. Genes Dev. 2017;31:72–83. doi: 10.1101/gad.289397.116. PubMed DOI PMC

Di Rubbo S, et al. The clathrin adaptor complex AP-2 mediates endocytosis of brassinosteroid insensitive1 in Arabidopsis. Plant Cell. 2013;25:2986–2997. doi: 10.1105/tpc.113.114058. PubMed DOI PMC

Mylle E, Codreanu MC, Boruc J, Russinova E. Emission spectra profiling of fluorescent proteins in living plant cells. Plant methods. 2013;9:10. doi: 10.1186/1746-4811-9-10. PubMed DOI PMC

Dejonghe W, et al. Mitochondrial uncouplers inhibit clathrin-mediated endocytosis largely through cytoplasmic acidification. Nat. Commun. 2016;7:11710. doi: 10.1038/ncomms11710. PubMed DOI PMC

Ortiz-Morea FA, et al. Danger-associated peptide signaling in Arabidopsis requires clathrin. Proc. Natl Acad. Sci. USA. 2016;113:11028–11033. doi: 10.1073/pnas.1605588113. PubMed DOI PMC

Gao Z, et al. KIRA1 and ORESARA1 terminate flower receptivity by promoting cell death in the stigma of Arabidopsis. Nat. Plants. 2018;4:365–375. doi: 10.1038/s41477-018-0160-7. PubMed DOI PMC

Van Leene J, et al. Targeted interactomics reveals a complex core cell cycle machinery in Arabidopsis thaliana. Mol. Syst. Biol. 2010;6:397. doi: 10.1038/msb.2010.53. PubMed DOI PMC

Hilson P, et al. Versatile gene-specific sequence tags for Arabidopsis functional genomics: transcript profiling and reverse genetics applications. Genome Res. 2004;14:2176–2189. doi: 10.1101/gr.2544504. PubMed DOI PMC

Wesley SV, et al. Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J. 2001;27:581–590. doi: 10.1046/j.1365-313X.2001.01105.x. PubMed DOI

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI

Smertenko AP, et al. The C-terminal variable region specifies the dynamic properties of Arabidopsis microtubule-associated protein MAP65 isotypes. Plant Cell. 2008;20:3346–3358. doi: 10.1105/tpc.108.063362. PubMed DOI PMC

Smertenko AP, Hussey PJ. Immunolocalization of proteins in somatic embryos: applications for studies on the cytoskeleton. Methods Mol. Biol. 2008;427:157–171. doi: 10.1007/978-1-59745-273-1_13. PubMed DOI

Hawes C, Wang P, Kriechbaumer V. Labeling the ER for light and fluorescence microscopy. Methods Mol. Biol. 2018;1691:1–14. doi: 10.1007/978-1-4939-7389-7_1. PubMed DOI

Wang P, Hawes C, Richardson C, Hussey PJ. Characterization of proteins localized to plant ER-PM contact sites. Methods Mol. Biol. 2018;1691:23–31. doi: 10.1007/978-1-4939-7389-7_3. PubMed DOI

Ketelaar T, Voss C, Dimmock SA, Thumm M, Hussey PJ. Arabidopsis homologues of the autophagy protein Atg8 are a novel family of microtubule binding proteins. FEBS Lett. 2004;567:302–306. doi: 10.1016/j.febslet.2004.04.088. PubMed DOI

Deeks MJ, et al. A superfamily of actin-binding proteins at the actin-membrane nexus of higher plants. Curr. Biol. 2012;22:1595–1600. doi: 10.1016/j.cub.2012.06.041. PubMed DOI

Sparkes IA, Runions J, Kearns A, Hawes C. Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nat. Protoc. 2006;1:2019–2025. doi: 10.1038/nprot.2006.286. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Biomolecular condensation orchestrates clathrin-mediated endocytosis in plants

. 2024 Mar ; 26 (3) : 438-449. [epub] 20240212

ARP2/3 complex associates with peroxisomes to participate in pexophagy in plants

. 2023 Nov ; 9 (11) : 1874-1889. [epub] 20231016

TPLATE complex-dependent endocytosis attenuates CLAVATA1 signaling for shoot apical meristem maintenance

. 2023 Sep 06 ; 24 (9) : e54709. [epub] 20230717

The endocytic TPLATE complex internalizes ubiquitinated plasma membrane cargo

. 2022 Dec ; 8 (12) : 1467-1483. [epub] 20221201

Histidine kinase inhibitors impair shoot regeneration in Arabidopsis thaliana via cytokinin signaling and SAM patterning determinants

. 2022 ; 13 () : 894208. [epub] 20220908

Distinct EH domains of the endocytic TPLATE complex confer lipid and protein binding

. 2021 May 24 ; 12 (1) : 3050. [epub] 20210524

Molecular architecture of the endocytic TPLATE complex

. 2021 Feb ; 7 (9) : . [epub] 20210226

Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1

. 2021 Jan ; 17 (1) : 1-382. [epub] 20210208

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...