Biomolecular condensation orchestrates clathrin-mediated endocytosis in plants

. 2024 Mar ; 26 (3) : 438-449. [epub] 20240212

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38347182

Grantová podpora
682436 European Research Council - International
803048 European Research Council - International
852136 European Research Council - International

Odkazy

PubMed 38347182
PubMed Central PMC7615741
DOI 10.1038/s41556-024-01354-6
PII: 10.1038/s41556-024-01354-6
Knihovny.cz E-zdroje

Clathrin-mediated endocytosis is an essential cellular internalization pathway involving the dynamic assembly of clathrin and accessory proteins to form membrane-bound vesicles. The evolutionarily ancient TSET-TPLATE complex (TPC) plays an essential, but ill-defined role in endocytosis in plants. Here we show that two highly disordered TPC subunits, AtEH1 and AtEH2, function as scaffolds to drive biomolecular condensation of the complex. These condensates specifically nucleate on the plasma membrane through interactions with anionic phospholipids, and facilitate the dynamic recruitment and assembly of clathrin, as well as early- and late-stage endocytic accessory proteins. Importantly, condensation promotes ordered clathrin assemblies. TPC-driven biomolecular condensation thereby facilitates dynamic protein assemblies throughout clathrin-mediated endocytosis. Furthermore, we show that a disordered region of AtEH1 controls the material properties of endocytic condensates in vivo. Alteration of these material properties disturbs the recruitment of accessory proteins, influences endocytosis dynamics and impairs plant responsiveness. Our findings reveal how collective interactions shape endocytosis.

Zobrazit více v PubMed

Kaksonen M, Roux A. Mechanisms of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol. 2018;19:313–326. PubMed

Paez Valencia J, Goodman K, Otegui MS. Endocytosis and endosomal trafficking in plants. Annu Rev Plant Biol. 2016;67:309–335. PubMed

Robinson MS. Forty Years of Clathrin-coated Vesicles. Traffic. 2015;16:1210–1238. PubMed

Sochacki KA, Taraska JW. From Flat to Curved Clathrin: Controlling a Plastic Ratchet. Trends Cell Biol. 2019;29:241–256. PubMed

Chen Z, Schmid SL. Evolving models for assembling and shaping clathrin-coated pits. J Cell Biol. 2020;219:1–12. PubMed PMC

Dacks JB, Robinson MS. Outerwear through the ages: evolutionary cell biology of vesicle coats. Curr Opin Cell Biol. 2017;47:108–116. PubMed

Rout MP, Field MC. The evolution of organellar coat complexes and organization of the eukaryotic cell. Annu Rev Biochem. 2017;86:637–657. PubMed

Hirst J, et al. Characterization of TSET, an ancient and widespread membrane trafficking complex. Elife. 2014;3:1–18. PubMed PMC

Gadeyne A, et al. The TPLATE adaptor complex drives clathrin-mediated endocytosis in plants. Cell. 2014;156:691–704. PubMed

Van Damme D, et al. Somatic cytokinesis and pollen maturation in Arabidopsis depend on TPLATE, which has domains similar to coat proteins. Plant Cell. 2006;18:3502–3518. PubMed PMC

Wang P, et al. Plant AtEH/Pan1 proteins drive autophagosome formation at ER-PM contact sites with actin and endocytic machinery. Nat Commun. 2019;10:1–16. PubMed PMC

Yperman K, et al. Distinct EH domains of the endocytic TPLATE complex confer lipid and protein binding. Nat Commun. 2021;12 PubMed PMC

Yperman K, et al. Molecular architecture of the endocytic TPLATE complex. Sci Adv. 2021;7 PubMed PMC

Wang P, et al. Adaptor protein complex interaction map in Arabidopsis identifies P34 as a common stability regulator. Nat Plants. 2023;9:355–371. PubMed PMC

Van Damme D, et al. Adaptin-like protein TPLATE and clathrin recruitment during plant somatic cytokinesis occurs via two distinct pathways. Proc Natl Acad Sci U S A. 2011;108:615–620. PubMed PMC

Grones P, et al. The endocytic TPLATE complex internalizes ubiquitinated plasma membrane cargo. Nat Plants. 2022;8:1467–1483. PubMed PMC

Wang J, et al. Conditional destabilization of the TPLATE complex impairs endocytic internalization. Proc Natl Acad Sci U S A. 2021;118:e2023456118. PubMed PMC

Johnson A, et al. The TPLATE complex mediates membrane bending during plant clathrin–mediated endocytosis. Proc Natl Acad Sci U S A. 2021;118:2021.04.26.441441 PubMed PMC

Narasimhan M, et al. Evolutionarily unique mechanistic framework of clathrin-mediated endocytosis in plants. Elife. 2020;9 PubMed PMC

Zhang Y, et al. Change your Tplate, change your fate: Plant CME and beyond. Trends in Plant Science. 2015;20:41–48. PubMed

Liu D, et al. ER-phagy requires the assembly of actin at sites of contact between the cortical ER and endocytic pits. Proc Natl Acad Sci U S A. 2022;119:1–11. PubMed PMC

Wilfling F, et al. A Selective Autophagy Pathway for Phase-Separated Endocytic Protein Deposits. Mol Cell. 2020;80:764–778.:e7. PubMed PMC

Wang J, et al. High Temporal Resolution Reveals Simultaneous Plasma Membrane Recruitment of TPLATE Complex Subunits. Plant Physiol. 2020;183:986–997. PubMed PMC

Henne WM, et al. FCHo proteins are nucleators of Clathrin-Mediated endocytosis. Science (80-) 2010;328:1281–1284. PubMed PMC

Day KJ, et al. Liquid-like protein interactions catalyse assembly of endocytic vesicles. Nat Cell Biol. 2021;23:366–376. PubMed PMC

Ma L, et al. Transient Fcho1/2·Eps15/R·AP-2 Nanoclusters Prime the AP-2 Clathrin Adaptor for Cargo Binding. Dev Cell. 2015;37:428–443. PubMed PMC

Hollopeter G, et al. The membrane-associated proteins FCHo and SGIP are allosteric activators of the AP2 clathrin adaptor complex. Elife. 2014;3:1–23. PubMed PMC

Partlow EA, Cannon KS, Hollopeter G, Baker RW. Structural basis of an endocytic checkpoint that primes the AP2 clathrin adaptor for cargo internalization. Nat Struct Mol Biol. 2022;29:339–347. PubMed PMC

Cocucci E, Aguet F, Boulant S, Kirchhausen T. The first five seconds in the life of a clathrin-coated pit. Cell. 2012;150:495–507. PubMed PMC

Bhave M, et al. Functional characterization of 67 endocytic accessory proteins using multiparametric quantitative analysis of CCP dynamics. Proc Natl Acad Sci U S A. 2020;117:31591–31602. PubMed PMC

Lehmann M, et al. Nanoscale coupling of endocytic pit growth and stability. Sci Adv. 2019;5:1–13. PubMed PMC

Banani SF, Lee HO, Hyman AA, Rosen MK. Biomolecular condensates: Organizers of cellular biochemistry. Nat Rev Mol Cell Biol. 2017;18:285–298. PubMed PMC

Choi J-M, Holehouse AS, Pappu RV. Physical Principles Underlying the Complex Biology of Intracellular Phase Transitions. Annu Rev Biophys. 2020;49:107–133. PubMed PMC

Kozak M, Kaksonen M. Condensation of Ede1 promotes the initiation of endocytosis. Elife. 2022;11:1–25. PubMed PMC

Alberti S, Gladfelter A, Mittag T. Considerations and Challenges in Studying Liquid-Liquid Phase Separation and Biomolecular Condensates. Cell. 2019;176:419–434. PubMed PMC

Cohan MC, Shinn MK, Lalmansingh JM, Pappu RV. Uncovering Non-random Binary Patterns Within Sequences of Intrinsically Disordered Proteins. J Mol Biol. 2022;434:167373. PubMed PMC

Zarin T, et al. Identifying molecular features that are associated with biological function of intrinsically disordered protein regions. Elife. 2021;10:1–36. PubMed PMC

Patil A, et al. A disordered region controls cBAF activity via condensation and partner recruitment. Cell. 2023:4936–4955. doi: 10.1016/j.cell.2023.08.032. PubMed DOI PMC

Snead WT, Gladfelter AS. The Control Centers of Biomolecular Phase Separation: How Membrane Surfaces, PTMs, and Active Processes Regulate Condensation. Mol Cell. 2019;76:295–305. PubMed PMC

Banani SF, et al. Compositional Control of Phase-Separated Cellular Bodies. Cell. 2016;166:651–663. PubMed PMC

Arora D, et al. Establishment of Proximity-dependent Biotinylation Approaches in Different Plant Model Systems. Plant Cell. 2020;32:tpc.00235.2020 PubMed PMC

Blanc C, et al. Dictyostelium Tom1 participates to an ancestral ESCRT‐0 complex. Traffic. 2009;10:161–171. PubMed

Herman EK, Walker G, Van Der Giezen M, Dacks JB. Multivesicular bodies in the enigmatic amoeboflagellate Breviata anathema and the evolution of ESCRT. J Cell Sci. 2011;124:613–621. PubMed PMC

Moulinier-Anzola J, et al. TOLs Function as Ubiquitin Receptors in the Early Steps of the ESCRT Pathway in Higher Plants. Mol Plant. 2020;13:717–731. PubMed

Korbei B, et al. Arabidopsis TOL proteins act as gatekeepers for vacuolar sorting of PIN2 plasma membrane protein. Curr Biol. 2013;23:2500–2505. PubMed

Konopka CA, Bednarek SY. Comparison of the dynamics and functional redundancy of the Arabidopsis dynamin-related isoforms DRP1A and DRP1C during plant development. Plant Physiol. 2008;147:1590–1602. PubMed PMC

Fujimoto M, et al. Arabidopsis dynamin-related proteins DRP2B and DRP1A participate together in clathrin-coated vesicle formation during endocytosis. Proc Natl Acad Sci. 2010;107:6094–6099. PubMed PMC

Adamowski M, et al. A functional study of AUXILIN-LIKE1 and 2, two putative clathrin uncoating factors in arabidopsis. Plant Cell. 2018;30:700–716. PubMed PMC

Sochacki KA, Dickey AM, Strub MP, Taraska JW. Endocytic proteins are partitioned at the edge of the clathrin lattice in mammalian cells. Nat Cell Biol. 2017;19:352–361. PubMed PMC

Kato M, et al. Cell-free formation of RNA granules: Low complexity sequence domains form dynamic fibers within hydrogels. Cell. 2012;149:753–767. PubMed PMC

Zhang H, et al. Large-scale identification of potential phase-separation proteins from plants using a cell-free system. Molecular Plant. 2023;16:310–313. PubMed

Winkler J, et al. Visualizing protein–protein interactions in plants by rapamycin-dependent delocalization. Plant Cell. 2021;33:1101–1117. PubMed PMC

Robinson MS, Sahlender DA, Foster SD. Rapid Inactivation of Proteins by Rapamycin-Induced Rerouting to Mitochondria. Dev Cell. 2010;18:324–331. PubMed PMC

Martin EW, et al. Valence and patterning of aromatic residues determine the phase behavior of prion-like domains. Science (80-) 2020;367:694–699. PubMed PMC

Dorone Y, et al. A prion-like protein regulator of seed germination undergoes hydration-dependent phase separation. Cell. 2021;184:4284–4298.:e27. PubMed PMC

Schmid EM, McMahon HT. Integrating molecular and network biology to decode endocytosis. Nature. 2007;448:883–888. PubMed

Snead WT, et al. Membrane surfaces regulate assembly of ribonucleoprotein condensates. Nat Cell Biol. 2022;24:461–470. PubMed PMC

Noack LC, Jaillais Y. Functions of Anionic Lipids in Plants. Annu Rev Plant Biol. 2020;71:71–102. PubMed

Platre MP, et al. A Combinatorial Lipid Code Shapes the Electrostatic Landscape of Plant Endomembranes. Dev Cell. 2018;45:1–16. PubMed

Mosesso N, Nagel M-K, Isono E. Ubiquitin recognition in endocytic trafficking – with or without ESCRT-0. J Cell Sci. 2019;132:jcs232868. PubMed

Fujioka Y, et al. Phase separation organizes the site of autophagosome formation. Nature. 2020;578:301–305. PubMed

Mund M, et al. Systematic Nanoscale Analysis of Endocytosis Links Efficient Vesicle Formation to Patterned Actin Nucleation. Cell. 2018;174:884–896.:e17. PubMed PMC

Avinoam O, Schorb M, Beese CJ, Briggs JAG, Kaksonen M. Endocytic sites mature by continuous bending and remodeling of the clathrin coat. Science (80-) 2015;348:1369–1372. PubMed

Bergeron-Sandoval LP, et al. Endocytic proteins with prion-like domains form viscoelastic condensates that enable membrane remodeling. Proc Natl Acad Sci U S A. 2021;118:145664 PubMed PMC

Mondal S, et al. Multivalent interactions between molecular components involved in fast endophilin mediated endocytosis drive protein phase separation. Nat Commun. 2022;13 PubMed PMC

Boeynaems S, et al. Protein Phase Separation: A New Phase in Cell Biology. Trends Cell Biol. 2018;28:420–435. PubMed PMC

Dejonghe W, et al. Disruption of endocytosis through chemical inhibition of clathrin heavy chain function. Nat Chem Biol. 2019;15:641–649. PubMed PMC

Noack LC, Pejchar P, Sekereš J, Jaillais Y, Potocký M. Transient gene expression as a tool to monitor and manipulate the levels of acidic phospholipids in plant cells. Plant Cell Morphog Methods Protoc. 2019:189–199. PubMed

Van Leene J, et al. Nature Plants. Vol. 8 Springer; US: 2022. Mapping of the plant SnRK1 kinase signalling network reveals a key regulatory role for the class II T6P synthase-like proteins. PubMed

Powers SK, et al. Nucleo-cytoplasmic Partitioning of ARF Proteins Controls Auxin Responses in Arabidopsis thaliana. Mol Cell. 2019;76:177–190.:e5. PubMed PMC

Chakrabortee S, et al. Luminidependens (LD) is an Arabidopsis protein with prion behavior. Proc Natl Acad Sci U S A. 2016;113:6065–6070. PubMed PMC

Chambaud C, Cookson SJ, Ollat N, Bayer E, Brocard L. A correlative light electron microscopy approach reveals plasmodesmata ultrastructure at the graft interface. Plant Physiol. 2022;188:44–55. PubMed PMC

Nicolas W, Bayer E, Brocard L. Electron Tomography to Study the Three-dimensional Structure of Plasmodesmata in Plant Tissues–from High Pressure Freezing Preparation to Ultrathin Section Collection. Bio-Protocol. 2018;8:1–25. PubMed PMC

Sauer M, Paciorek T, Benková E, Friml J. Immunocytochemical techniques for whole-mount in situ protein localization in plants. Nat Protoc. 2006;1:98–103. PubMed

Johnson A, et al. Experimental toolbox for quantitative evaluation of clathrin-mediated endocytosis in the plant model Arabidopsis. J Cell Sci. 2020;133 PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Guidelines for naming and studying plasma membrane domains in plants

. 2024 Aug ; 10 (8) : 1172-1183. [epub] 20240812

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...