Distinct EH domains of the endocytic TPLATE complex confer lipid and protein binding
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34031427
PubMed Central
PMC8144573
DOI
10.1038/s41467-021-23314-6
PII: 10.1038/s41467-021-23314-6
Knihovny.cz E-zdroje
- MeSH
- adaptorové proteiny signální transdukční chemie genetika MeSH
- buněčná membrána metabolismus MeSH
- endocytóza * MeSH
- geneticky modifikované rostliny MeSH
- krystalografie rentgenová MeSH
- membránové proteiny chemie MeSH
- proteinové domény MeSH
- proteiny huseníčku MeSH
- proteiny vázající vápník chemie genetika MeSH
- rostlinné proteiny chemie genetika MeSH
- sekvenční seřazení MeSH
- simulace molekulární dynamiky MeSH
- tabák genetika MeSH
- transport proteinů MeSH
- vazba proteinů * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adaptorové proteiny signální transdukční MeSH
- membránové proteiny MeSH
- proteiny huseníčku MeSH
- proteiny vázající vápník MeSH
- rostlinné proteiny MeSH
- TPLATE protein, Arabidopsis MeSH Prohlížeč
Clathrin-mediated endocytosis (CME) is the gatekeeper of the plasma membrane. In contrast to animals and yeasts, CME in plants depends on the TPLATE complex (TPC), an evolutionary ancient adaptor complex. However, the mechanistic contribution of the individual TPC subunits to plant CME remains elusive. In this study, we used a multidisciplinary approach to elucidate the structural and functional roles of the evolutionary conserved N-terminal Eps15 homology (EH) domains of the TPC subunit AtEH1/Pan1. By integrating high-resolution structural information obtained by X-ray crystallography and NMR spectroscopy with all-atom molecular dynamics simulations, we provide structural insight into the function of both EH domains. Both domains bind phosphatidic acid with a different strength, and only the second domain binds phosphatidylinositol 4,5-bisphosphate. Unbiased peptidome profiling by mass-spectrometry revealed that the first EH domain preferentially interacts with the double N-terminal NPF motif of a previously unidentified TPC interactor, the integral membrane protein Secretory Carrier Membrane Protein 5 (SCAMP5). Furthermore, we show that AtEH/Pan1 proteins control the internalization of SCAMP5 via this double NPF peptide interaction motif. Collectively, our structural and functional studies reveal distinct but complementary roles of the EH domains of AtEH/Pan1 in plant CME and connect the internalization of SCAMP5 to the TPLATE complex.
Archaeometry Research Group Department of Archaeology Ghent University Ghent Belgium
CEITEC Central European Institute of Technology Masaryk University Brno Czech Republic
Department of Biochemistry and Microbiology Ghent University Ghent Belgium
Department of Plant Biotechnology and Bioinformatics Ghent University Ghent Belgium
Institute of Experimental Botany Academy of Sciences of the Czech Republic Prague 6 Czech Republic
Zobrazit více v PubMed
Kaksonen M, Roux A. Mechanisms of clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol. 2018;19:313–326. doi: 10.1038/nrm.2017.132. PubMed DOI
Qi X, Pleskot R, Irani NG, van Damme D. Meeting report—cellular gateways: expanding the role of endocytosis in plant development. J. Cell Sci. 2018;131:jcs222604. doi: 10.1242/jcs.222604. PubMed DOI
Gadeyne A, et al. The TPLATE adaptor complex drives clathrin-mediated endocytosis in plants. Cell. 2014;156:691–704. doi: 10.1016/j.cell.2014.01.039. PubMed DOI
di Rubbo S, et al. The clathrin adaptor complex AP-2 mediates endocytosis of brassinosteroid insensitive1 in Arabidopsis. Plant Cell. 2013;25:2986–2997. doi: 10.1105/tpc.113.114058. PubMed DOI PMC
Hirst J, et al. Characterization of TSET, an ancient and widespread membrane trafficking complex. eLife. 2014;3:e02866. doi: 10.7554/eLife.02866. PubMed DOI PMC
Yperman, K. et al. Molecular architecture of the endocytic TPLATE complex. Sci. Adv.7, eabe7999 (2021). PubMed PMC
Wang J, et al. High temporal resolution reveals simultaneous plasma membrane recruitment of the TPLATE complex subunits. Plant Physiol. 2020;183:986–997. doi: 10.1104/pp.20.00178. PubMed DOI PMC
Narasimhan M, et al. Evolutionarily unique mechanistic framework of clathrin-mediated endocytosis in plants. eLife. 2020;9:e52067. doi: 10.7554/eLife.52067. PubMed DOI PMC
Duncan MC, Cope MJTV, Goode BL, Wendland B, Drubin DG. Yeast Eps15-like endocytic protein, Pan1p, activates the Arp2/3 complex. Nat. Cell Biol. 2001;3:687–690. doi: 10.1038/35083087. PubMed DOI
Toshima J, Toshima JY, Martin AC, Drubin DG. Phosphoregulation of Arp2/3-dependent actin assembly during receptor-mediated endocytosis. Nat. Cell Biol. 2005;7:246–254. doi: 10.1038/ncb1229. PubMed DOI
Toshima J, et al. Negative regulation of yeast Eps15-like Arp2/3 complex activator, Pan1p, by the Hip1R-related protein, Sla2p, during endocytosis. Mol. Biol. Cell. 2007;18:658–668. doi: 10.1091/mbc.e06-09-0788. PubMed DOI PMC
Toshima JY, et al. Yeast Eps15-like endocytic protein Pan1p regulates the interaction between endocytic vesicles, endosomes and the actin cytoskeleton. Elife. 2016;5:e10276. doi: 10.7554/eLife.10276. PubMed DOI PMC
Wang, P. et al. Plant AtEH/Pan1 proteins drive autophagosome formation at ER-PM contact sites with actin and endocytic machinery. Nat. Commun.10, 5132 (2019). PubMed PMC
de Beer T, et al. Molecular mechanism of NPF recognition by EH domains. Nat. Struct. Mol. Biol. 2000;7:nsb1100_1018. PubMed
Kieken F, et al. Structural insight into the interaction of proteins containing NPF, DPF, and GPF motifs with the C-terminal EH-domain of EHD1. Protein Sci. 2009;18:2471–2479. doi: 10.1002/pro.258. PubMed DOI PMC
Henry GD, Corrigan DJ, Dineen JV, Baleja JD. Charge effects in the selection of NPF motifs by the EH domain of EHD1. Biochemistry. 2010;49:3381–3392. doi: 10.1021/bi100065r. PubMed DOI PMC
Letunic I, Bork P. 20 years of the SMART protein domain annotation resource. Nucleic Acids Res. 2017;46:gkx922–. PubMed PMC
Sigrist CJA, et al. New and continuing developments at PROSITE. Nucleic Acids Res. 2013;41:D344–D347. doi: 10.1093/nar/gks1067. PubMed DOI PMC
Bar M, et al. AtEHDs, novel Arabidopsis EH‐domain‐containing proteins involved in endocytosis. Plant J. 2008;55:1025–1038. doi: 10.1111/j.1365-313X.2008.03571.x. PubMed DOI
Bar M, Avni A. EHD2 inhibits signaling of Leucine rich repeat receptor-like proteins. Plant Signal. Behav. 2009;4:682–684. doi: 10.4161/psb.4.7.9078. PubMed DOI PMC
Bar M, Leibman M, Schuster S, Pitzhadza H, Avni A. EHD1 Functions in endosomal recycling and confers salt tolerance. PLoS ONE. 2013;8:e54533. doi: 10.1371/journal.pone.0054533. PubMed DOI PMC
Sánchez-Rodríguez C, et al. The cellulose synthases are cargo of the TPLATE adaptor complex. Mol. Plant. 2018;11:346–349. doi: 10.1016/j.molp.2017.11.012. PubMed DOI
Evangelidis T, et al. Automated NMR resonance assignments and structure determination using a minimal set of 4D spectra. Nat. Commun. 2018;9:384. doi: 10.1038/s41467-017-02592-z. PubMed DOI PMC
Naslavsky N, Rahajeng J, Chenavas S, Sorgen PL, Caplan S. EHD1 and Eps15 Interact with phosphatidylinositols via their Eps15 homology domains. J. Biol. Chem. 2007;282:16612–16622. doi: 10.1074/jbc.M609493200. PubMed DOI
Paoluzi S, et al. Recognition specificity of individual EH domains of mammals and yeast. EMBO J. 1998;17:6541–6550. doi: 10.1093/emboj/17.22.6541. PubMed DOI PMC
Bilkova E, et al. Calcium directly regulates phosphatidylinositol 4,5-bisphosphate headgroup conformation and recognition. J. Am. Chem. Soc. 2017;139:4019–4024. doi: 10.1021/jacs.6b11760. PubMed DOI PMC
Xu J, Lee YRJ, Liu B. Establishment of a mitotic model system by transient expression of the D-type cyclin in differentiated leaf cells of tobacco (Nicotiana benthamiana) N. Phytologist. 2020;226:1213–1220. doi: 10.1111/nph.16309. PubMed DOI
Simon MLA, et al. A PtdIns(4)P-driven electrostatic field controls cell membrane identity and signalling in plants. Nat. Plants. 2016;2:16089. doi: 10.1038/nplants.2016.89. PubMed DOI PMC
Platre MP, et al. A combinatorial lipid code shapes the electrostatic landscape of plant endomembranes. Dev. Cell. 2018;45:465–480.e11. doi: 10.1016/j.devcel.2018.04.011. PubMed DOI
McLoughlin F, et al. Identification of novel candidate phosphatidic acid-binding proteins involved in the salt-stress response of Arabidopsis thaliana roots. Biochemical J. 2013;450:573–581. doi: 10.1042/BJ20121639. PubMed DOI
Kaneda M, et al. Plant AP180 N-terminal homolog proteins are involved in clathrin-dependent endocytosis during pollen tube growth in arabidopsis thaliana. Plant Cell Physiol. 2019;60:1316–1330. doi: 10.1093/pcp/pcz036. PubMed DOI
Putta, P., Creque, E., Piontkivska, H. & Kooijman, E. E. Lipid−protein interactions for ECA1 an N-ANTH domain protein involved in stress signaling in plants. Chem. Phys. Lipids231, 104919 (2020). PubMed
Fernandez-Chacon R, Sudhof TC, Ferna R, Su TC. Novel SCAMPs lacking NPF repeats: Ubiquitous and synaptic vesicle-specific forms implicate SCAMPs in multiple membrane-trafficking functions. J. Neurosci. 2000;20:7941–7950. doi: 10.1523/JNEUROSCI.20-21-07941.2000. PubMed DOI PMC
Bourdais G, et al. The use of quantitative imaging to investigate regulators of membrane trafficking in Arabidopsis stomatal closure. Traffic. 2019;20:168–180. doi: 10.1111/tra.12625. PubMed DOI
Sheung KL, Cai Y, Hillmer S, Robinson DG, Jiang L. SCAMPs highlight the developing cell plate during cytokinesis in tobacco BY-2 cells. Plant Physiol. 2008;147:1637–1645. doi: 10.1104/pp.108.119925. PubMed DOI PMC
Park D, et al. Impairment of release site clearance within the active zone by reduced SCAMP5 expression causes short-term depression of synaptic release. Cell Rep. 2018;22:3339–3350. doi: 10.1016/j.celrep.2018.02.088. PubMed DOI
Arora, D. et al. Establishment of proximity-dependent biotinylation approaches in different plant model systems. Plant Cell 32, 3388–3407 (2020). PubMed PMC
Bateman A, et al. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 2018;47:gky1049–. PubMed PMC
Rumpf J, et al. Structure of the Eps15-stonin2 complex provides a molecular explanation for EH-domain ligand specificity. EMBO J. 2008;27:558–569. doi: 10.1038/sj.emboj.7601980. PubMed DOI PMC
Moravcevic K, Oxley CL, Lemmon MA. Conditional peripheral membrane proteins: facing up to limited specificity. Structure. 2012;20:15–27. doi: 10.1016/j.str.2011.11.012. PubMed DOI PMC
Thaller, D. J. et al. Direct binding of ESCRT protein Chm7 to phosphatidic acid–rich membranes at nuclear envelope herniations. J. Cell Biol.220, e202004222 (2021). PubMed PMC
Dejonghe W, et al. Mitochondrial uncouplers inhibit clathrin-mediated endocytosis largely through cytoplasmic acidification. Nat. Commun. 2016;7:11710. doi: 10.1038/ncomms11710. PubMed DOI PMC
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J. Mol. Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI
Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinforma. 2017;20:1160–1166. doi: 10.1093/bib/bbx108. PubMed DOI PMC
Kabsch W, et al. XDS. Acta Crystallogr. Sect. D. Biol. Crystallogr. 2010;66:125–132. doi: 10.1107/S0907444909047337. PubMed DOI PMC
Vagin A, Lebedev A. MoRDa, an automatic molecular replacement pipeline. Acta Crystallogr. Sect. A Found. Adv. 2015;71:s19–s19. doi: 10.1107/S2053273315099672. DOI
Langer G, Cohen SX, Lamzin VS, Perrakis A. Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7. Nat. Protoc. 2008;3:1171–1179. doi: 10.1038/nprot.2008.91. PubMed DOI PMC
Bricogne, G. et al. BUSTER version 2.10.3. (Global Phasing Ltd., 2011).
Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of Coot. Acta Crystallogr. Sect. D: Biol. Crystallogr. 2010;66:486–501. doi: 10.1107/S0907444910007493. PubMed DOI PMC
Adams PD, et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. Sect. D: Biol. Crystallogr. 2010;66:213–221. doi: 10.1107/S0907444909052925. PubMed DOI PMC
Shen Y, Delaglio F, Cornilescu G, Bax A. TALOS+: A hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J. Biomolecular NMR. 2009;44:213–223. doi: 10.1007/s10858-009-9333-z. PubMed DOI PMC
Güntert P. Automated structure determination from NMR spectra. Eur. Biophys. J. 2009;38:129–143. doi: 10.1007/s00249-008-0367-z. PubMed DOI
Linge JP, Williams MA, Spronk CAEM, Bonvin AMJJ, Nilges M. Refinement of protein structures in explicit solvent. Proteins: Struct., Funct., Bioinforma. 2003;50:496–506. doi: 10.1002/prot.10299. PubMed DOI
Nederveen AJ, et al. RECOORD: A recalculated coordinate database of 500+ proteins from the PDB using restraints from the BioMagResBank. Proteins: Struct., Funct. Genet. 2005;59:662–672. doi: 10.1002/prot.20408. PubMed DOI
Bhattacharya A, Tejero R, Montelione GT. Evaluating protein structures determined by structural genomics consortia. Proteins: Struct., Funct., Bioinforma. 2006;66:778–795. doi: 10.1002/prot.21165. PubMed DOI
Abraham MJ, et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1–2:19–25. doi: 10.1016/j.softx.2015.06.001. DOI
Huang J, MacKerell AD. CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. J. Comput. Chem. 2013;34:2135–2145. doi: 10.1002/jcc.23354. PubMed DOI PMC
Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983;79:926–935. doi: 10.1063/1.445869. DOI
Darden T, York D, Pedersen L. Particle mesh Ewald: An N ⋅log(N) method for Ewald sums in large systems. J. Chem. Phys. 1993;98:10089–10092. doi: 10.1063/1.464397. DOI
Hess B, Bekker H, Berendsen HJC, Fraaije JGEM. LINCS: A Linear Constraint Solver for molecular simulations. J. Comput. Chem. 1997;18:1463–1472. doi: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H. DOI
Miyamoto S, Kollman PA. Settle: an analytical version of the SHAKE and RATTLE algorithm for rigid water models. J. Comput. Chem. 1992;13:952–962. doi: 10.1002/jcc.540130805. DOI
Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007;126:14101. doi: 10.1063/1.2408420. PubMed DOI
Parrinello M, Rahman A. Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 1981;52:7182–7190. doi: 10.1063/1.328693. DOI
de Jong DH, et al. Improved parameters for the martini coarse-grained protein force field. J. Chem. Theory Comput. 2013;9:687–697. doi: 10.1021/ct300646g. PubMed DOI
Periole X, Cavalli M, Marrink S-J, Ceruso MA. Combining an elastic network with a coarse-grained molecular force field: structure, dynamics, and intermolecular recognition. J. Chem. Theory Comput. 2009;5:2531–2543. doi: 10.1021/ct9002114. PubMed DOI
Ingólfsson HI, et al. Lipid organization of the plasma membrane. J. Am. Chem. Soc. 2014;136:14554–14559. doi: 10.1021/ja507832e. PubMed DOI
Hsu P-C, et al. CHARMM-GUI Martini Maker for modeling and simulation of complex bacterial membranes with lipopolysaccharides. J. Comput. Chem. 2017;38:2354–2363. doi: 10.1002/jcc.24895. PubMed DOI PMC
Vekemans B, Janssens K, Vincze L, Adams F, van Espen P. Analysis of X-ray spectra by iterative least squares (AXIL): New developments. X-Ray Spectrom. 1994;23:278–285. doi: 10.1002/xrs.1300230609. DOI
Kooijman EE, et al. An electrostatic/hydrogen bond switch as the basis for the specific interaction of phosphatidic acid with proteins. J. Biol. Chem. 2007;282:11356–11364. doi: 10.1074/jbc.M609737200. PubMed DOI
Houbaert A, et al. POLAR-guided signalling complex assembly and localization drive asymmetric cell division. Nature. 2018;563:574–578. doi: 10.1038/s41586-018-0714-x. PubMed DOI
Karimi M, Jacobs TB. GoldenGateway: a DNA assembly method for plant biotechnology. Trends Plant Sci. 2021;26:95–96. doi: 10.1016/j.tplants.2020.10.004. PubMed DOI
Sparkes IA, Runions J, Kearns A, Hawes C. Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nat. Protoc. 2006;1:2019–2025. doi: 10.1038/nprot.2006.286. PubMed DOI
Grefen C, Blatt MR. A 2in1 cloning system enables ratiometric bimolecular fluorescence complementation (rBiFC) BioTechniques. 2012;53:311–314. doi: 10.2144/000113941. PubMed DOI
Herberich E, Sikorski J, Hothorn T. A robust procedure for comparing multiple means under heteroscedasticity in unbalanced designs. PLoS ONE. 2010;5:e9788. doi: 10.1371/journal.pone.0009788. PubMed DOI PMC
van Leene J, et al. Capturing the phosphorylation and protein interaction landscape of the plant TOR kinase. Nat. Plants. 2019;5:316–327. doi: 10.1038/s41477-019-0378-z. PubMed DOI
Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 2008;26:1367–1372. doi: 10.1038/nbt.1511. PubMed DOI
Ashkenazy H, et al. ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res. 2016;44:W344–W350. doi: 10.1093/nar/gkw408. PubMed DOI PMC
Biomolecular condensation orchestrates clathrin-mediated endocytosis in plants
The endocytic TPLATE complex internalizes ubiquitinated plasma membrane cargo
Phosphatidic Acid in Plant Hormonal Signaling: From Target Proteins to Membrane Conformations