Distinct EH domains of the endocytic TPLATE complex confer lipid and protein binding

. 2021 May 24 ; 12 (1) : 3050. [epub] 20210524

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34031427
Odkazy

PubMed 34031427
PubMed Central PMC8144573
DOI 10.1038/s41467-021-23314-6
PII: 10.1038/s41467-021-23314-6
Knihovny.cz E-zdroje

Clathrin-mediated endocytosis (CME) is the gatekeeper of the plasma membrane. In contrast to animals and yeasts, CME in plants depends on the TPLATE complex (TPC), an evolutionary ancient adaptor complex. However, the mechanistic contribution of the individual TPC subunits to plant CME remains elusive. In this study, we used a multidisciplinary approach to elucidate the structural and functional roles of the evolutionary conserved N-terminal Eps15 homology (EH) domains of the TPC subunit AtEH1/Pan1. By integrating high-resolution structural information obtained by X-ray crystallography and NMR spectroscopy with all-atom molecular dynamics simulations, we provide structural insight into the function of both EH domains. Both domains bind phosphatidic acid with a different strength, and only the second domain binds phosphatidylinositol 4,5-bisphosphate. Unbiased peptidome profiling by mass-spectrometry revealed that the first EH domain preferentially interacts with the double N-terminal NPF motif of a previously unidentified TPC interactor, the integral membrane protein Secretory Carrier Membrane Protein 5 (SCAMP5). Furthermore, we show that AtEH/Pan1 proteins control the internalization of SCAMP5 via this double NPF peptide interaction motif. Collectively, our structural and functional studies reveal distinct but complementary roles of the EH domains of AtEH/Pan1 in plant CME and connect the internalization of SCAMP5 to the TPLATE complex.

Zobrazit více v PubMed

Kaksonen M, Roux A. Mechanisms of clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol. 2018;19:313–326. doi: 10.1038/nrm.2017.132. PubMed DOI

Qi X, Pleskot R, Irani NG, van Damme D. Meeting report—cellular gateways: expanding the role of endocytosis in plant development. J. Cell Sci. 2018;131:jcs222604. doi: 10.1242/jcs.222604. PubMed DOI

Gadeyne A, et al. The TPLATE adaptor complex drives clathrin-mediated endocytosis in plants. Cell. 2014;156:691–704. doi: 10.1016/j.cell.2014.01.039. PubMed DOI

di Rubbo S, et al. The clathrin adaptor complex AP-2 mediates endocytosis of brassinosteroid insensitive1 in Arabidopsis. Plant Cell. 2013;25:2986–2997. doi: 10.1105/tpc.113.114058. PubMed DOI PMC

Hirst J, et al. Characterization of TSET, an ancient and widespread membrane trafficking complex. eLife. 2014;3:e02866. doi: 10.7554/eLife.02866. PubMed DOI PMC

Yperman, K. et al. Molecular architecture of the endocytic TPLATE complex. Sci. Adv.7, eabe7999 (2021). PubMed PMC

Wang J, et al. High temporal resolution reveals simultaneous plasma membrane recruitment of the TPLATE complex subunits. Plant Physiol. 2020;183:986–997. doi: 10.1104/pp.20.00178. PubMed DOI PMC

Narasimhan M, et al. Evolutionarily unique mechanistic framework of clathrin-mediated endocytosis in plants. eLife. 2020;9:e52067. doi: 10.7554/eLife.52067. PubMed DOI PMC

Duncan MC, Cope MJTV, Goode BL, Wendland B, Drubin DG. Yeast Eps15-like endocytic protein, Pan1p, activates the Arp2/3 complex. Nat. Cell Biol. 2001;3:687–690. doi: 10.1038/35083087. PubMed DOI

Toshima J, Toshima JY, Martin AC, Drubin DG. Phosphoregulation of Arp2/3-dependent actin assembly during receptor-mediated endocytosis. Nat. Cell Biol. 2005;7:246–254. doi: 10.1038/ncb1229. PubMed DOI

Toshima J, et al. Negative regulation of yeast Eps15-like Arp2/3 complex activator, Pan1p, by the Hip1R-related protein, Sla2p, during endocytosis. Mol. Biol. Cell. 2007;18:658–668. doi: 10.1091/mbc.e06-09-0788. PubMed DOI PMC

Toshima JY, et al. Yeast Eps15-like endocytic protein Pan1p regulates the interaction between endocytic vesicles, endosomes and the actin cytoskeleton. Elife. 2016;5:e10276. doi: 10.7554/eLife.10276. PubMed DOI PMC

Wang, P. et al. Plant AtEH/Pan1 proteins drive autophagosome formation at ER-PM contact sites with actin and endocytic machinery. Nat. Commun.10, 5132 (2019). PubMed PMC

de Beer T, et al. Molecular mechanism of NPF recognition by EH domains. Nat. Struct. Mol. Biol. 2000;7:nsb1100_1018. PubMed

Kieken F, et al. Structural insight into the interaction of proteins containing NPF, DPF, and GPF motifs with the C-terminal EH-domain of EHD1. Protein Sci. 2009;18:2471–2479. doi: 10.1002/pro.258. PubMed DOI PMC

Henry GD, Corrigan DJ, Dineen JV, Baleja JD. Charge effects in the selection of NPF motifs by the EH domain of EHD1. Biochemistry. 2010;49:3381–3392. doi: 10.1021/bi100065r. PubMed DOI PMC

Letunic I, Bork P. 20 years of the SMART protein domain annotation resource. Nucleic Acids Res. 2017;46:gkx922–. PubMed PMC

Sigrist CJA, et al. New and continuing developments at PROSITE. Nucleic Acids Res. 2013;41:D344–D347. doi: 10.1093/nar/gks1067. PubMed DOI PMC

Bar M, et al. AtEHDs, novel Arabidopsis EH‐domain‐containing proteins involved in endocytosis. Plant J. 2008;55:1025–1038. doi: 10.1111/j.1365-313X.2008.03571.x. PubMed DOI

Bar M, Avni A. EHD2 inhibits signaling of Leucine rich repeat receptor-like proteins. Plant Signal. Behav. 2009;4:682–684. doi: 10.4161/psb.4.7.9078. PubMed DOI PMC

Bar M, Leibman M, Schuster S, Pitzhadza H, Avni A. EHD1 Functions in endosomal recycling and confers salt tolerance. PLoS ONE. 2013;8:e54533. doi: 10.1371/journal.pone.0054533. PubMed DOI PMC

Sánchez-Rodríguez C, et al. The cellulose synthases are cargo of the TPLATE adaptor complex. Mol. Plant. 2018;11:346–349. doi: 10.1016/j.molp.2017.11.012. PubMed DOI

Evangelidis T, et al. Automated NMR resonance assignments and structure determination using a minimal set of 4D spectra. Nat. Commun. 2018;9:384. doi: 10.1038/s41467-017-02592-z. PubMed DOI PMC

Naslavsky N, Rahajeng J, Chenavas S, Sorgen PL, Caplan S. EHD1 and Eps15 Interact with phosphatidylinositols via their Eps15 homology domains. J. Biol. Chem. 2007;282:16612–16622. doi: 10.1074/jbc.M609493200. PubMed DOI

Paoluzi S, et al. Recognition specificity of individual EH domains of mammals and yeast. EMBO J. 1998;17:6541–6550. doi: 10.1093/emboj/17.22.6541. PubMed DOI PMC

Bilkova E, et al. Calcium directly regulates phosphatidylinositol 4,5-bisphosphate headgroup conformation and recognition. J. Am. Chem. Soc. 2017;139:4019–4024. doi: 10.1021/jacs.6b11760. PubMed DOI PMC

Xu J, Lee YRJ, Liu B. Establishment of a mitotic model system by transient expression of the D-type cyclin in differentiated leaf cells of tobacco (Nicotiana benthamiana) N. Phytologist. 2020;226:1213–1220. doi: 10.1111/nph.16309. PubMed DOI

Simon MLA, et al. A PtdIns(4)P-driven electrostatic field controls cell membrane identity and signalling in plants. Nat. Plants. 2016;2:16089. doi: 10.1038/nplants.2016.89. PubMed DOI PMC

Platre MP, et al. A combinatorial lipid code shapes the electrostatic landscape of plant endomembranes. Dev. Cell. 2018;45:465–480.e11. doi: 10.1016/j.devcel.2018.04.011. PubMed DOI

McLoughlin F, et al. Identification of novel candidate phosphatidic acid-binding proteins involved in the salt-stress response of Arabidopsis thaliana roots. Biochemical J. 2013;450:573–581. doi: 10.1042/BJ20121639. PubMed DOI

Kaneda M, et al. Plant AP180 N-terminal homolog proteins are involved in clathrin-dependent endocytosis during pollen tube growth in arabidopsis thaliana. Plant Cell Physiol. 2019;60:1316–1330. doi: 10.1093/pcp/pcz036. PubMed DOI

Putta, P., Creque, E., Piontkivska, H. & Kooijman, E. E. Lipid−protein interactions for ECA1 an N-ANTH domain protein involved in stress signaling in plants. Chem. Phys. Lipids231, 104919 (2020). PubMed

Fernandez-Chacon R, Sudhof TC, Ferna R, Su TC. Novel SCAMPs lacking NPF repeats: Ubiquitous and synaptic vesicle-specific forms implicate SCAMPs in multiple membrane-trafficking functions. J. Neurosci. 2000;20:7941–7950. doi: 10.1523/JNEUROSCI.20-21-07941.2000. PubMed DOI PMC

Bourdais G, et al. The use of quantitative imaging to investigate regulators of membrane trafficking in Arabidopsis stomatal closure. Traffic. 2019;20:168–180. doi: 10.1111/tra.12625. PubMed DOI

Sheung KL, Cai Y, Hillmer S, Robinson DG, Jiang L. SCAMPs highlight the developing cell plate during cytokinesis in tobacco BY-2 cells. Plant Physiol. 2008;147:1637–1645. doi: 10.1104/pp.108.119925. PubMed DOI PMC

Park D, et al. Impairment of release site clearance within the active zone by reduced SCAMP5 expression causes short-term depression of synaptic release. Cell Rep. 2018;22:3339–3350. doi: 10.1016/j.celrep.2018.02.088. PubMed DOI

Arora, D. et al. Establishment of proximity-dependent biotinylation approaches in different plant model systems. Plant Cell 32, 3388–3407 (2020). PubMed PMC

Bateman A, et al. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 2018;47:gky1049–. PubMed PMC

Rumpf J, et al. Structure of the Eps15-stonin2 complex provides a molecular explanation for EH-domain ligand specificity. EMBO J. 2008;27:558–569. doi: 10.1038/sj.emboj.7601980. PubMed DOI PMC

Moravcevic K, Oxley CL, Lemmon MA. Conditional peripheral membrane proteins: facing up to limited specificity. Structure. 2012;20:15–27. doi: 10.1016/j.str.2011.11.012. PubMed DOI PMC

Thaller, D. J. et al. Direct binding of ESCRT protein Chm7 to phosphatidic acid–rich membranes at nuclear envelope herniations. J. Cell Biol.220, e202004222 (2021). PubMed PMC

Dejonghe W, et al. Mitochondrial uncouplers inhibit clathrin-mediated endocytosis largely through cytoplasmic acidification. Nat. Commun. 2016;7:11710. doi: 10.1038/ncomms11710. PubMed DOI PMC

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J. Mol. Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI

Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinforma. 2017;20:1160–1166. doi: 10.1093/bib/bbx108. PubMed DOI PMC

Kabsch W, et al. XDS. Acta Crystallogr. Sect. D. Biol. Crystallogr. 2010;66:125–132. doi: 10.1107/S0907444909047337. PubMed DOI PMC

Vagin A, Lebedev A. MoRDa, an automatic molecular replacement pipeline. Acta Crystallogr. Sect. A Found. Adv. 2015;71:s19–s19. doi: 10.1107/S2053273315099672. DOI

Langer G, Cohen SX, Lamzin VS, Perrakis A. Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7. Nat. Protoc. 2008;3:1171–1179. doi: 10.1038/nprot.2008.91. PubMed DOI PMC

Bricogne, G. et al. BUSTER version 2.10.3. (Global Phasing Ltd., 2011).

Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of Coot. Acta Crystallogr. Sect. D: Biol. Crystallogr. 2010;66:486–501. doi: 10.1107/S0907444910007493. PubMed DOI PMC

Adams PD, et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. Sect. D: Biol. Crystallogr. 2010;66:213–221. doi: 10.1107/S0907444909052925. PubMed DOI PMC

Shen Y, Delaglio F, Cornilescu G, Bax A. TALOS+: A hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J. Biomolecular NMR. 2009;44:213–223. doi: 10.1007/s10858-009-9333-z. PubMed DOI PMC

Güntert P. Automated structure determination from NMR spectra. Eur. Biophys. J. 2009;38:129–143. doi: 10.1007/s00249-008-0367-z. PubMed DOI

Linge JP, Williams MA, Spronk CAEM, Bonvin AMJJ, Nilges M. Refinement of protein structures in explicit solvent. Proteins: Struct., Funct., Bioinforma. 2003;50:496–506. doi: 10.1002/prot.10299. PubMed DOI

Nederveen AJ, et al. RECOORD: A recalculated coordinate database of 500+ proteins from the PDB using restraints from the BioMagResBank. Proteins: Struct., Funct. Genet. 2005;59:662–672. doi: 10.1002/prot.20408. PubMed DOI

Bhattacharya A, Tejero R, Montelione GT. Evaluating protein structures determined by structural genomics consortia. Proteins: Struct., Funct., Bioinforma. 2006;66:778–795. doi: 10.1002/prot.21165. PubMed DOI

Abraham MJ, et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1–2:19–25. doi: 10.1016/j.softx.2015.06.001. DOI

Huang J, MacKerell AD. CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. J. Comput. Chem. 2013;34:2135–2145. doi: 10.1002/jcc.23354. PubMed DOI PMC

Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983;79:926–935. doi: 10.1063/1.445869. DOI

Darden T, York D, Pedersen L. Particle mesh Ewald: An N ⋅log(N) method for Ewald sums in large systems. J. Chem. Phys. 1993;98:10089–10092. doi: 10.1063/1.464397. DOI

Hess B, Bekker H, Berendsen HJC, Fraaije JGEM. LINCS: A Linear Constraint Solver for molecular simulations. J. Comput. Chem. 1997;18:1463–1472. doi: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H. DOI

Miyamoto S, Kollman PA. Settle: an analytical version of the SHAKE and RATTLE algorithm for rigid water models. J. Comput. Chem. 1992;13:952–962. doi: 10.1002/jcc.540130805. DOI

Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007;126:14101. doi: 10.1063/1.2408420. PubMed DOI

Parrinello M, Rahman A. Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 1981;52:7182–7190. doi: 10.1063/1.328693. DOI

de Jong DH, et al. Improved parameters for the martini coarse-grained protein force field. J. Chem. Theory Comput. 2013;9:687–697. doi: 10.1021/ct300646g. PubMed DOI

Periole X, Cavalli M, Marrink S-J, Ceruso MA. Combining an elastic network with a coarse-grained molecular force field: structure, dynamics, and intermolecular recognition. J. Chem. Theory Comput. 2009;5:2531–2543. doi: 10.1021/ct9002114. PubMed DOI

Ingólfsson HI, et al. Lipid organization of the plasma membrane. J. Am. Chem. Soc. 2014;136:14554–14559. doi: 10.1021/ja507832e. PubMed DOI

Hsu P-C, et al. CHARMM-GUI Martini Maker for modeling and simulation of complex bacterial membranes with lipopolysaccharides. J. Comput. Chem. 2017;38:2354–2363. doi: 10.1002/jcc.24895. PubMed DOI PMC

Vekemans B, Janssens K, Vincze L, Adams F, van Espen P. Analysis of X-ray spectra by iterative least squares (AXIL): New developments. X-Ray Spectrom. 1994;23:278–285. doi: 10.1002/xrs.1300230609. DOI

Kooijman EE, et al. An electrostatic/hydrogen bond switch as the basis for the specific interaction of phosphatidic acid with proteins. J. Biol. Chem. 2007;282:11356–11364. doi: 10.1074/jbc.M609737200. PubMed DOI

Houbaert A, et al. POLAR-guided signalling complex assembly and localization drive asymmetric cell division. Nature. 2018;563:574–578. doi: 10.1038/s41586-018-0714-x. PubMed DOI

Karimi M, Jacobs TB. GoldenGateway: a DNA assembly method for plant biotechnology. Trends Plant Sci. 2021;26:95–96. doi: 10.1016/j.tplants.2020.10.004. PubMed DOI

Sparkes IA, Runions J, Kearns A, Hawes C. Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nat. Protoc. 2006;1:2019–2025. doi: 10.1038/nprot.2006.286. PubMed DOI

Grefen C, Blatt MR. A 2in1 cloning system enables ratiometric bimolecular fluorescence complementation (rBiFC) BioTechniques. 2012;53:311–314. doi: 10.2144/000113941. PubMed DOI

Herberich E, Sikorski J, Hothorn T. A robust procedure for comparing multiple means under heteroscedasticity in unbalanced designs. PLoS ONE. 2010;5:e9788. doi: 10.1371/journal.pone.0009788. PubMed DOI PMC

van Leene J, et al. Capturing the phosphorylation and protein interaction landscape of the plant TOR kinase. Nat. Plants. 2019;5:316–327. doi: 10.1038/s41477-019-0378-z. PubMed DOI

Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 2008;26:1367–1372. doi: 10.1038/nbt.1511. PubMed DOI

Ashkenazy H, et al. ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res. 2016;44:W344–W350. doi: 10.1093/nar/gkw408. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace