Cellular Responses Modulated by FGF-2 Adsorbed on Albumin/Heparin Layer-by-Layer Assemblies
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25945799
PubMed Central
PMC4422587
DOI
10.1371/journal.pone.0125484
PII: PONE-D-14-55589
Knihovny.cz E-zdroje
- MeSH
- albuminy farmakologie MeSH
- buněčná adheze účinky léků MeSH
- buněčná diferenciace účinky léků MeSH
- buněčné kultury metody MeSH
- endoteliální buňky cytologie MeSH
- fibroblastový růstový faktor 2 metabolismus farmakologie MeSH
- heparin farmakologie MeSH
- kultivační média chemie MeSH
- lidé MeSH
- mikroskopie atomárních sil MeSH
- proliferace buněk účinky léků MeSH
- skot MeSH
- vazba proteinů MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- skot MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- albuminy MeSH
- fibroblastový růstový faktor 2 MeSH
- heparin MeSH
- kultivační média MeSH
In a typical cell culture system, growth factors immobilized on the cell culture surfaces can serve as a reservoir of bio-signaling molecules, without the need to supplement them additionally into the culture medium. In this paper, we report on the fabrication of albumin/heparin (Alb/Hep) assemblies for controlled binding of basic fibroblast growth factor (FGF-2). The surfaces were constructed by layer-by-layer adsorption of polyelectrolytes albumin and heparin and were subsequently stabilized by covalent crosslinking with glutaraldehyde. An analysis of the surface morphology by atomic force microscopy showed that two Alb/Hep bilayers are required to cover the surface of substrate. The formation of the Alb/Hep assemblies was monitored by the surface plasmon resonance (SPR), the infrared multiinternal reflection spectroscopy (FTIR MIRS) and UV/VIS spectroscopy. The adsorption of FGF-2 on the cross-linked Alb/Hep was followed by SPR. The results revealed that FGF-2 binds to the Alb/Hep assembly in a dose and time-dependent manner up to the surface concentration of 120 ng/cm(2). The bioactivity of the adsorbed FGF-2 was assessed in experiments in vitro, using calf pulmonary arterial endothelial cells (CPAE). CPAE cells could attach and proliferate on Alb/Hep surfaces. The adsorbed FGF-2 was bioactive and stimulated both the proliferation and the differentiation of CPAE cells. The improvement was more pronounced at a lower FGF-2 surface concentration (30 ng/cm(2)) than on surfaces with a higher concentration of FGF-2 (120 ng/cm(2)).
Zobrazit více v PubMed
Ito Y, Zheng J, Imanishi Y. Immobilization of Biosignal Proteins to Control Cellular Functions In: Ogata N, Kim S, Feijen J, Okano T, editors. Advanced Biomaterials in Biomedical Engineering and Drug Delivery Systems: Springer Japan; 1996. pp. 265–266.
Wong LS, Khan F, Micklefield J. Selective Covalent Protein Immobilization: Strategies and Applications. Chem Rev. 2009;109: 4025–4053. 10.1021/cr8004668 PubMed DOI
Cha T, Guo A, Zhu XY. Enzymatic activity on a chip: the critical role of protein orientation. Proteomics. 2005;5: 416–419. PubMed
Butler JE. Solid supports in enzyme-linked immunosorbent assay and other solid-phase immunoassays. Methods. 2000;22: 4–23. PubMed
Saksela O, Moscatelli D, Sommer A, Rifkin DB. Endothelial Cell-Derived Heparan-Sulfate Binds Basic Fibroblast Growth-Factor and Protects It from Proteolytic Degradation. J Cell Biol. 1988;107: 743–751. PubMed PMC
Faham S, Hileman RE, Fromm JR, Linhardt RJ, Rees DC. Heparin structure and interactions with basic fibroblast growth factor. Science. 1996;271: 1116–1120. PubMed
Schlessinger J, Plotnikov AN, Ibrahimi OA, Eliseenkova AV, Yeh BK, Yayon A, et al. Crystal structure of a ternary FGF-FGFR-heparin complex reveals a dual role for heparin in FGFR binding and dimerization. Mol Cell. 2000;6: 743–750. PubMed
Arakawa T, Wen J, Philo JS. Stoichiometry of Heparin-Binding to Basic Fibroblast Growth-Factor. Arch Biochem Biophys. 1994;308: 267–273. PubMed
Gospodarowicz D, Cheng J. Heparin Protects Basic and Acidic Fgf from Inactivation. J Cell Physiol. 1986;128: 475–484. PubMed
Kratz F. Albumin as a drug carrier: Design of prodrugs, drug conjugates and nanoparticles. J Control Release. 2008;132: 171–183. 10.1016/j.jconrel.2008.05.010 PubMed DOI
She Z, Wang CX, Li J, Sukhorukov GB, Antipina MN. Encapsulation of Basic Fibroblast Growth Factor by Polyelectrolyte Multilayer Microcapsules and Its Controlled Release for Enhancing Cell Proliferation. Biomacromolecules. 2012;13: 2174–2180. 10.1021/bm3005879 PubMed DOI
Mao ZW, Ma L, Zhou J, Gao CY, Shen JC. Bioactive thin film of acidic fibroblast growth factor fabricated by layer-by-layer assembly. Bioconjug Chem. 2005;16: 1316–1322. PubMed
De Cock LJ, De Wever O, Van Vlierberghe S, Vanderleyden E, Dubruel P, De Vos F, et al. Engineered (hep/pARG)(2) polyelectrolyte capsules for sustained release of bioactive TGF-beta 1. Soft Matter. 2012;8: 1146–1154.
Macdonald M, Rodriguez NM, Smith R, Hammond PT. Release of a model protein from biodegradable self assembled films for surface delivery applications. J Control Release. 2008;131: 228–234. 10.1016/j.jconrel.2008.07.032 PubMed DOI PMC
Yan Y, Björnmalm M, Caruso F. Assembly of Layer-by-Layer Particles and Their Interactions with Biological Systems. Chem Mater. 2014;26: 452–460.
Ariga K, Yamauchi Y, Rydzek G, Ji QM, Yonamine Y, Wu KCW, et al. Layer-by-layer Nanoarchitectonics: Invention, Innovation, and Evolution. Chem Lett. 2014;43: 36–68.
Gribova V, Auzely-Velty R, Picart C. Polyelectrolyte Multilayer Assemblies on Materials Surfaces: From Cell Adhesion to Tissue Engineering. Chem Mater. 2012;24: 854–869. PubMed PMC
Bjornmalm M, Yan Y, Caruso F. Engineering and evaluating drug delivery particles in microfluidic devices. J Control Release. 2014;190: 139–149. 10.1016/j.jconrel.2014.04.030 PubMed DOI
Wang HG, Yin TY, Ge SP, Zhang Q, Dong QL, Lei DX, et al. Biofunctionalization of titanium surface with multilayer films modified by heparin-VEGF-fibronectin complex to improve endothelial cell proliferation and blood compatibility. J Biomed Mater Res A. 2013;101A: 413–420. PubMed
Almodovar J, Bacon S, Gogolski J, Kisiday JD, Kipper MJ. Polysaccharide-Based Polyelectrolyte Multi layer Surface Coatings can Enhance Mesenchymal Stem Cell Response to Adsorbed Growth Factors. Biomacromolecules. 2010;11: 2629–2639. 10.1021/bm1005799 PubMed DOI
Cai P, Xue ZY, Qi W, Wang H. Adsorbed BMP-2 in polyelectrolyte multilayer films for enhanced early osteogenic differentiation of mesenchymal stem cells. Colloids Surf A Physicochem Eng Asp. 2013;434: 110–117.
Chanana M, Gliozzi A, Diaspro A, Chodnevskaja I, Huewel S, Moskalenko V, et al. Interaction of polyelectrolytes and their composites with living cells. Nano Lett. 2005;5: 2605–2612. PubMed
Fischer D, Li YX, Ahlemeyer B, Krieglstein J, Kissel T. In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials. 2003;24: 1121–1131. PubMed
Crouzier T, Ren K, Nicolas C, Roy C, Picart C. Layer-By-Layer Films as a Biomimetic Reservoir for rhBMP-2 Delivery: Controlled Differentiation of Myoblasts to Osteoblasts. Small. 2009;5: 598–608. 10.1002/smll.200800804 PubMed DOI
Almodovar J, Guillot R, Monge C, Vollaire J, Selimovic S, Coll JL, et al. Spatial patterning of BMP-2 and BMP-7 on biopolymeric films and the guidance of muscle cell fate. Biomaterials. 2014;35: 3975–3985. 10.1016/j.biomaterials.2014.01.012 PubMed DOI PMC
Ma Q, Wang W, Chu PK, Mei S, Ji K, Jin L, et al. Concentration- and time-dependent response of human gingival fibroblasts to fibroblast growth factor 2 immobilized on titanium dental implants. Int J Nanomedicine. 2012;7: 1965–1976. 10.2147/IJN.S29538 PubMed DOI PMC
Bos GW, Scharenborg NM, Poot AA, Engbers GHM, Beugeling T, van Aken WG, et al. Proliferation of endothelial cells on surface-immobilized albumin-heparin conjugate loaded with basic fibroblast growth factor. J Biomed Mater Res. 1999;44: 330–340. PubMed
Brynda E, Houska M, Jirouskova M, Dyr JE. Albumin and heparin multilayer coatings for blood-contacting medical devices. J Biomed Mater Res. 2000;51: 249–257. PubMed
Houska M, Brynda E, Solovyev A, Brouckova A, Krizova P, Vanickova M, et al. Hemocompatible albumin-heparin coatings prepared by the layer-by-layer technique. The effect of layer ordering on thrombin inhibition and Platelet adhesion. J Biomed Mater Res A. 2008;86A: 769–778. PubMed
Seyrek E, Dubin PL, Tribet C, Gamble EA. Ionic strength dependence of protein-polyelectrolyte interactions. Biomacromolecules. 2003;4: 273–282. PubMed
Zhang DM, Ansar SM, Vangala K, Jiang DP. Protein adsorption drastically reduces surface-enhanced Raman signal of dye molecules. J Raman Spectrosc. 2010;41: 952–957.
Emmenegger CR, Brynda E, Riedel T, Sedlakova Z, Houska M, Alles AB. Interaction of Blood Plasma with Antifouling Surfaces. Langmuir. 2009;25: 6328–6333. 10.1021/la900083s PubMed DOI
Krishnan A, Liu YH, Cha P, Woodward R, Allara D, Vogler EA, et al. An evaluation of methods for contact angle measurement. Colloids Surf B Biointerfaces. 2005;43: 95–98. PubMed
Mirow N, Zimmermann B, Maleszka A, Knobl H, Tenderich G, Koerfer R, et al. Plasma protein binding properties to immobilized heparin and heparin-albumin conjugate. Artif Organs. 2007;31: 466–471. PubMed
Stenberg E, Persson B, Roos H, Urbaniczky C. Quantitative-Determination of Surface Concentration of Protein with Surface-Plasmon Resonance Using Radiolabeled Proteins. J Colloid Interface Sci. 1991;143: 513–526.
Gesellchen F, Zimmermann B, Herberg FW. Direct optical detection of protein-ligand interactions. Methods Mol Biol. 2005;305: 17–46. PubMed
Houska M, Brynda E. Interactions of proteins with polyelectrolytes at solid/liquid interfaces: Sequential adsorption of albumin and heparin. J Colloid Interface Sci. 1997;188: 243–250.
Brynda E, Houska M, Wikerstal A, Pientka Z, Dyr JE, Brandenburg A. Characterization of flexibility of ultrathin protein films by optical sensing. Langmuir. 2000;16: 4352–4357.
Brynda E, Houska M. Multiple alternating molecular layers of albumin and heparin on solid surfaces. J Colloid Interface Sci. 1996;183: 18–25.
Migneault I, Dartiguenave C, Bertrand MJ, Waldron KC. Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. Biotechniques. 2004;37: 790–802. PubMed
Hardy PM, Hughes GJ, Rydon HN. Nature of the Cross-Linking of Proteins by Glutaraldehyde .2. The Formation of Quaternary Pyridinium Compounds by the Action of Glutaraldehyde on Proteins and the Identification of a 3-(2-Piperidyl)-Pyridinium Derivative, Anabilysine, as a Cross-Linking Entity. J Chem Soc Perkin 1 1979;2282–2288.
Sjoback R, Nygren, J.Kubista M. Absorption and fluorescence properties of fluorescein. Spectrochim Acta A Mol Biomol Spectrosc. 1995;51: L7–L21.
Zeiger AS, Hinton B, Van Vliet KJ. Why the dish makes a difference: Quantitative comparison of polystyrene culture surfaces. Acta Biomater. 2013;9: 7354–7361. 10.1016/j.actbio.2013.02.035 PubMed DOI
Macdonald ML, Rodriguez NM, Shah NJ, Hammond PT. Characterization of Tunable FGF-2 Releasing Polyelectrolyte Multilayers. Biomacromolecules. 2010;11: 2053–2059. 10.1021/bm100413w PubMed DOI PMC
Filova E, Brynda E, Riedel T, Bacakova L, Chlupac J, Lisa V, et al. Vascular endothelial cells on two-and three-dimensional fibrin assemblies for biomaterial coatings. J Biomed Mater Res A. 2009;90: 55–69. 10.1002/jbm.a.32065 PubMed DOI
da Costa DS, Pires RA, Frias AM, Reis RL, Pashkuleva I. Sulfonic groups induce formation of filopodia in mesenchymal stem cells. J Mater Chem. 2012;22: 7172–7178.
Tsuboi R, Sato Y, Rifkin DB. Correlation of Cell-Migration, Cell Invasion, Receptor Number, Proteinase Production, and Basic Fibroblast Growth-Factor Levels in Endothelial-Cells. J Cell Biol. 1990;110: 511–517. PubMed PMC
Ren K, Crouzier T, Roy C, Picart C. Polyelectrolyte multilayer films of controlled stiffness modulate myoblast cells differentiation. Adv Funct Mater. 2008;18: 1378–1389. PubMed PMC
Arisaka Y, Kobayashi J, Yamato M, Akiyama Y, Okano T. Switching of cell growth/detachment on heparin-functionalized thermoresponsive surface for rapid cell sheet fabrication and manipulation. Biomaterials. 2013;34: 4214–4222. 10.1016/j.biomaterials.2013.02.056 PubMed DOI
Girard JP, Springer TA. Modulation of endothelial cell adhesion by hevin, an acidic protein associated with high endothelial venules. J Biol Chem. 1996;271: 4511–4517. PubMed
Magoshi T, Matsuda T. Formation of polymerized mixed heparin/albumin surface layer and cellular adhesional responses. Biomacromolecules. 2002;3: 976–983. PubMed
Richert L, Boulmedais F, Lavalle P, Mutterer J, Ferreux E, Decher G, et al. Improvement of stability and cell adhesion properties of polyelectrolyte multilayer films by chemical cross-linking. Biomacromolecules. 2004;5: 284–294. PubMed
Wang JS, Aspenberg P. Basic fibroblast growth factor enhances bone-graft incorporation: dose and time dependence in rats. J Orthop Res. 1996;14: 316–323. PubMed
Mcavoy JW, Chamberlain CG. Fibroblast Growth-Factor (FGF) Induces Different Responses in Lens Epithelial-Cells Depending on Its Concentration. Development. 1989;107: 221–228. PubMed
Takayama S, Murakami S, Miki Y, Ikezawa K, Tasaka S, Terashima A, et al. Effects of basic fibroblast growth factor on human periodontal ligament cells. J Periodont Res. 1997;32: 667–675. PubMed
Tanghetti E, Ria R, Dell'Era P, Urbinati C, Rusnati M, Ennas MG, et al. Biological activity of substrate-bound basic fibroblast growth factor (FGF2): recruitment of FGF receptor-1 in endothelial cell adhesion contacts. Oncogene. 2002;21: 3889–3897. PubMed
Wittmer CR, Phelps JA, Saltzman WM, Van Tassel PR. Fibronectin terminated multilayer films: Protein adsorption and cell attachment studies. Biomaterials. 2007;28: 851–860. PubMed PMC
Khang D, Lu J, Yao C, Haberstroh KM, Webster TJ. The role of nanometer and sub-micron surface features on vascular and bone cell adhesion on titanium. Biomaterials. 2008;29: 970–983. PubMed
Ranjan A, Webster TJ. Increased endothelial cell adhesion and elongation on micron-patterned nano-rough poly(dimethylsiloxane) films. Nanotechnology. 2009;20: 305102 10.1088/0957-4484/20/30/305102 PubMed DOI
Rusnati M, Tanghetti E, DellEra P, Gualandris A, Presta M. αvβ3 integrin mediates the cell-adhesive capacity and biological activity of basic fibroblast growth factor (FGF-2) in cultured endothelial cells. Mol Biol Cell. 1997;8: 2449–2461. PubMed PMC
Vestweber D, Winderlich M, Cagna G, Nottebaum AF. Cell adhesion dynamics at endothelial junctions: VE-cadherin as a major player. Trends Cell Biol. 2009;19: 8–15. 10.1016/j.tcb.2008.10.001 PubMed DOI
Hatanaka K, Lanahan AA, Murakami M, Simons M. Fibroblast Growth Factor Signaling Potentiates VE-Cadherin Stability at Adherens Junctions by Regulating SHP2. PLoS One. 2012;7: e37600 10.1371/journal.pone.0037600 PubMed DOI PMC
Skop NB, Calderon F, Levison SW, Gandhi CD, Cho CH. Heparin crosslinked chitosan microspheres for the delivery of neural stem cells and growth factors for central nervous system repair. Acta Biomater. 2013;9: 6834–6843. 10.1016/j.actbio.2013.02.043 PubMed DOI
Karageorgiou V, Meinel L, Hofmann S, Malhotra A, Volloch V, Kaplan D. Bone morphogenetic protein-2 decorated silk fibroin films induce osteogenic differentiation of human bone marrow stromal cells. J Biomed Mater Res A. 2004;71A: 528–537. PubMed
Mann BK, Schmedlen RH, West JL. Tethered-TGF-beta increases extracellular matrix production of vascular smooth muscle cells. Biomaterials. 2001;22: 439–444. PubMed
Lee HT, Kay EP. FGF-2 induced reorganization and disruption of actin cytoskeleton through PI 3-kinase, Rho, and Cdc42 in corneal endothelial cells. Mol Vis. 2003;9: 624–634. PubMed