Diverging trends and drivers of Arctic flower production in Greenland over space and time
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
PubMed
37589013
PubMed Central
PMC10425507
DOI
10.1007/s00300-023-03164-2
PII: 3164
Knihovny.cz E-zdroje
- Klíčová slova
- (A)Synchrony, Arctic tundra, Climatic drivers, Flowering, Reproductive effort, Snowmelt, Temperature, Time series,
- Publikační typ
- časopisecké články MeSH
UNLABELLED: The Arctic is warming at an alarming rate. While changes in plant community composition and phenology have been extensively reported, the effects of climate change on reproduction remain poorly understood. We quantified multidecadal changes in flower density for nine tundra plant species at a low- and a high-Arctic site in Greenland. We found substantial changes in flower density over time, but the temporal trends and drivers of flower density differed both between species and sites. Total flower density increased over time at the low-Arctic site, whereas the high-Arctic site showed no directional change. Within and between sites, the direction and rate of change differed among species, with varying effects of summer temperature, the temperature of the previous autumn and the timing of snowmelt. Finally, all species showed a strong trade-off in flower densities between successive years, suggesting an effective cost of reproduction. Overall, our results reveal region- and taxon-specific variation in the sensitivity and responses of co-occurring species to shared climatic drivers, and a clear cost of reproductive investment among Arctic plants. The ultimate effects of further changes in climate may thus be decoupled between species and across space, with critical knock-on effects on plant species dynamics, food web structure and overall ecosystem functioning. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00300-023-03164-2.
Arctic Research Centre Aarhus University Aarhus Denmark
CIRAD UMR PVBMT 97410 Saint Pierre La Réunion France
Département de Biologie Université de Sherbrooke Sherbrooke QC Canada
Département de Mathématiques Université de Sherbrooke Sherbrooke QC Canada
Département Des Sciences de La Santé Communautaire Université de Sherbrooke Sherbrooke QC Canada
Department of Agricultural Sciences University of Helsinki Helsinki Finland
Department of Ecology Swedish University of Agricultural Sciences Uppsala Sweden
Department of Ecoscience Aarhus University Roskilde Denmark
Institute of Botany Czech Academy of Sciences Brno Czech Republic
Zobrazit více v PubMed
Abermann J, Hansen B, Lund M, et al. Hotspots and key periods of Greenland climate change during the past six decades. Ambio. 2017;46:3–11. doi: 10.1007/s13280-016-0861-y. PubMed DOI PMC
Bannister P, Maegli T, Dickinson KJM, et al. Will loss of snow cover during climatic warming expose New Zealand alpine plants to increased frost damage? Oecologia. 2005;144:245–256. doi: 10.1007/s00442-005-0087-3. PubMed DOI
Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67:1–48. doi: 10.18637/jss.v067.i01. DOI
Bhatt US, Walker DA, Raynolds MK, et al. Climate drivers of Arctic tundra variability and change using an indicators framework. Environ Res Lett. 2021 doi: 10.1088/1748-9326/abe676. DOI
Bjorkman AD, García Criado M, Myers-Smith IH, et al. Status and trends in Arctic vegetation: evidence from experimental warming and long-term monitoring. Ambio. 2020;49:678–692. doi: 10.1007/s13280-019-01161-6. PubMed DOI PMC
Bjorkman AD, Myers-Smith IH, Elmendorf SC, et al. Plant functional trait change across a warming tundra biome. Nature. 2018;7725:57–62. doi: 10.1038/s41586-018-0563-7. PubMed DOI
Bokhorst S, Bjerke JW, Street LE, et al. Impacts of multiple extreme winter warming events on sub-Arctic heathland: phenology, reproduction, growth, and CO2 flux responses. Glob Change Biol. 2011;17:2817–2830. doi: 10.1111/j.1365-2486.2011.02424. DOI
Bokhorst S, Bjerke JW, Tømmervik H, et al. Ecosystem response to climatic change: the importance of the cold season. Ambio. 2012;41:246–255. doi: 10.1007/s13280-012-0310-5. PubMed DOI PMC
Bokhorst S, Pedersen SH, Brucker L, et al. Changing Arctic snow cover: a review of recent developments and assessment of future needs for observations, modelling, and impacts. Ambio. 2016;45:516–537. doi: 10.1007/s13280-016-0770-0. PubMed DOI PMC
Box JE, Colgan WT, Christensen TR, et al. Key indicators of Arctic climate change: 1971–2017. Environ Res Lett. 2019;14:045010. doi: 10.1088/1748-9326/aafc1b. DOI
Callaghan TV, Johansson M, Brown RD, et al. The changing face of Arctic snow cover: a synthesis of observed and projected changes. Ambio. 2011;40:17–31. doi: 10.1007/s13280-011-0212-y. DOI
CAVM Team (2003) Circumpolar arctic vegetation map (1:7.500.000 scale), Conservation of Arctic Flora and Fauna (CAFF) Map No. 1. 10.17632/c4xj5rv6kv.2
Chapin FS, Shaver GR. Physiological and growth responses of arctic plants to a field experiment simulating climatic change. Ecology. 1996;77:822–840. doi: 10.2307/2265504. DOI
Collins CG, Elmendorf SC, Hollister RD, et al. Experimental warming differentially affects vegetative and reproductive phenology of tundra plants. Nat Commun. 2021 doi: 10.1038/s41467-021-23841-2. PubMed DOI PMC
Cooper EJ. Warmer shorter winters disrupt Arctic terrestrial ecosystems. Annu Rev Ecol Evol Syst. 2014;45:271–295. doi: 10.1146/annurev-ecolsys-120213-091620. DOI
Delgado MDM, Roslin T, Tikhonov G, et al. Differences in spatial versus temporal reaction norms for spring and autumn phenological events. Proc Natl Acad Sci A. 2020;117:31249–31258. doi: 10.1073/pnas.2002713117. PubMed DOI PMC
Forchhammer MC, Schmidt NM, Høye TT, et al. Population dynamical responses to climate change. Adv Ecol Res. 2008;40:391–419. doi: 10.1016/S0065-2504(07)00017-7. DOI
Happonen K, Aalto J, Kemppinen J, et al. Snow is an important control of plant community functional composition in oroarctic tundra. Oecologia. 2019;191:601–608. doi: 10.1007/s00442-019-04508-8. PubMed DOI PMC
Hocking B. Insect-flower associations in the high Arctic with special reference to nectar. Oikos. 1968;19:359. doi: 10.2307/3565022. DOI
Høye TT, Ellebjerg SM, Philipp M. The impact of climate on flowering in the high arctic-the case of Dryas in a hybrid zone. Arct Antarct Alp Res. 2007;39:412–421. doi: 10.1657/1523-0430(06-018)[HOYE]2.0.CO;2. DOI
Høye TT, Post E, Meltofte H, et al. Rapid advancement of spring in the High Arctic. Curr Biol. 2007;17:449–451. doi: 10.1016/j.cub.2007.04.047. PubMed DOI
Høye TT, Post E, Schmidt NM, et al. Shorter flowering seasons and declining abundance of flower visitors in a warmer Arctic. Nat Clim Change. 2013;3:759–763. doi: 10.1038/nclimate1909. DOI
Inouye DW. Effects of climate change on phenology, frost damage, and floral abundance of montane wildflowers. Ecology. 2008;89:353–362. doi: 10.1890/06-2128.1. PubMed DOI
IPCC (2021) Climate Change 2021: The Physical Science Basis. Contribution of working group I to the sixth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge. https://www.ipcc.ch/report/ar6/wg1/
Kankaanpää T, Vesterinen E, Hardwick B, et al. Parasitoids indicate major climate-induced shifts in arctic communities. Glob Change Biol. 2020;26:6276–6295. doi: 10.1111/GCB.15297. PubMed DOI PMC
Kelsey KC, Pedersen SH, Leffler AJ, et al. Winter snow and spring temperature have differential effects on vegetation phenology and productivity across Arctic plant communities. Glob Change Biol. 2021;27:1572–1586. doi: 10.1111/gcb.15505. PubMed DOI
Kevan PG. Insect pollination of hight Arctic flowers. J Ecol. 1972;60:831–847. doi: 10.2307/2258569. DOI
Körner C. Alpine plant life: functional plant ecology of high mountain ecosystems. Berlin: Springer; 2003.
Krab EJ, Roennefarth J, Becher M, et al. Winter warming effects on tundra shrub performance are species-specific and dependent on spring conditions. J Ecol. 2018;106:599–612. doi: 10.1111/1365-2745.12872. DOI
Lund M, Lafleur PM, Roulet NT, et al. Variability in exchange of CO2 across 12 northern peatland and tundra sites. Glob Change Biol. 2010;16:2436–2448. doi: 10.1111/J.1365-2486.2009.02104.X. DOI
Lyngstad A, Moen A, Pedersen B. Flowering in the rich fen species Eriophorum latifolium depends on climate and reproduction in the previous year. Wetlands. 2017;37:1–13. doi: 10.1007/s13157-016-0794-z. DOI
Molau U. Relationships between flowering phenology and life history strategies in tundra plants. Arct Alp Res. 1993;25:391. doi: 10.2307/1551922. DOI
Nabe-Nielsen J, Normand S, Hui FKC, et al. Plant community composition and species richness in the High Arctic tundra: from the present to the future. Ecol Evol. 2017;7:10233–10242. doi: 10.1002/ece3.3496. PubMed DOI PMC
Niittynen P, Luoto M. The importance of snow in species distribution models of arctic vegetation. Ecography. 2018;41:1024–1037. doi: 10.1111/ecog.03348. DOI
Niittynen P, Heikkinen RK, Luoto M. Snow cover is a neglected driver of Arctic biodiversity loss. Nat Clim Change. 2018;8:997–1001. doi: 10.1038/s41558-018-0311-x. DOI
Obeso JR. The costs of reproduction in plants. New Phytol. 2002;155:321–348. doi: 10.1046/j.1469-8137.2002.00477.x. PubMed DOI
Panchen ZA, Gorelick R. Prediction of Arctic plant phenological sensitivity to climate change from historical records. Ecol Evol. 2017;7:1325–1338. doi: 10.1002/ece3.2702. PubMed DOI PMC
Post E, Alley RB, Christensen TR, et al. The polar regions in a 2°C warmer world. Sci Adv. 2019;5:1–12. doi: 10.1126/sciadv.aaw9883. PubMed DOI PMC
Prevéy J, Vellend M, Rüger N, et al. Greater temperature sensitivity of plant phenology at colder sites: implications for convergence across northern latitudes. Glob Change Biol. 2017;23:2660–2671. doi: 10.1111/gcb.13619. PubMed DOI
Prevéy JS, Rixen C, Rüger N, et al. Warming shortens flowering seasons of tundra plant communities. Nat Ecol Evol. 2019;3:45–52. doi: 10.1038/s41559-018-0745-6. PubMed DOI
Prevéy JS, Elmendorf SC, Bjorkman A, et al. The tundra phenology database: more than two decades of tundra phenology responses to climate change. Arct Sci. 2021 doi: 10.1139/as-2020-0041. DOI
Raundrup K, Olsen M, Dyrholm Jacobsen IB et al (2020) BioBasis Manual—conceptual design and sampling procedures of the biological monitoring programme within NuukBasic, 4th edn. https://g-e-m.dk/fileadmin/g-e-m/Nuuk/2020_BioBasisManual.pdf
R Core Team (2022) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
Robinson SA. Climate change and extreme events are changing the biology of Polar Regions. Glob Change Biol. 2022;28:5861–5864. doi: 10.1111/gcb.16309. PubMed DOI
Roslin T, Antão L, Hällfors M, et al. Phenological shifts of abiotic events, producers and consumers across a continent. Nat Clim Change. 2021;11:241–248. doi: 10.1038/s41558-020-00967-7. DOI
Schmidt NM, Mosbacher JB, Nielsen PS, et al. An ecological function in crisis? The temporal overlap between plant flowering and pollinator function shrinks as the Arctic warms. Ecography. 2016;39:1250–1252. doi: 10.1111/ecog.02261. DOI
Schmidt NM et al (2019a) BioBasis. Conceptual design and sampling procedures of the biological monitoring programme within Zackenberg Basic, 22nd edn. https://g-e-m.dk/fileadmin/g-e-m/Zackenberg/BioBasis_manual_2019.pdf
Schmidt NM, Reneerkens J, Christensen JH, et al. An ecosystem-wide reproductive failure with more snow in the Arctic. PLOS Biol. 2019;17:e3000392. doi: 10.1371/journal.pbio.3000392. PubMed DOI PMC
Semenchuk PR, Elberling B, Cooper EJ. Snow cover and extreme winter warming events control flower abundance of some, but not all species in high arctic Svalbard. Ecol Evol. 2013;3:2586–2599. doi: 10.1002/ece3.648. PubMed DOI PMC
Siefert A, Violle C, Chalmandrier L, et al. A global meta-analysis of the relative extent of intraspecific trait variation in plant communities. Ecol Lett. 2015;18:1406–1419. doi: 10.1111/ele.12508. PubMed DOI
Stewart L, Simonsen CE, Svenning JC, et al. Forecasted homogenization of high Arctic vegetation communities under climate change. J Biogeogr. 2018;45:2576–2587. doi: 10.1111/JBI.13434. DOI
Thackeray SJ, Henrys PA, Hemming D, et al. Phenological sensitivity to climate across taxa and trophic levels. Nature. 2016;535:241–245. doi: 10.1038/nature18608. PubMed DOI
Tiusanen M, Kankaanpää T, Schmidt NM, Roslin T. Heated rivalries: phenological variation modifies competition for pollinators among arctic plants. Glob Change Biol. 2020;26:6313–6325. doi: 10.1111/gcb.15303. PubMed DOI PMC
Voosen P. Global temperatures in 2020 tied record highs. Science. 2021;371:334–335. doi: 10.1126/SCIENCE.371.6527.334/ASSET/B93C83D5-95A5-4C5E-9AA4-1BD041EA3DBB/ASSETS/GRAPHIC/371_334_F2.JPEG. PubMed DOI
Walker DA, Raynolds MK, Daniëls FJA, et al. The Circumpolar Arctic vegetation map. J Veg Sci. 2005;16:267–282. doi: 10.1111/j.1654-1103.2005.tb02365.x. DOI
Wipf S. Phenology, growth, and fecundity of eight subarctic tundra species in response to snowmelt manipulations. Plant Ecol. 2010;207:53–66. doi: 10.1007/s11258-009-9653-9. DOI