Phosphatidic Acid in Plant Hormonal Signaling: From Target Proteins to Membrane Conformations

. 2022 Mar 17 ; 23 (6) : . [epub] 20220317

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35328648

Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000738 Ministry of Education, Youth and Sports of the Czech Republic (European Regional Development Fund - Project 'Centre for Experimental Plant Biology'
NAS of Ukraine 13-03-20/21; 2.1.10.32-20 NAS of Ukraine

Cells sense a variety of extracellular signals balancing their metabolism and physiology according to changing growth conditions. Plasma membranes are the outermost informational barriers that render cells sensitive to regulatory inputs. Membranes are composed of different types of lipids that play not only structural but also informational roles. Hormones and other regulators are sensed by specific receptors leading to the activation of lipid metabolizing enzymes. These enzymes generate lipid second messengers. Among them, phosphatidic acid (PA) is a well-known intracellular messenger that regulates various cellular processes. This lipid affects the functional properties of cell membranes and binds to specific target proteins leading to either genomic (affecting transcriptome) or non-genomic responses. The subsequent biochemical, cellular and physiological reactions regulate plant growth, development and stress tolerance. In the present review, we focus on primary (genome-independent) signaling events triggered by rapid PA accumulation in plant cells and describe the functional role of PA in mediating response to hormones and hormone-like regulators. The contributions of individual lipid signaling enzymes to the formation of PA by specific stimuli are also discussed. We provide an overview of the current state of knowledge and future perspectives needed to decipher the mode of action of PA in the regulation of cell functions.

Zobrazit více v PubMed

Kwiatek J.M., Carman G.M. Yeast phosphatidic acid phosphatase Pah1 hops and scoots along the membrane phospholipid bilayer. J. Lipid Res. 2020;61:1232–1243. doi: 10.1194/jlr.RA120000937. PubMed DOI PMC

Zhukovsky M.A., Filograna A., Luini A., Corda D., Valente C. Phosphatidic acid in membrane rearrangements. FEBS Lett. 2019;593:2428–2451. doi: 10.1002/1873-3468.13563. PubMed DOI

Cai G., Kim S.-C., Li J., Zhou Y., Wang X. Transcriptional regulation of lipid catabolism during seedling establishment. Mol. Plant. 2020;13:984–1000. doi: 10.1016/j.molp.2020.04.007. PubMed DOI

Zhang G., Yang J., Chen X., Zhao D., Zhou X., Zhang Y., Wang X., Zhao J. Phospholipase D- and phosphatidic acid-mediated phospholipid metabolism and signaling modulate symbiotic interaction and nodulation in soybean (Glycine max) Plant J. 2021;106:142–158. doi: 10.1111/tpj.15152. PubMed DOI

Lavell A.A., Benning C. Cellular organization and regulation of plant glycerolipid metabolism. Plant Cell Physiol. 2019;60:1176–1183. doi: 10.1093/pcp/pcz016. PubMed DOI PMC

Pokotylo I., Kravets V., Martinec J., Ruelland E. The phosphatidic acid paradox: Too many actions for one molecule class? Lessons from plants. Progress Lipid Res. 2018;71:43–53. doi: 10.1016/j.plipres.2018.05.003. PubMed DOI

Li J., Wang X. Phospholipase D and phosphatidic acid in plant immunity. Plant Sci. 2019;279:45–50. doi: 10.1016/j.plantsci.2018.05.021. PubMed DOI

Meijer H.J.G., van Himbergen J.A.J., Musgrave A., Munnik T. Acclimation to salt modifies the activation of several osmotic stress-activated lipid signalling pathways in Chlamydomonas. Phytochemistry. 2017;135:64–72. doi: 10.1016/j.phytochem.2016.12.014. PubMed DOI

Yao Y., Li J., Lin Y., Zhou J., Zhang P., Xu Y. Structural insights into phospholipase D function. Prog. Lipid Res. 2021;81:101070. doi: 10.1016/j.plipres.2020.101070. PubMed DOI

Kocourková D., Krčková Z., Pejchar P., Kroumanová K., Podmanická T., Daněk M., Martinec J. Phospholipase Dα1 mediates the high-Mg2+ stress response partially through regulation of K+ homeostasis. Plant Cell Environ. 2020;43:2460–2475. doi: 10.1111/pce.13831. PubMed DOI

Kolesnikov Y.S., Nokhrina K.P., Kretynin S.V., Volotovski I.D., Martinec J., Romanov G.A., Kravets V.S. Molecular structure of phospholipase D and regulatory mechanisms of its activity in plant and animal cells. Biochemistry. 2012;77:1–14. doi: 10.1134/S0006297912010014. PubMed DOI

Kocourková D., Kroumanová K., Podmanická T., Daněk M., Martinec J. Phospholipase Dα1 acts as a negative regulator of high Mg2+-induced leaf senescence in Arabidopsis. Front. Plant Sci. 2021;12:770794. doi: 10.3389/fpls.2021.770794. PubMed DOI PMC

Zhang Y., Gao Z., Hu M., Pan Y., Xu X., Zhang Z. Delay of ripening and senescence in mango fruit by 6-benzylaminopurine is associated with inhibition of ethylene biosynthesis and membrane lipid catabolism. Postharvest Biol. Technol. 2022;185:111797. doi: 10.1016/j.postharvbio.2021.111797. DOI

Arisz S.A., Testerink C., Munnik T. Plant PA signaling via diacylglycerol kinase. Biochim. Biophys. Acta. 2009;1791:869–875. doi: 10.1016/j.bbalip.2009.04.006. PubMed DOI

Yuan S., Kim S.-C., Deng X., Hong Y., Wang X. Diacylglycerol kinase and associated lipid mediators modulate rice root architecture. New Phytol. 2019;223:261–276. doi: 10.1111/nph.15801. PubMed DOI

Kue Foka I.C., Ketehouli T., Zhou Y., Li X.-W., Wang F.-W., Li H. The emerging roles of diacylglycerol kinase (DGK) in plant stress tolerance, growth, and development. Agronomy. 2020;10:1375. doi: 10.3390/agronomy10091375. DOI

Nakamura Y., Ngo A.H. Non-specific phospholipase C (NPC): An emerging class of phospholipase C in plant growth and development. J. Plant Res. 2020;133:489–497. doi: 10.1007/s10265-020-01199-8. PubMed DOI PMC

Sagar S., Singh A. Emerging role of phospholipase C mediated lipid signaling in abiotic stress tolerance and development in plants. Plant Cell Rep. 2021;40:2123–2133. doi: 10.1007/s00299-021-02713-5. PubMed DOI

Craddock C.P., Adams N., Kroon J.T.M., Bryant F.M., Hussey P.J., Kurup S., Eastmond P.J. Cyclin-dependent kinase activity enhances phosphatidylcholine biosynthesis in Arabidopsis by repressing phosphatidic acid phosphohydrolase activity. Plant J. 2017;89:3–14. doi: 10.1111/tpj.13321. PubMed DOI PMC

Su W., Raza A., Zeng L., Gao A., Lv Y., Ding X., Cheng Y., Zou X. Genome-wide analysis and expression patterns of lipid phospholipid phospholipase gene family in Brassica napus L. BMC Genom. 2021;22:548. doi: 10.1186/s12864-021-07862-1. PubMed DOI PMC

Zhou Z., Yang Y., Shan W., Zhang H., Wei W., Kuang J., Chen J., Lu W. Ethylene attenuates chilling injury of banana fruit via the MabHLH060/183 module in controlling phosphatidic acid formation genes. Postharvest Biol. Technol. 2022;183:111724. doi: 10.1016/j.postharvbio.2021.111724. DOI

Takáč T., Novák D., Šamaj J. Recent advances in the cellular and developmental biology of phospholipases in plants. Front. Plant Sci. 2019;10:362. doi: 10.3389/fpls.2019.00362. PubMed DOI PMC

Tan Y., Wang L. MpDGK2, a novel diacylglycerol kinase from Malus prunifolia, confers drought stress tolerance in transgenic Arabidopsis. Plant Mol. Biol. Report. 2020;38:452–460. doi: 10.1007/s11105-020-01209-y. DOI

Rodas-Junco B.A., Racagni-Di-Palma G.E., Canul-Chan M., Usorach J., Hernández-Sotomayor S.M.T. Link between lipid second messengers and osmotic stress in plants. Int. J. Mol. Sci. 2021;22:2658. doi: 10.3390/ijms22052658. PubMed DOI PMC

Zhang Q., van Wijk R., Shahbaz M., Roels W., Schooten B.V., Vermeer J.E.M., Zarza X., Guardia A., Scuffi D., García-Mata C., et al. Arabidopsis phospholipase C3 is involved in lateral root initiation and ABA responses in seed germination and stomatal closure. Plant Cell Physiol. 2018;59:469–486. doi: 10.1093/pcp/pcx194. PubMed DOI

Zhu L., Dou L., Shang H., Li H., Yu J., Xiao G. GhPIPLC2D promotes cotton fiber elongation by enhancing ethylene biosynthesis. iScience. 2021;24:102199. doi: 10.1016/j.isci.2021.102199. PubMed DOI PMC

Kong X.-X., Mei J.-W., Zhang J., Liu X., Wu J.-Y., Wang C.-L. Turnover of diacylglycerol kinase 4 by cytoplasmic acidification induces vacuole morphological change and nuclear DNA degradation in the early stage of pear self-incompatibility response. J. Integr. Plant Biol. 2021;63:2123–2135. doi: 10.1111/jipb.13180. PubMed DOI

Zhang Y., Liu R., Zhou Y., Wang S., Zhang B., Kong J., Zheng S., Yang N. PLDα1 and GPA1 are involved in the stomatal closure induced by oridonin in Arabidopsis thaliana. Funct. Plant Biol. 2021;48:1005–1016. doi: 10.1071/FP21156. PubMed DOI

Jia Y., Li W. Characterisation of lipid changes in ethylene-promoted senescence and its retardation by suppression of phospholipase Dδ in Arabidopsis leaves. Front. Plant Sci. 2015;6:1045. doi: 10.3389/fpls.2015.01045. PubMed DOI PMC

Zhang Y., Zhu H., Zhang Q., Li M., Yan M., Wang R., Wang L., Welti R., Zhang W., Wang X. Phospholipase Dα1 and phosphatidic acid regulate NADPH oxidase activity and production of reactive oxygen species in ABA-mediated stomatal closure in Arabidopsis. Plant Cell. 2009;21:2357–2377. doi: 10.1105/tpc.108.062992. PubMed DOI PMC

Guo L., Devaiah S.P., Narasimhan R., Pan X., Zhang Y., Zhang W., Wang X. Cytosolic glyceraldehyde-3-phosphate dehydrogenases interact with phospholipase Dδ to transduce hydrogen peroxide signals in the Arabidopsis response to stress. Plant Cell. 2012;24:2200–2212. doi: 10.1105/tpc.111.094946. PubMed DOI PMC

Zhang W., Qin C., Zhao J., Wang X. Phospholipase Dα1-derived phosphatidic acid interacts with ABI1 phosphatase 2C and regulates abscisic acid signaling. Proc. Natl. Acad. Sci. USA. 2004;101:9508–9513. doi: 10.1073/pnas.0402112101. PubMed DOI PMC

Guo L., Mishra G., Taylor K., Wang X. Phosphatidic acid binds and stimulates Arabidopsis sphingosine kinases. J. Biol. Chem. 2011;286:13336–13345. doi: 10.1074/jbc.M110.190892. PubMed DOI PMC

Wei F., Fanella B., Guo L., Wang X. Membrane glycerolipidome of soybean root hairs and its response to nitrogen and phosphate availability. Sci. Rep. 2016;6:36172. doi: 10.1038/srep36172. PubMed DOI PMC

Vismans G., van der Meer T., Langevoort O., Schreuder M., Bouwmeester H., Peisker H., Dörman P., Ketelaar T., van der Krol A. Low-phosphate induction of plastidal stromules is dependent on strigolactones but not on the canonical strigolactone signaling component MAX2. Plant Physiol. 2016;172:2235–2244. doi: 10.1104/pp.16.01146. PubMed DOI PMC

Cao H., Gong R., Yuan S., Su Y., Lv W., Zhou Y., Zhang Q., Deng X., Tong P., Liang S., et al. Phospholipase Dα6 and phosphatidic acid regulate gibberellin signaling in rice. EMBO Rep. 2021;22:e51871. doi: 10.15252/embr.202051871. PubMed DOI PMC

Sakane F., Hoshino F., Murakami C. New era of diacylglycerol kinase, phosphatidic acid and phosphatidic acid-binding protein. Int. J. Mol. Sci. 2020;21:6794. doi: 10.3390/ijms21186794. PubMed DOI PMC

McDermott M.I., Wang Y., Wakelam M.J.O., Bankaitis V.A. Mammalian phospholipase D: Function, and therapeutics. Prog. Lipid Res. 2020;78:101018. doi: 10.1016/j.plipres.2019.101018. PubMed DOI PMC

Lutkewitte A.J., Finck B.N. Regulation of signaling and metabolism by lipin-mediated phosphatidic acid phosphohydrolase activity. Biomolecules. 2020;10:1386. doi: 10.3390/biom10101386. PubMed DOI PMC

Graber Z., Owusu Kwarteng D., Lange S.M., Koukanas Y., Khalifa H., Mutambuze J.W., Kooijman E.E. The electrostatic basis of diacylglycerol pyrophosphate-protein interaction. Cells. 2022;11:290. doi: 10.3390/cells11020290. PubMed DOI PMC

Potocky M., Pleskot R., Pejchar P., Vitale N., Kost B., Zarsky V. Live-cell imaging of phosphatidic acid dynamics in pollen tubes visualized by Spo20p-derived biosensor. New Phytol. 2014;203:483–494. doi: 10.1111/nph.12814. PubMed DOI

Pejchar P., Sekereš J., Novotný O., Žárský V., Potocký M. Functional analysis of phospholipase Dδ family in tobacco pollen tubes. Plant J. 2020;103:212–226. doi: 10.1111/tpj.14720. PubMed DOI

Kubátová Z., Pejchar P., Potocký M., Sekereš J., Žárský V., Kulich I. Arabidopsis trichome contains two plasma membrane domains with different lipid compositions which attract distinct EXO70 subunits. Int. J. Mol. Sci. 2019;20:3803. doi: 10.3390/ijms20153803. PubMed DOI PMC

Platre M.P., Noack L.C., Doumane M., Bayle V., Simon M.L.A., Maneta-Peyret L., Fouillen L., Stanislas T., Armengot L., Pejchar P., et al. A combinatorial lipid code shapes the electrostatic landscape of plant endomembranes. Dev. Cell. 2018;45:465–480.e11. doi: 10.1016/j.devcel.2018.04.011. PubMed DOI

Hertle A.P., García-Cerdán J.G., Armbruster U., Shih R., Lee J.J., Wong W., Niyogi K.K. A Sec14 domain protein is required for photoautotrophic growth and chloroplast vesicle formation in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA. 2020;117:9101–9111. doi: 10.1073/pnas.1916946117. PubMed DOI PMC

Li W., Song T., Wallrad L., Kudla J., Wang X., Zhang W. Tissue-specific accumulation of pH-sensing phosphatidic acid determines plant stress tolerance. Nat. Plants. 2019;5:1012–1021. doi: 10.1038/s41477-019-0497-6. PubMed DOI

Wang Y.-S., Yao H.-Y., Xue H.-W. Lipidomic profiling analysis reveals the dynamics of phospholipid molecules in Arabidopsis thaliana seedling growth. J. Integr. Plant Biol. 2016;58:890–902. doi: 10.1111/jipb.12481. PubMed DOI

Devaiah S.P., Roth M.R., Baughman E., Li M., Tamura P., Jeannotte R., Welti R., Wang X. Quantitative profiling of polar glycerolipid species from organs of wild-type Arabidopsis and a phospholipase Dalpha1 knockout mutant. Phytochemistry. 2006;67:1907–1924. doi: 10.1016/j.phytochem.2006.06.005. PubMed DOI

Yunus I.S., Cazenave-Gassiot A., Liu Y.-C., Lin Y.-C., Wenk M.R., Nakamura Y. Phosphatidic acid is a major phospholipid class in reproductive organs of Arabidopsis thaliana. Plant Signal. Behav. 2015;10:e1049790. doi: 10.1080/15592324.2015.1049790. PubMed DOI PMC

Nakamura Y., Teo N.Z., Shui G., Chua C.H., Cheong W.F., Parameswaran S., Koizumi R., Ohta H., Wenk M.R., Ito T. Transcriptomic and lipidomic profiles of glycerolipids during Arabidopsis flower development. New Phytol. 2014;203:310–322. doi: 10.1111/nph.12774. PubMed DOI

Arisz S.A., van Wijk R., Roels W., Zhu J.-K., Haring M.A., Munnik T. Rapid phosphatidic acid accumulation in response to low temperature stress in Arabidopsis is generated through diacylglycerol kinase. Front. Plant Sci. 2013;4:1. doi: 10.3389/fpls.2013.00001. PubMed DOI PMC

Zarza X., Shabala L., Fujita M., Shabala S., Haring M.A., Tiburcio A.F., Munnik T. Extracellular spermine triggers a rapid intracellular phosphatidic acid response in Arabidopsis, involving PLDδ activation and stimulating ion flux. Front. Plant Sci. 2019;10:601. doi: 10.3389/fpls.2019.00601. PubMed DOI PMC

Hu X., Wang H., Li K., Wu Y., Liu Z., Huang C. Genome-wide proteomic profiling reveals the role of dominance protein expression in heterosis in immature maize ears. Sci. Rep. 2017;7:16130. doi: 10.1038/s41598-017-15985-3. PubMed DOI PMC

Liu G.-J., Xiao G.-H., Liu N.-J., Liu D., Chen P.-S., Qin Y.-M., Zhu Y.-X. Targeted lipidomics studies reveal that linolenic acid promotes cotton fiber elongation by activating phosphatidylinositol and phosphatidylinositol monophosphate biosynthesis. Mol. Plant. 2015;8:911–921. doi: 10.1016/j.molp.2015.02.010. PubMed DOI

Hruz T., Laule O., Szabo G., Wessendorp F., Bleuler S., Oertle L., Widmayer P., Gruissem W., Zimmermann P. Genevestigator V3: A reference expression database for the meta-analysis of transcriptomes. Adv. Bioinform. 2008;2008:420747. doi: 10.1155/2008/420747. PubMed DOI PMC

Stenzel I., Ischebeck T., Vu-Becker L.H., Riechmann M., Krishnamoorthy P., Fratini M., Heilmann I. Coordinated localization and antagonistic function of NtPLC3 and PI4P 5-Kinases in the subapical plasma membrane of tobacco pollen tubes. Plants. 2020;9:452. doi: 10.3390/plants9040452. PubMed DOI PMC

Han X., Shi Y., Liu G., Guo Y., Yang Y. Activation of ROP6 GTPase by phosphatidylglycerol in Arabidopsis. Front. Plant Sci. 2018;9:347. doi: 10.3389/fpls.2018.00347. PubMed DOI PMC

de Jong F., Munnik T. Attracted to membranes: Lipid-binding domains in plants. Plant Physiol. 2021;185:707–723. doi: 10.1093/plphys/kiaa100. PubMed DOI PMC

Hempel F., Stenzel I., Heilmann M., Krishnamoorthy P., Menzel W., Golbik R., Helm S., Dobritzsch D., Baginsky S., Lee J., et al. MAPKs influence pollen tube growth by controlling the formation of phosphatidylinositol 4,5-bisphosphate in an apical plasma membrane domain. Plant Cell. 2017;29:3030–3050. doi: 10.1105/tpc.17.00543. PubMed DOI PMC

Janda M., Šašek V., Chmelařová H., Andrejch J., Nováková M., Hajšlová J., Burketová L., Valentová O. Phospholipase D affects translocation of NPR1 to the nucleus in Arabidopsis thaliana. Front. Plant Sci. 2015;6:59. doi: 10.3389/fpls.2015.00059. PubMed DOI PMC

Scandola S., Samuel M.A. A flower-specific phospholipase D is a stigmatic compatibility factor targeted by the self-incompatibility response in Brassica napus. Curr. Biol. 2019;29:506–512.e4. doi: 10.1016/j.cub.2018.12.037. PubMed DOI

Pleskot R., Pejchar P., Bezvoda R., Lichtscheidl I., Wolters-Arts M., Marc J., Žárský V., Potocký M. Turnover of phosphatidic acid through distinct signaling pathways affects multiple aspects of pollen tube growth in tobacco. Front. Plant Sci. 2012;3:54. doi: 10.3389/fpls.2012.00054. PubMed DOI PMC

Galvan-Ampudia C.S., Julkowska M.M., Darwish E., Gandullo J., Korver R.A., Brunoud G., Haring M.A., Munnik T., Vernoux T., Testerink C. Halotropism Is a Response of Plant Roots to Avoid a Saline Environment. Curr. Biol. 2013;23:2044–2050. doi: 10.1016/j.cub.2013.08.042. PubMed DOI

Vaz Dias F., Serrazina S., Vitorino M., Marchese D., Heilmann I., Godinho M., Rodrigues M., Malhó R. A role for diacylglycerol kinase 4 in signalling crosstalk during Arabidopsis pollen tube growth. New Phytol. 2019;222:1434–1446. doi: 10.1111/nph.15674. PubMed DOI

Wattelet-Boyer V., Le Guédard M., Dittrich-Domergue F., Maneta-Peyret L., Kriechbaumer V., Boutté Y., Bessoule J.-J., Moreau P. Lysophosphatidic acid acyltransferases: A link with intracellular protein trafficking in Arabidopsis root cells? J. Exp. Bot. 2021;73:1327–1343. doi: 10.1093/jxb/erab504. PubMed DOI

Novák D., Vadovič P., Ovečka M., Šamajová O., Komis G., Colcombet J., Šamaj J. Gene expression pattern and protein localization of Arabidopsis phospholipase D alpha 1 revealed by advanced light-sheet and super-resolution microscopy. Front. Plant Sci. 2018;9:371. doi: 10.3389/fpls.2018.00371. PubMed DOI PMC

Kaneda M., van Oostende-Triplet C., Chebli Y., Testerink C., Bednarek S.Y., Geitmann A. Plant AP180 N-Terminal Homolog proteins are involved in clathrin-dependent endocytosis during pollen tube growth in Arabidopsis thaliana. Plant Cell Physiol. 2019;60:1316–1330. doi: 10.1093/pcp/pcz036. PubMed DOI

McLoughlin F., Arisz S.A., Dekker H.L., Kramer G., De Koster C.G., Haring M.A., Munnik T., Testerink C. Identification of novel candidate phosphatidic acid-binding proteins involved in the salt-stress response of Arabidopsis thaliana roots. Biochem. J. 2013;450:573. doi: 10.1042/BJ20121639. PubMed DOI

Sekereš J., Pejchar P., Šantrůček J., Vukašinović N., Žárský V., Potocký M. Analysis of exocyst subunit EXO70 family reveals distinct membrane polar domains in tobacco pollen tubes. Plant Physiol. 2017;173:1659–1675. doi: 10.1104/pp.16.01709. PubMed DOI PMC

Putta P., Rankenberg J., Korver R.A., van Wijk R., Munnik T., Testerink C., Kooijman E.E. Phosphatidic acid binding proteins display differential binding as a function of membrane curvature stress and chemical properties. Biochim. Biophys. Acta (BBA)-Biomembr. 2016;1858:2709–2716. doi: 10.1016/j.bbamem.2016.07.014. PubMed DOI

Putta P., Creque E., Piontkivska H., Kooijman E.E. Lipid-protein interactions for ECA1 an N-ANTH domain protein involved in stress signaling in plants. Chem. Phys. Lipids. 2020;231:104919. doi: 10.1016/j.chemphyslip.2020.104919. PubMed DOI

Kulig W., Korolainen H., Zatorska M., Kwolek U., Wydro P., Kepczynski M., Róg T. Complex behavior of phosphatidylcholine–phosphatidic acid bilayers and monolayers: Effect of acyl chain unsaturation. Langmuir. 2019;35:5944–5956. doi: 10.1021/acs.langmuir.9b00381. PubMed DOI

Santos H.A.F., Vila-Viçosa D., Teixeira V.H., Baptista A.M., Machuqueiro M. Constant-pH MD simulations of DMPA/DMPC lipid bilayers. J. Chem. Theory Comput. 2015;11:5973–5979. doi: 10.1021/acs.jctc.5b00956. PubMed DOI

Tanguy E., Kassas N., Vitale N. Protein-phospholipid interaction motifs: A focus on phosphatidic acid. Biomolecules. 2018;8:20. doi: 10.3390/biom8020020. PubMed DOI PMC

Cao C., Wang P., Song H., Jing W., Shen L., Zhang Q., Zhang W. Phosphatidic acid binds to and regulates guanine nucleotide exchange factor 8 (GEF8) activity in Arabidopsis. Funct. Plant Biol. 2017;44:1029–1038. doi: 10.1071/FP17113. PubMed DOI

Cools T.L., Vriens K., Struyfs C., Verbandt S., Ramada M.H.S., Brand G.D., Bloch C., Koch B., Traven A., Drijfhout J.W., et al. The antifungal plant defensin HsAFP1 is a phosphatidic acid-interacting peptide inducing membrane permeabilization. Front. Microbiol. 2017;8:2295. doi: 10.3389/fmicb.2017.02295. PubMed DOI PMC

Im Y.J., Davis A.J., Perera I.Y., Johannes E., Allen N.S., Boss W.F. The N-terminal membrane occupation and recognition nexus domain of Arabidopsis phosphatidylinositol phosphate kinase 1 regulates enzyme activity. J. Biol. Chem. 2007;282:5443–5452. doi: 10.1074/jbc.M611342200. PubMed DOI

Petersen J., Eriksson S.K., Harryson P., Pierog S., Colby T., Bartels D., Röhrig H. The lysine-rich motif of intrinsically disordered stress protein CDeT11-24 from Craterostigma plantagineum is responsible for phosphatidic acid binding and protection of enzymes from damaging effects caused by desiccation. J. Exp. Bot. 2012;63:4919–4929. doi: 10.1093/jxb/ers173. PubMed DOI PMC

Wang P., Shen L., Guo J., Jing W., Qu Y., Li W., Bi R., Xuan W., Zhang Q., Zhang W. Phosphatidic acid directly regulates PINOID-dependent phosphorylation and activation of the PIN-FORMED2 auxin efflux transporter in response to salt stress. Plant Cell. 2019;31:250–271. doi: 10.1105/tpc.18.00528. PubMed DOI PMC

Julkowska M.M., McLoughlin F., Galvan-Ampudia C.S., Rankenberg J.M., Kawa D., Klimecka M., Haring M.A., Munnik T., Kooijman E.E., Testerink C. Identification and functional characterization of the Arabidopsis Snf1-related protein kinase SnRK2.4 phosphatidic acid-binding domain. Plant Cell Environ. 2015;38:614–624. doi: 10.1111/pce.12421. PubMed DOI

Shen L., Tian Q., Yang L., Zhang H., Shi Y., Shen Y., Zhou Z., Wu Q., Zhang Q., Zhang W. Phosphatidic acid directly binds with rice potassium channel OsAKT2 to inhibit its activity. Plant J. 2020;102:649–665. doi: 10.1111/tpj.14731. PubMed DOI

Shen L., Yang L., Zhang W. Multiple basic amino acid residues contribute to phosphatidic acid-mediated inhibition of rice potassium channel OsAKT2. Plant Signal. Behav. 2020;15:1789818. doi: 10.1080/15592324.2020.1789818. PubMed DOI PMC

Yperman K., Papageorgiou A.C., Merceron R., De Munck S., Bloch Y., Eeckhout D., Jiang Q., Tack P., Grigoryan R., Evangelidis T., et al. Distinct EH domains of the endocytic TPLATE complex confer lipid and protein binding. Nat. Commun. 2021;12:3050. doi: 10.1038/s41467-021-23314-6. PubMed DOI PMC

Testerink C., Larsen P.B., van der Does D., van Himbergen J.A.J., Munnik T. Phosphatidic acid binds to and inhibits the activity of Arabidopsis CTR1. J. Exp. Bot. 2007;58:3905–3914. doi: 10.1093/jxb/erm243. PubMed DOI

Pleskot R., Pejchar P., Žárský V., Staiger C.J., Potocký M. Structural insights into the inhibition of actin-capping protein by interactions with phosphatidic acid and phosphatidylinositol (4,5)-bisphosphate. PLoS Comput. Biol. 2012;8:e1002765. doi: 10.1371/journal.pcbi.1002765. PubMed DOI PMC

Pandit S., Dalal V., Mishra G. Identification of novel phosphatidic acid binding domain on sphingosine kinase 1 of Arabidopsis thaliana. Plant Physiol. Biochem. 2018;128:178–184. doi: 10.1016/j.plaphy.2018.04.039. PubMed DOI

Zimmerberg J., Kozlov M.M. How proteins produce cellular membrane curvature. Nat. Rev. Mol. Cell Biol. 2005;7:9–19. doi: 10.1038/nrm1784. PubMed DOI

Yao H., Wang G., Guo L., Wang X. Phosphatidic acid interacts with a MYB transcription factor and regulates its nuclear localization and function in Arabidopsis. Plant Cell. 2013;25:5030–5042. doi: 10.1105/tpc.113.120162. PubMed DOI PMC

Kim S.-C., Guo L., Wang X. Phosphatidic acid binds to cytosolic glyceraldehyde-3-phosphate dehydrogenase and promotes its cleavage in Arabidopsis. J. Biol. Chem. 2013;288:11834–11844. doi: 10.1074/jbc.M112.427229. PubMed DOI PMC

Gautier R., Douguet D., Antonny B., Drin G. HELIQUEST: A web server to screen sequences with specific α-helical properties. Bioinformatics. 2008;24:2101–2102. doi: 10.1093/bioinformatics/btn392. PubMed DOI

Roy Choudhury S., Pandey S. Phosphatidic acid binding inhibits RGS1 activity to affect specific signaling pathways in Arabidopsis. Plant J. 2017;90:466–477. doi: 10.1111/tpj.13503. PubMed DOI

Kim S.-C., Nusinow D.A., Sorkin M.L., Pruneda-Paz J., Wang X. Interaction and regulation between lipid mediator phosphatidic acid and circadian clock regulators. Plant Cell. 2019;31:399–416. doi: 10.1105/tpc.18.00675. PubMed DOI PMC

Qu Y., Song P., Hu Y., Jin X., Jia Q., Zhang X., Chen L., Zhang Q. Regulation of stomatal movement by cortical microtubule organization in response to darkness and ABA signaling in Arabidopsis. Plant Growth Regul. 2018;84:467–479. doi: 10.1007/s10725-017-0353-5. DOI

Shen L., Zhuang B., Wu Q., Zhang H., Nie J., Jing W., Yang L., Zhang W. Phosphatidic acid promotes the activation and plasma membrane localization of MKK7 and MKK9 in response to salt stress. Plant Sci. 2019;287:110190. doi: 10.1016/j.plantsci.2019.110190. PubMed DOI

Zhou Y., Zhou D.M., Yu W.W., Shi L.L., Zhang Y., Lai Y.X., Huang L.P., Qi H., Chen Q.F., Yao N., et al. Phosphatidic acid modulates MPK3- and MPK6-mediated hypoxia signaling in Arabidopsis. Plant Cell. 2021;34:889–909. doi: 10.1093/plcell/koab289. PubMed DOI PMC

Barbosa I.C.R., Shikata H., Zourelidou M., Heilmann M., Heilmann I., Schwechheimer C. Phospholipid composition and a polybasic motif determine D6 PROTEIN KINASE polar association with the plasma membrane and tropic responses. Development. 2016;143:4687–4700. doi: 10.1242/dev.137117. PubMed DOI

Klimecka M., Bucholc M., Maszkowska J., Krzywińska E., Goch G., Lichocka M., Szczegielniak J., Dobrowolska G. Regulation of ABA-non-activated SNF1-related protein kinase 2 signaling pathways by phosphatidic acid. Int. J. Mol. Sci. 2020;21:4984. doi: 10.3390/ijms21144984. PubMed DOI PMC

Chen X., Li L., Xu B., Zhao S., Lu P., He Y., Ye T., Feng Y.-Q., Wu Y. Phosphatidylinositol-specific phospholipase C2 functions in auxin-modulated root development. Plant Cell Environ. 2018;42:1441–1457. doi: 10.1111/pce.13492. PubMed DOI

Peters C., Kim S.-C., Devaiah S., LI M., Wang X. Non-specific phospholipase C5 and diacylglycerol promote lateral root development under mild salt stress in Arabidopsis. Plant Cell Environ. 2014;37:2002–2013. doi: 10.1111/pce.12334. PubMed DOI

Tan S., Zhang X., Kong W., Yang X.-L., Molnár G., Vondráková Z., Filepová R., Petrášek J., Friml J., Xue H.-W. The lipid code-dependent phosphoswitch PDK1–D6PK activates PIN-mediated auxin efflux in Arabidopsis. Nat. Plants. 2020;6:556–569. doi: 10.1038/s41477-020-0648-9. PubMed DOI

Chang X., Riemann M., Liu Q., Nick P. Actin as Deathly Switch? How Auxin Can Suppress Cell-Death Related Defence. PLoS ONE. 2015;10:e0125498. doi: 10.1371/journal.pone.0125498. PubMed DOI PMC

Altúzar-Molina A.R., Muñoz-Sánchez J.A., Vázquez-Flota F., Monforte-González M., Racagni-Di Palma G., Hernández-Sotomayor S.M.T. Phospholipidic signaling and vanillin production in response to salicylic acid and methyl jasmonate in Capsicum chinense J. cells. Plant Physiol. Biochem. 2011;49:151–158. doi: 10.1016/j.plaphy.2010.11.005. PubMed DOI

Kalachova T., Iakovenko O., Kretinin S., Kravets V. Involvement of phospholipase D and NADPH-oxidase in salicylic acid signaling cascade. Plant Physiol. Biochem. 2013;66:127–133. doi: 10.1016/j.plaphy.2013.02.006. PubMed DOI

Rodas-Junco B.A., Muñoz-Sánchez J.A., Vázquez-Flota F., Hernández-Sotomayor S.M.T. Salicylic-acid elicited phospholipase D responses in Capsicum chinense cell cultures. Plant Physiol. Biochem. 2015;90:32–37. doi: 10.1016/j.plaphy.2015.02.022. PubMed DOI

Krinke O., Flemr M., Vergnolle C., Collin S., Renou J.-P., Taconnat L., Yu A., Burketová L., Valentová O., Zachowski A., et al. Phospholipase D Activation Is an Early Component of the Salicylic Acid Signaling Pathway in Arabidopsis Cell Suspensions. Plant Physiol. 2009;150:424. doi: 10.1104/pp.108.133595. PubMed DOI PMC

Rainteau D., Humbert L., Delage E., Vergnolle C., Cantrel C., Maubert M.-A., Lanfranchi S., Maldiney R., Collin S., Wolf C., et al. Acyl chains of phospholipase D transphosphatidylation products in Arabidopsis cells: A study using multiple reaction monitoring mass spectrometry. PLoS ONE. 2012;7:e41985. doi: 10.1371/journal.pone.0041985. PubMed DOI PMC

Kalachova T., Puga-Freitas R., Kravets V., Soubigou-Taconnat L., Repellin A., Balzergue S., Zachowski A., Ruelland E. The inhibition of basal phosphoinositide-dependent phospholipase C activity in Arabidopsis suspension cells by abscisic or salicylic acid acts as a signalling hub accounting for an important overlap in transcriptome remodelling induced by these hormones. Env. Exp. Bot. 2016;123:37–49. doi: 10.1016/j.envexpbot.2015.11.003. DOI

Ruelland E., Pokotylo I., Djafi N., Cantrel C., Repellin A., Zachowski A. Salicylic acid modulates levels of phosphoinositide dependent-phospholipase C substrates and products to remodel the Arabidopsis suspension cell transcriptome. Front. Plant Sci. 2014;5:608. doi: 10.3389/fpls.2014.00608. PubMed DOI PMC

Rodas-Junco B.A., Cab-Guillen Y., Muñoz-Sanchez J.A., Vázquez-Flota F., Monforte-Gonzalez M., Hérnandez-Sotomayor S.M.T. Salicylic acid induces vanillin synthesis through the phospholipid signaling pathway in Capsicum chinense cell cultures. Plant Signal. Behav. 2013;8:e26752. doi: 10.4161/psb.26752. PubMed DOI PMC

Wimalasekera R., Pejchar P., Holk A., Martinec J., Scherer G.F.E. Plant phosphatidylcholine-hydrolyzing phospholipases C NPC3 and NPC4 with roles in root development and brassinolide signaling in Arabidopsis thaliana. Mol. Plant. 2010;3:610–625. doi: 10.1093/mp/ssq005. PubMed DOI

Pokotylo I.V., Kretynin S.V., Khripach V.A., Ruelland E., Blume Y.B., Kravets V.S. Influence of 24-epibrassinolide on lipid signalling and metabolism in Brassica napus. Plant Growth Regul. 2014;73:9–17. doi: 10.1007/s10725-013-9863-y. DOI

Derevyanchuk M., Kretynin S., Iakovenko O., Litvinovskaya R., Zhabinskii V., Martinec J., Blume Y., Khripach V., Kravets V. Effect of 24-epibrassinolide on Brassica napus alternative respiratory pathway, guard cells movements and phospholipid signaling under salt stress. Steroids. 2017;117:16–24. doi: 10.1016/j.steroids.2016.11.006. PubMed DOI

Derevyanchuk M., Kretynin S., Kolesnikov Y., Litvinovskaya R., Martinec J., Khripach V., Kravets V. Seed germination, respiratory processes and phosphatidic acid accumulation in Arabidopsis diacylglycerol kinase knockouts – The effect of brassinosteroid, brassinazole and salinity. Steroids. 2019;147:28–36. doi: 10.1016/j.steroids.2019.04.002. PubMed DOI

Kumar D., Kumar R., Baek D., Hyun T.-K., Chung W.S., Yun D.-J., Kim J.-Y. Arabidopsis thaliana RECEPTOR DEAD KINASE1 functions as a positive regulator in plant responses to ABA. Mol. Plant. 2017;10:223–243. doi: 10.1016/j.molp.2016.11.011. PubMed DOI

Jiang Y., Wu K., Lin F., Qu Y., Liu X., Zhang Q. Phosphatidic acid integrates calcium signaling and microtubule dynamics into regulating ABA-induced stomatal closure in Arabidopsis. Planta. 2014;239:565–575. doi: 10.1007/s00425-013-1999-5. PubMed DOI

Uwase G., Enrico T., Chelimo D., Keyser B., Johnson R. Measuring gene expression in bombarded barley aleurone layers with increased throughput. J. Vis. Exp. 2018;133:56728. doi: 10.3791/56728. PubMed DOI PMC

Pandey S., Wang R.-S., Wilson L., Li S., Zhao Z., Gookin T.E., Assmann S.M., Albert R. Boolean modeling of transcriptome data reveals novel modes of heterotrimeric G-protein action. Mol. Syst. Biol. 2010;6:372. doi: 10.1038/msb.2010.28. PubMed DOI PMC

Bates G.W., Rosenthal D.M., Sun J., Chattopadhyay M., Peffer E., Yang J., Ort D.R., Jones A.M. A comparative study of the Arabidopsis thaliana guard-cell transcriptome and its modulation by sucrose. PLoS ONE. 2012;7:e49641. doi: 10.1371/journal.pone.0049641. PubMed DOI PMC

Cenzano A., Cantoro R., Racagni G., De Los Santos-Briones C., Hernández-Sotomayor T., Abdala G. Phospholipid and phospholipase changes by jasmonic acid during stolon to tuber transition of potato. Plant Growth Regul. 2008;56:307. doi: 10.1007/s10725-008-9311-6. DOI

Profotová B., Burketová L., Novotná Z., Martinec J., Valentová O. Involvement of phospholipases C and D in early response to SAR and ISR inducers in Brassica napus plants. Plant Physiol. Biochem. 2006;44:143–151. doi: 10.1016/j.plaphy.2006.02.003. PubMed DOI

Muñoz-Sánchez J.A., Altúzar-Molina A., Hérnandez-Sotomayor S.M.T. Phospholipase signaling is modified differentially by phytoregulators in Capsicum chinense J. cells. Plant Signal. Behav. 2012;7:1103–1105. doi: 10.4161/psb.21220. PubMed DOI PMC

Yang D., Liu X., Yin X., Dong T., Yu M., Wu Y. Rice non-specific phospholipase C6 is involved in mesocotyl elongation. Plant Cell Physiol. 2021;62:985–1000. doi: 10.1093/pcp/pcab069. PubMed DOI

Amini A., Glévarec G., Andreu F., Reverdiau P., Rideau M., Crèche J. Effects of phosphatidic acid on cytokinin signal transduction in periwinkle cells. J. Plant Growth Regul. 2008;27:394–399. doi: 10.1007/s00344-008-9058-3. DOI

Kravets V.S., Kolesnikov Y.S., Kretynin S.V., Getman I.A., Romanov G.A. Rapid activation of specific phospholipase(s) D by cytokinin in Amaranthus assay system. Physiol. Plant. 2010;138:249–255. doi: 10.1111/j.1399-3054.2009.01324.x. PubMed DOI

Qu Y., An Z., Zhuang B., Jing W., Zhang Q., Zhang W. Copper amine oxidase and phospholipase D act independently in abscisic acid (ABA)-induced stomatal closure in Vicia faba and Arabidopsis. J. Plant Res. 2014;127:533–544. doi: 10.1007/s10265-014-0633-3. PubMed DOI

Echevarría-Machado I., Ramos-Díaz A., Brito-Argáez L., Racagni-Di Palma G., Loyola-Vargas V.M., Hernández-Sotomayor S.M.T. Polyamines modify the components of phospholipids-based signal transduction pathway in Coffea arabica L. cells. Plant Physiol. Biochem. 2005;43:874–881. doi: 10.1016/j.plaphy.2005.08.013. PubMed DOI

Gully K., Pelletier S., Guillou M.-C., Ferrand M., Aligon S., Pokotylo I., Perrin A., Vergne E., Fagard M., Ruelland E., et al. The SCOOP12 peptide regulates defense response and root elongation in Arabidopsis thaliana. J. Exp. Bot. 2019;70:1349–1365. doi: 10.1093/jxb/ery454. PubMed DOI PMC

Jones A.M., Xuan Y., Xu M., Wang R.-S., Ho C.-H., Lalonde S., You C.H., Sardi M.I., Parsa S.A., Smith-Valle E., et al. Border control—a membrane-linked interactome of Arabidopsis. Science. 2014;344:711–716. doi: 10.1126/science.1251358. PubMed DOI

Scuffi D., Nietzel T. Hydrogen sulfide increases production of NADPH oxidase-dependent hydrogen peroxide and phospholipase D-derived phosphatidic acid in guard cell signaling. Plant Physiol. 2018;176:2532–2542. doi: 10.1104/pp.17.01636. PubMed DOI PMC

Chen J., Wang P., de Graaf B.H.J., Zhang H., Jiao H., Tang C., Zhang S., Wu J. Phosphatidic acid counteracts S-RNase signaling in pollen by stabilizing the actin cytoskeleton. Plant Cell. 2018;30:1023–1039. doi: 10.1105/tpc.18.00021. PubMed DOI PMC

Chen Z.-F., Ru J.-N., Sun G.-Z., Du Y., Chen J., Zhou Y.-B., Chen M., Ma Y.-Z., Xu Z.-S., Zhang X.-H. Genomic-wide analysis of the PLC family and detection of GmPI-PLC7 responses to drought and salt stresses in soybean. Front. Plant Sci. 2021;12:631470. doi: 10.3389/fpls.2021.631470. PubMed DOI PMC

Robert-Seilaniantz A., MacLean D., Jikumaru Y., Hill L., Yamaguchi S., Kamiya Y., Jones J.D.G. The microRNA miR393 re-directs secondary metabolite biosynthesis away from camalexin and towards glucosinolates. Plant J. 2011;67:218–231. doi: 10.1111/j.1365-313X.2011.04591.x. PubMed DOI

Goda H., Sasaki E., Akiyama K., Maruyama-Nakashita A., Nakabayashi K., Li W., Ogawa M., Yamauchi Y., Preston J., Aoki K., et al. The AtGenExpress hormone and chemical treatment data set: Experimental design, data evaluation, model data analysis and data access. Plant J. Cell Mol. Biol. 2008;55:526–542. doi: 10.1111/j.1365-313X.2008.03510.x. PubMed DOI

Van Zanten M., Basten Snoek L., Van Eck-Stouten E., Proveniers M.C.G., Torii K.U., Voesenek L.A.C.J., Peeters A.J.M., Millenaar F.F. Ethylene-induced hyponastic growth in Arabidopsis thaliana is controlled by ERECTA. Plant J. 2010;61:83–95. doi: 10.1111/j.1365-313X.2009.04035.x. PubMed DOI

Argyros R.D., Mathews D.E., Chiang Y.-H., Palmer C.M., Thibault D.M., Etheridge N., Argyros D.A., Mason M.G., Kieber J.J., Schaller G.E. Type B Response Regulators of Arabidopsis play key roles in cytokinin signaling and plant development. Plant Cell. 2008;20:2102–2116. doi: 10.1105/tpc.108.059584. PubMed DOI PMC

Gupta A., Singh M., Laxmi A. Multiple interactions between glucose and brassinosteroid signal transduction pathways in Arabidopsis are uncovered by whole-genome transcriptional profiling. Plant Physiol. 2015;168:1091–1105. doi: 10.1104/pp.15.00495. PubMed DOI PMC

Mueller S., Hilbert B., Dueckershoff K., Roitsch T., Krischke M., Mueller M.J., Berger S. General detoxification and stress responses are mediated by oxidized lipids through TGA transcription factors in Arab. Plant Cell. 2008;20:768–785. doi: 10.1105/tpc.107.054809. PubMed DOI PMC

Haruta M., Sabat G., Stecker K., Minkoff B.B., Sussman M.R. A peptide hormone and its receptor protein kinase regulate plant cell expansion. Science. 2014;343:408–411. doi: 10.1126/science.1244454. PubMed DOI PMC

Mashiguchi K., Sakaki E., Shimada Y., Nagae M., Ueno K., Nakano T., Yoneyama K., Suzuki Y., Asami T. Feedback-regulation of strigolactone biosynthetic genes and strigolactone-regulated genes in Arabidopsis. Biosci. Biotechnol. Biochem. 2009;73:2460–2465. doi: 10.1271/bbb.90443. PubMed DOI

Welti R., Li W., Li M., Sang Y., Biesiada H., Zhou H.E., Rajashekar C.B., Williams T.D., Wang X. Profiling membrane lipids in plant stress responses. Role of phospholipase D alpha in freezing-induced lipid changes in Arabidopsis. J. Biol. Chem. 2002;277:31994–32002. doi: 10.1074/jbc.M205375200. PubMed DOI

Noack L.C., Bayle V., Armengot L., Rozier F.d.r., Mamode-Cassim A., Stevens F.D., Caillaud M.-C.c., Munnik T., Mongrand S.b., Pleskot R., et al. A nanodomain-anchored scaffolding complex is required for the function and localization of phosphatidylinositol 4-kinase alpha in plants. Plant Cell. 2021;34:302–332. doi: 10.1093/plcell/koab135. PubMed DOI PMC

Mamode Cassim A., Gouguet P., Gronnier J., Laurent N., Germain V., Grison M., Boutté Y., Gerbeau-Pissot P., Simon-Plas F., Mongrand S. Plant lipids: Key players of plasma membrane organization and function. Prog. Lipid Res. 2019;73:1–27. doi: 10.1016/j.plipres.2018.11.002. PubMed DOI

Wang T., Hu M., Yuan D., Yun Z., Gao Z., Su Z., Zhang Z. Melatonin alleviates pericarp browning in litchi fruit by regulating membrane lipid and energy metabolisms. Postharvest Biol. Technol. 2020;160:111066. doi: 10.1016/j.postharvbio.2019.111066. DOI

Wong A., Donaldson L., Portes M.T., Eppinger J., Feijó J.A., Gehring C. Arabidopsis DIACYLGLYCEROL KINASE4 is involved in nitric oxide-dependent pollen tube guidance and fertilization. Development. 2020;147 doi: 10.1242/dev.183715. PubMed DOI

Yao S., Peng S., Wang X. Phospholipase Dε interacts with autophagy-related-protein 8 and promotes autophagy in Arabidopsis response to nitrogen deficiency. Plant J. 2022 doi: 10.1111/tpj.15649. PubMed DOI

Holland P., Knævelsrud H., Søreng K., Mathai B.J., Lystad A.H., Pankiv S., Bjørndal G.T., Schultz S.W., Lobert V.H., Chan R.B., et al. HS1BP3 negatively regulates autophagy by modulation of phosphatidic acid levels. Nat. Commun. 2016;7:13889. doi: 10.1038/ncomms13889. PubMed DOI PMC

Su Y., Li M., Guo L., Wang X. Different effects of phospholipase Dζ2 and non-specific phospholipase C4 on lipid remodeling and root hair growth in Arabidopsis response to phosphate deficiency. Plant J. Cell Mol. Biol. 2018;94:315–326. doi: 10.1111/tpj.13858. PubMed DOI

Wang Y., Duran H.G.S., van Haarst J.C., Schijlen E.G.W.M., Ruyter-Spira C., Medema M.H., Dong L., Bouwmeester H.J. The role of strigolactones in P deficiency induced transcriptional changes in tomato roots. BMC Plant Biol. 2021;21:349. doi: 10.1186/s12870-021-03124-0. PubMed DOI PMC

Takáč T., Šamajová O., Vadovič P., Pechan T., Šamaj J. Shot-gun proteomic analysis on roots of Arabidopsis pldα1 mutants suggesting the involvement of PLDα1 in mitochondrial protein import, vesicular trafficking and glucosinolate biosynthesis. Int. J. Mol. Sci. 2018;20:82. doi: 10.3390/ijms20010082. PubMed DOI PMC

Takáč T., Pechan T., Šamajová O., Šamaj J. Proteomic analysis of Arabidopsis pldα1 mutants revealed an important role of phospholipase D alpha 1 in chloroplast biogenesis. Front. Plant Sci. 2019;10:89. doi: 10.3389/fpls.2019.00089. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...