Plant AtEH/Pan1 proteins drive autophagosome formation at ER-PM contact sites with actin and endocytic machinery
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
P01 CA095616
NCI NIH HHS - United States
PubMed
31723129
PubMed Central
PMC6853982
DOI
10.1038/s41467-019-12782-6
PII: 10.1038/s41467-019-12782-6
Knihovny.cz E-zdroje
- MeSH
- aktiny metabolismus MeSH
- Arabidopsis metabolismus ultrastruktura MeSH
- autofagie MeSH
- autofagozomy metabolismus ultrastruktura MeSH
- biologické modely MeSH
- buněčná membrána metabolismus ultrastruktura MeSH
- endocytóza * MeSH
- endoplazmatické retikulum metabolismus ultrastruktura MeSH
- fylogeneze MeSH
- komplex proteinů 2-3 souvisejících s aktinem metabolismus MeSH
- mikrofilamenta metabolismus MeSH
- mikrofilamentové proteiny metabolismus MeSH
- proteiny huseníčku metabolismus MeSH
- Saccharomyces cerevisiae - proteiny metabolismus MeSH
- vazba proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aktiny MeSH
- komplex proteinů 2-3 souvisejících s aktinem MeSH
- mikrofilamentové proteiny MeSH
- PAN1 protein, S cerevisiae MeSH Prohlížeč
- proteiny huseníčku MeSH
- Saccharomyces cerevisiae - proteiny MeSH
The Arabidopsis EH proteins (AtEH1/Pan1 and AtEH2/Pan1) are components of the endocytic TPLATE complex (TPC) which is essential for endocytosis. Both proteins are homologues of the yeast ARP2/3 complex activator, Pan1p. Here, we show that these proteins are also involved in actin cytoskeleton regulated autophagy. Both AtEH/Pan1 proteins localise to the plasma membrane and autophagosomes. Upon induction of autophagy, AtEH/Pan1 proteins recruit TPC and AP-2 subunits, clathrin, actin and ARP2/3 proteins to autophagosomes. Increased expression of AtEH/Pan1 proteins boosts autophagosome formation, suggesting independent and redundant pathways for actin-mediated autophagy in plants. Moreover, AtEHs/Pan1-regulated autophagosomes associate with ER-PM contact sites (EPCS) where AtEH1/Pan1 interacts with VAP27-1. Knock-down expression of either AtEH1/Pan1 or VAP27-1 makes plants more susceptible to nutrient depleted conditions, indicating that the autophagy pathway is perturbed. In conclusion, we identify the existence of an autophagy-dependent pathway in plants to degrade endocytic components, starting at the EPCS through the interaction among AtEH/Pan1, actin cytoskeleton and the EPCS resident protein VAP27-1.
Department of Biosciences Durham University South road Durham DH1 3LE UK
VIB Center for Plant Systems Biology Technologiepark 71 9052 Ghent Belgium
Zobrazit více v PubMed
Liu Y, Bassham DC. Autophagy: pathways for self-eating in plant cells. Annu Rev. Plant Biol. 2012;63:215–237. doi: 10.1146/annurev-arplant-042811-105441. PubMed DOI
Zhuang X, Chung KP, Luo M, Jiang L. Autophagosome biogenesis and the endoplasmic reticulum: a plant perspective. Trends Plant Sci. 2018;23:677–692. doi: 10.1016/j.tplants.2018.05.002. PubMed DOI
Xiong Y, Contento AL, Bassham DC. Disruption of autophagy results in constitutive oxidative stress in Arabidopsis. Autophagy. 2007;3:257–258. doi: 10.4161/auto.3847. PubMed DOI
Zhuang X, Cui Y, Gao C, Jiang L. Endocytic and autophagic pathways crosstalk in plants. Curr. Opin. Plant Biol. 2015;28:39–47. doi: 10.1016/j.pbi.2015.08.010. PubMed DOI
Kulich I, et al. Arabidopsis exocyst subcomplex containing subunit EXO70B1 is involved in autophagy-related transport to the vacuole. Traffic (Cph., Den.) 2013;14:1155–1165. PubMed
Pecenkova T, Markovic V, Sabol P, Kulich I, Zarsky V. Exocyst and autophagy-related membrane trafficking in plants. J. Exp. Bot. 2017;69:47–57. doi: 10.1093/jxb/erx363. PubMed DOI
van Gisbergen PA, Bezanilla M. Plant formins: membrane anchors for actin polymerization. Trends Cell Biol. 2013;23:227–233. doi: 10.1016/j.tcb.2012.12.001. PubMed DOI
Dyachok J, et al. Plasma membrane-associated SCAR complex subunits promote cortical F-actin accumulation and normal growth characteristics in Arabidopsis roots. Mol. Plant. 2008;1:990–1006. doi: 10.1093/mp/ssn059. PubMed DOI
Zhang C, et al. The endoplasmic reticulum is a reservoir for WAVE/SCAR regulatory complex signaling in the Arabidopsis leaf. Plant Physiol. 2013;162:689–706. doi: 10.1104/pp.113.217422. PubMed DOI PMC
Wang P, Hawkins TJ, Hussey PJ. Connecting membranes to the actin cytoskeleton. Curr. Opin. Plant Biol. 2017;40:71–76. doi: 10.1016/j.pbi.2017.07.008. PubMed DOI
Wang P, Richardson C, Hawes C, Hussey PJ. Arabidopsis NAP1 regulates the formation of autophagosomes. Curr. Biol. 2016;26:2060–2069. doi: 10.1016/j.cub.2016.06.008. PubMed DOI
Kast DJ, Dominguez R. The cytoskeleton-autophagy connection. Curr. Biol. 2017;27:R318–R326. doi: 10.1016/j.cub.2017.02.061. PubMed DOI PMC
Hohfeld J. Autophagy: press and push for destruction. Curr. Biol. 2016;26:R703–R705. doi: 10.1016/j.cub.2016.06.017. PubMed DOI
Kruppa AJ, Kendrick-Jones J, Buss F. Myosins, actin and autophagy. Traffic. 2016;17:878–890. doi: 10.1111/tra.12410. PubMed DOI PMC
Kast DJ, Zajac AL, Holzbaur EL, Ostap EM, Dominguez R. WHAMM directs the Arp2/3 complex to the ER for autophagosome biogenesis through an actin comet tail mechanism. Curr. Biol. 2015;25:1791–1797. doi: 10.1016/j.cub.2015.05.042. PubMed DOI PMC
Coutts AS, La Thangue NB. Actin nucleation by WH2 domains at the autophagosome. Nat. Commun. 2014;6:7888. doi: 10.1038/ncomms8888. PubMed DOI PMC
Deeks MJ, Hussey PJ. Arp2/3 and SCAR: plants move to the fore. Nat. Rev. Mol. Cell Biol. 2005;6:954–964. doi: 10.1038/nrm1765. PubMed DOI
Toshima, J. Y. et al. Yeast Eps15-like endocytic protein Pan1p regulates the interaction between endocytic vesicles, endosomes and the actin cytoskeleton. eLife5, 10.7554/eLife.10276 (2016). PubMed PMC
Duncan MC, Cope MJ, Goode BL, Wendland B, Drubin DG. Yeast Eps15-like endocytic protein, Pan1p, activates the Arp2/3 complex. Nat. Cell Biol. 2001;3:687–690. doi: 10.1038/35083087. PubMed DOI
Zhang Y, et al. Change your TPLATE, change your fate: plant CME and beyond. Trends Plant Sci. 2015;20:41–48. doi: 10.1016/j.tplants.2014.09.002. PubMed DOI
Gadeyne A, et al. The TPLATE adaptor complex drives clathrin-mediated endocytosis in plants. Cell. 2014;156:691–704. doi: 10.1016/j.cell.2014.01.039. PubMed DOI
Van Damme D, et al. Somatic cytokinesis and pollen maturation in Arabidopsis depend on TPLATE, which has domains similar to coat proteins. Plant Cell. 2006;18:3502–3518. doi: 10.1105/tpc.106.040923. PubMed DOI PMC
Hirst J, et al. Characterization of TSET, an ancient and widespread membrane trafficking complex. eLife. 2014;3:e02866. doi: 10.7554/eLife.02866. PubMed DOI PMC
Wang P, Hawes C, Hussey PJ. Plant endoplasmic reticulum-plasma membrane contact sites. Trends Plant Sci. 2017;22:289–297. doi: 10.1016/j.tplants.2016.11.008. PubMed DOI
Wang P, et al. Plant VAP27 proteins: domain characterization, intracellular localization and role in plant development. New Phytol. 2016;210:1311–1326. doi: 10.1111/nph.13857. PubMed DOI
Wang P, et al. The plant cytoskeleton, NET3C, and VAP27 mediate the link between the plasma membrane and endoplasmic reticulum. Curr. Biol. 2014;24:1397–1405. doi: 10.1016/j.cub.2014.05.003. PubMed DOI
Perez-Sancho J, et al. Stitching organelles: organization and function of specialized membrane contact sites in plants. Trends Cell Biol. 2016;26:705–717. doi: 10.1016/j.tcb.2016.05.007. PubMed DOI
Molino D, Nascimbeni AC, Giordano F, Codogno P, Morel E. ER-driven membrane contact sites: evolutionary conserved machineries for stress response and autophagy regulation? Communicative Integr. Biol. 2017;10:e1401699. doi: 10.1080/19420889.2017.1401699. PubMed DOI PMC
Veltman DM, Insall RH. WASP family proteins: their evolution and its physiological implications. Mol. Biol. Cell. 2010;21:2880–2893. doi: 10.1091/mbc.e10-04-0372. PubMed DOI PMC
Sanchez-Rodriguez C, et al. The cellulose synthases are cargo of the TPLATE adaptor complex. Mol. Plant. 2018;11:346–349. doi: 10.1016/j.molp.2017.11.012. PubMed DOI
Toshima J, Toshima JY, Martin AC, Drubin DG. Phosphoregulation of Arp2/3-dependent actin assembly during receptor-mediated endocytosis. Nat. Cell Biol. 2005;7:246–254. doi: 10.1038/ncb1229. PubMed DOI
Svenning S, Lamark T, Krause K, Johansen T. Plant NBR1 is a selective autophagy substrate and a functional hybrid of the mammalian autophagic adapters NBR1 and p62/SQSTM1. Autophagy. 2011;7:993–1010. doi: 10.4161/auto.7.9.16389. PubMed DOI PMC
Liu C, Shen W, Yang C, Zeng L, Gao C. Knowns and unknowns of plasma membrane protein degradation in plants. Plant Sci. 2018;272:55–61. doi: 10.1016/j.plantsci.2018.04.008. PubMed DOI
Nascimbeni AC, et al. ER-plasma membrane contact sites contribute to autophagosome biogenesis by regulation of local PI3P synthesis. EMBO J. 2017;36:2018–2033. doi: 10.15252/embj.201797006. PubMed DOI PMC
Blommaart EF, Krause U, Schellens JP, Vreeling-Sindelarova H, Meijer AJ. The phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002 inhibit autophagy in isolated rat hepatocytes. Eur. J. Biochem. 1997;243:240–246. doi: 10.1111/j.1432-1033.1997.0240a.x. PubMed DOI
Axe EL, et al. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J. Cell Biol. 2008;182:685–701. doi: 10.1083/jcb.200803137. PubMed DOI PMC
Wang Y, et al. Disruption of microtubules in plants suppresses macroautophagy and triggers starch excess-associated chloroplast autophagy. Autophagy. 2015;11:2259–2274. doi: 10.1080/15548627.2015.1113365. PubMed DOI PMC
Bassham DC. Methods for analysis of autophagy in plants. Methods. 2015;75:181–188. doi: 10.1016/j.ymeth.2014.09.003. PubMed DOI
Gomez-Suaga P, et al. The ER-mitochondria tethering complex VAPB-PTPIP51 regulates autophagy. Curr. Biol. 2017;27:371–385. doi: 10.1016/j.cub.2016.12.038. PubMed DOI PMC
Siao W, Wang P, Voigt B, Hussey PJ, Baluska F. Arabidopsis SYT1 maintains stability of cortical endoplasmic reticulum networks and VAP27-1-enriched endoplasmic reticulum-plasma membrane contact sites. J. Exp. Bot. 2016;67:6161–6171. doi: 10.1093/jxb/erw381. PubMed DOI PMC
Perez-Sancho J, et al. The Arabidopsis synaptotagmin1 is enriched in endoplasmic reticulum-plasma membrane contact sites and confers cellular resistance to mechanical stresses. Plant Physiol. 2015;168:132–143. doi: 10.1104/pp.15.00260. PubMed DOI PMC
Loewen CJ, Young BP, Tavassoli S, Levine TP. Inheritance of cortical ER in yeast is required for normal septin organization. J. Cell Biol. 2007;179:467–483. doi: 10.1083/jcb.200708205. PubMed DOI PMC
Stefano G, et al. Plant endocytosis requires the ER membrane-anchored proteins VAP27-1 and VAP27-3. Cell Rep. 2018;23:2299–2307. doi: 10.1016/j.celrep.2018.04.091. PubMed DOI
Stephani, M. & Dagdas, Y. Plant selective autophagy—still an uncharted territory with a lot of hidden gems. J. Mol. Biol. 10.1016/j.jmb.2019.06.028 (2019). PubMed
Wang P, Hussey PJ. Plant ER-PM contact sites in endocytosis and autophagy: does the local composition of membrane phospholipid play a role? Front. plant Sci. 2019;10:23. doi: 10.3389/fpls.2019.00023. PubMed DOI PMC
Lee E, et al. Ionic stress enhances ER-PM connectivity via phosphoinositide-associated SYT1 contact site expansion in Arabidopsis. Proc. Natl Acad. Sci. USA. 2019;116:1420–1429. doi: 10.1073/pnas.1818099116. PubMed DOI PMC
Zhuang X, et al. A BAR-domain protein SH3P2, which binds to phosphatidylinositol 3-phosphate and ATG8, regulates autophagosome formation in Arabidopsis. Plant Cell. 2013;25:4596–4615. doi: 10.1105/tpc.113.118307. PubMed DOI PMC
Altschul SF, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–3402. doi: 10.1093/nar/25.17.3389. PubMed DOI PMC
Letunic I, Bork P. 20 years of the SMART protein domain annotation resource. Nucleic Acids Res. 2018;46:D493–D496. doi: 10.1093/nar/gkx922. PubMed DOI PMC
Katoh Kazutaka, Rozewicki John, Yamada Kazunori D. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics. 2017;20(4):1160–1166. doi: 10.1093/bib/bbx108. PubMed DOI PMC
Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ. Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics. 2009;25:1189–1191. doi: 10.1093/bioinformatics/btp033. PubMed DOI PMC
Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22:2688–2690. doi: 10.1093/bioinformatics/btl446. PubMed DOI
Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19:1572–1574. doi: 10.1093/bioinformatics/btg180. PubMed DOI
Guindon S, et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 2010;59:307–321. doi: 10.1093/sysbio/syq010. PubMed DOI
Crooks GE, Hon G, Chandonia JM, Brenner SE. WebLogo: a sequence logo generator. Genome Res. 2004;14:1188–1190. doi: 10.1101/gr.849004. PubMed DOI PMC
Karimi M, Depicker A, Hilson P. Recombinational cloning with plant gateway vectors. Plant Physiol. 2007;145:1144–1154. doi: 10.1104/pp.107.106989. PubMed DOI PMC
Ingouff M, et al. Live-cell analysis of DNA methylation during sexual reproduction in Arabidopsis reveals context and sex-specific dynamics controlled by noncanonical RdDM. Genes Dev. 2017;31:72–83. doi: 10.1101/gad.289397.116. PubMed DOI PMC
Di Rubbo S, et al. The clathrin adaptor complex AP-2 mediates endocytosis of brassinosteroid insensitive1 in Arabidopsis. Plant Cell. 2013;25:2986–2997. doi: 10.1105/tpc.113.114058. PubMed DOI PMC
Mylle E, Codreanu MC, Boruc J, Russinova E. Emission spectra profiling of fluorescent proteins in living plant cells. Plant methods. 2013;9:10. doi: 10.1186/1746-4811-9-10. PubMed DOI PMC
Dejonghe W, et al. Mitochondrial uncouplers inhibit clathrin-mediated endocytosis largely through cytoplasmic acidification. Nat. Commun. 2016;7:11710. doi: 10.1038/ncomms11710. PubMed DOI PMC
Ortiz-Morea FA, et al. Danger-associated peptide signaling in Arabidopsis requires clathrin. Proc. Natl Acad. Sci. USA. 2016;113:11028–11033. doi: 10.1073/pnas.1605588113. PubMed DOI PMC
Gao Z, et al. KIRA1 and ORESARA1 terminate flower receptivity by promoting cell death in the stigma of Arabidopsis. Nat. Plants. 2018;4:365–375. doi: 10.1038/s41477-018-0160-7. PubMed DOI PMC
Van Leene J, et al. Targeted interactomics reveals a complex core cell cycle machinery in Arabidopsis thaliana. Mol. Syst. Biol. 2010;6:397. doi: 10.1038/msb.2010.53. PubMed DOI PMC
Hilson P, et al. Versatile gene-specific sequence tags for Arabidopsis functional genomics: transcript profiling and reverse genetics applications. Genome Res. 2004;14:2176–2189. doi: 10.1101/gr.2544504. PubMed DOI PMC
Wesley SV, et al. Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J. 2001;27:581–590. doi: 10.1046/j.1365-313X.2001.01105.x. PubMed DOI
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Smertenko AP, et al. The C-terminal variable region specifies the dynamic properties of Arabidopsis microtubule-associated protein MAP65 isotypes. Plant Cell. 2008;20:3346–3358. doi: 10.1105/tpc.108.063362. PubMed DOI PMC
Smertenko AP, Hussey PJ. Immunolocalization of proteins in somatic embryos: applications for studies on the cytoskeleton. Methods Mol. Biol. 2008;427:157–171. doi: 10.1007/978-1-59745-273-1_13. PubMed DOI
Hawes C, Wang P, Kriechbaumer V. Labeling the ER for light and fluorescence microscopy. Methods Mol. Biol. 2018;1691:1–14. doi: 10.1007/978-1-4939-7389-7_1. PubMed DOI
Wang P, Hawes C, Richardson C, Hussey PJ. Characterization of proteins localized to plant ER-PM contact sites. Methods Mol. Biol. 2018;1691:23–31. doi: 10.1007/978-1-4939-7389-7_3. PubMed DOI
Ketelaar T, Voss C, Dimmock SA, Thumm M, Hussey PJ. Arabidopsis homologues of the autophagy protein Atg8 are a novel family of microtubule binding proteins. FEBS Lett. 2004;567:302–306. doi: 10.1016/j.febslet.2004.04.088. PubMed DOI
Deeks MJ, et al. A superfamily of actin-binding proteins at the actin-membrane nexus of higher plants. Curr. Biol. 2012;22:1595–1600. doi: 10.1016/j.cub.2012.06.041. PubMed DOI
Sparkes IA, Runions J, Kearns A, Hawes C. Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nat. Protoc. 2006;1:2019–2025. doi: 10.1038/nprot.2006.286. PubMed DOI
Biomolecular condensation orchestrates clathrin-mediated endocytosis in plants
ARP2/3 complex associates with peroxisomes to participate in pexophagy in plants
The endocytic TPLATE complex internalizes ubiquitinated plasma membrane cargo
Distinct EH domains of the endocytic TPLATE complex confer lipid and protein binding
Molecular architecture of the endocytic TPLATE complex
Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1