Growth Factors VEGF-A165 and FGF-2 as Multifunctional Biomolecules Governing Cell Adhesion and Proliferation

. 2021 Feb 12 ; 22 (4) : . [epub] 20210212

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33673317

Grantová podpora
18-01163S Grantová Agentura České Republiky
NV18-02-00422 Ministerstvo Zdravotnictví Ceské Republiky
CZ.1.05/1.1.00/02.0109 Ministerstvo Školství, Mládeže a Tělovýchovy
BIOCEV-FAR Project within LQ1604 National Sustainability Program II Ministerstvo Školství, Mládeže a Tělovýchovy
LTC18038 Ministerstvo Školství, Mládeže a Tělovýchovy

Vascular endothelial growth factor-A165 (VEGF-A165) and fibroblast growth factor-2 (FGF-2) are currently used for the functionalization of biomaterials designed for tissue engineering. We have developed a new simple method for heterologous expression and purification of VEGF-A165 and FGF-2 in the yeast expression system of Pichia pastoris. The biological activity of the growth factors was assessed in cultures of human and porcine adipose tissue-derived stem cells (ADSCs) and human umbilical vein endothelial cells (HUVECs). When added into the culture medium, VEGF-A165 stimulated proliferation only in HUVECs, while FGF-2 stimulated the proliferation of both cell types. A similar effect was achieved when the growth factors were pre-adsorbed to polystyrene wells. The effect of our recombinant growth factors was slightly lower than that of commercially available factors, which was attributed to the presence of some impurities. The stimulatory effect of the VEGF-A165 on cell adhesion was rather weak, especially in ADSCs. FGF-2 was a potent stimulator of the adhesion of ADSCs but had no to negative effect on the adhesion of HUVECs. In sum, FGF-2 and VEGF-A165 have diverse effects on the behavior of different cell types, which maybe utilized in tissue engineering.

Zobrazit více v PubMed

Bhisitkul R.B. Vascular endothelial growth factor biology: Clinical implications for ocular treatments. Br. J. Ophthalmol. 2006;90:1542–1547. doi: 10.1136/bjo.2006.098426. PubMed DOI PMC

Luzuriaga J., Irurzun J., Irastorza I., Unda F., Ibarretxe G., Pineda J.R. Vasculogenesis from human dental pulp stem cells grown in matrigel with fully defined serum-free culture media. Biomedicines. 2020;8:483. doi: 10.3390/biomedicines8110483. PubMed DOI PMC

Kukula K., Urbanowicz A., Klopotowski M., Dabrowski M., Pregowski J., Kadziela J., Chmielak Z., Witkowski A., Ruzyllo W. Long-term follow-up and safety assessment of angiogenic gene therapy trial VIF-CAD: Transcatheter intramyocardial administration of a bicistronic plasmid expressing VEGF-A165/bFGF cDNA for the treatment of refractory coronary artery disease. Am. Heart J. 2019;215:78–82. doi: 10.1016/j.ahj.2019.06.009. PubMed DOI

Anttila V., Saraste A., Knuuti J., Jaakkola P., Hedman M., Svedlund S., Lagerstrom-Fermer M., Kjaer M., Jeppsson A., Gan L.M. Synthetic mRNA encoding VEGF-A in patients undergoing coronary artery bypass grafting: Design of a phase 2a clinical trial. Mol. Ther. Methods Clin. Dev. 2020;18:464–472. doi: 10.1016/j.omtm.2020.05.030. PubMed DOI PMC

Kastrup J. Therapeutic angiogenesis in ischemic heart disease: Gene or recombinant vascular growth factor protein therapy? Curr. Gene Ther. 2003;3:197–206. doi: 10.2174/1566523034578366. PubMed DOI

Xu Y., Qiu J.L., Sun Q.F., Yan S.G., Wang W.X., Yang P.S., Song A.M. One year results evaluating the effects of concentrated growth factors on the healing of intrabony defects treated with or without bone substitute in chronic periodontitis. Med. Sci. Monit. Int. Med J. Exp. Clin. Res. 2019;25:4384–4389. doi: 10.12659/MSM.917025. PubMed DOI PMC

Fadeev F.O., Bashirov F.V., Markosyan V.A., Izmailov A.A., Povysheva T.V., Sokolov M.E., Kuznetsov M.S., Eremeev A.A., Salafutdinov I.I., Rizvanov A.A., et al. Combination of epidural electrical stimulation with ex vivo triple gene therapy for spinal cord injury: A proof of principle study. Neural Regen. Res. 2021;16:550–560. doi: 10.4103/1673-5374.293150. PubMed DOI PMC

Masgutov R., Zeinalova A., Bogov A., Masgutova G., Salafutdinov I., Garanina E., Syromiatnikova V., Idrisova K., Mullakhmetova A., Andreeva D., et al. Angiogenesis and nerve regeneration induced by local administration of plasmid pBud-coVEGF165-coFGF2 into the intact rat sciatic nerve. Neural Regen. Res. 2021;16:1882–1889. doi: 10.4103/1673-5374.306090. PubMed DOI PMC

Smith R.J., Nasiri B., Kann J., Yergeau D., Bard J.E., Swartz D.D., Andreadis S.T. Endothelialization of arterial vascular grafts by circulating monocytes. Nat. Commun. 2020;11:1622. doi: 10.1038/s41467-020-15361-2. PubMed DOI PMC

Rossi C., Lees M., Mehta V., Heikura T., Martin J., Zachary I., Spencer R., Peebles D.M., Shaw R., Karhinen M., et al. Comparison of efficiency and function of vascular endothelial growth factor adenovirus vectors in endothelial cells for gene therapy of placental insufficiency. Hum. Gene Ther. 2020;31:1190–1202. doi: 10.1089/hum.2020.006. PubMed DOI PMC

Ishihara J., Ishihara A., Starke R.D., Peghaire C.R., Smith K.E., McKinnon T.A.J., Tabata Y., Sasaki K., White M.J.V., Fukunaga K., et al. The heparin binding domain of von Willebrand factor binds to growth factors and promotes angiogenesis in wound healing. Blood. 2019;133:2559–2569. doi: 10.1182/blood.2019000510. PubMed DOI PMC

Knaack S., Lode A., Hoyer B., Rosen-Wolff A., Gabrielyan A., Roeder I., Gelinsky M. Heparin modification of a biomimetic bone matrix for controlled release of VEGF. J. Biomed. Mater. Res. Part A. 2014;102:3500–3511. doi: 10.1002/jbm.a.35020. PubMed DOI

Filova E., Steinerova M., Travnickova M., Knitlova J., Musilkova J., Eckhardt A., Hadraba D., Matejka R., Prazak S., Stepanovska J., et al. Accelerated in in vitro recellularization of decellularized porcine pericardium for cardiovascular grafts. Biomed. Mater. 2020 doi: 10.1088/1748-605X/abbdbd. PubMed DOI

Hutchings H., Ortega N., Plouet J. Extracellular matrix-bound vascular endothelial growth factor promotes endothelial cell adhesion, migration, and survival through integrin ligation. FASEB J. 2003;17:1520–1522. doi: 10.1096/fj.02-0691fje. PubMed DOI

Gutierrez-Gonzalez A., Aguilera-Montilla N., Ugarte-Berzal E., Bailon E., Cerro-Pardo I., Sanchez-Maroto C., Garcia-Campillo L., Garcia-Marco J.A., Garcia-Pardo A. α4β1 integrin associates with VEGFR2 in CLL cells and contributes to VEGF binding and intracellular signaling. Blood Adv. 2019;3:2144–2148. doi: 10.1182/bloodadvances.2019000019. PubMed DOI PMC

Bikfalvi A., Klein S., Pintucci G., Rifkin D.B. Biological roles of fibroblast growth factor-2. Endocr. Rev. 1997;18:26–45. doi: 10.1210/er.18.1.26. PubMed DOI

Gharibi B., Hughes F.J. Effects of medium supplements on proliferation, differentiation potential, and in vitro expansion of mesenchymal stem cells. Stem Cells Transl. Med. 2012;1:771–782. doi: 10.5966/sctm.2010-0031. PubMed DOI PMC

Al-Masawa M.E., Zaman W.S.W.K., Chua K.H. Biosafety evaluation of culture-expanded human chondrocytes with growth factor cocktail: A preclinical study. Sci. Rep. 2020;10 doi: 10.1038/s41598-020-78395-y. PubMed DOI PMC

Vahdat S., Pahlavan S., Mahmoudi E., Barekat M., Ansari H., Bakhshandeh B., Aghdami N., Baharvand H. Expansion of human pluripotent stem cell-derived early cardiovascular progenitor cells by a cocktail of signaling factors. Sci. Rep. 2019;9 doi: 10.1038/s41598-019-52516-8. PubMed DOI PMC

Ahn H.N., Kang H.S., Park S.J., Park M.H., Chun W., Cho E. Safety and efficacy of basic fibroblast growth factors for deep second-degree burn patients. Burns. 2020;46:1857–1866. doi: 10.1016/j.burns.2020.06.019. PubMed DOI

Fu X.B., Shen Z.Y., Chen Y.L., Xie J.H., Guo Z.R., Zhang M.L., Sheng Z.Y. Recombinant bovine basic fibroblast growth factor accelerates wound healing in patients with burns, donor sites and chronic dermal ulcers. Chin. Med. J. 2000;113:367–371. PubMed

Kuroda Y., Kawai T., Goto K., Matsuda S. Clinical application of injectable growth factor for bone regeneration: A systematic review. Inflamm. Regen. 2019;39 doi: 10.1186/s41232-019-0109-x. PubMed DOI PMC

Yoshida W., Takeuchi T., Imamura K., Seshima F., Saito A., Tomita S. Treatment of chronic periodontitis with recombinant human fibroblast growth factor-2 and deproteinized bovine bone mineral in wide intrabony defects:12-month follow-up case series. Bull. Tokyo Dent. Coll. 2020;61:231–241. doi: 10.2209/tdcpublication.2019-0050. PubMed DOI

Fiorillo L., Cervino G., Galindo-Moreno P., Herford A.S., Spagnuolo G., Cicciu M. Growth factors in oral tissue engineering: New perspectives and current therapeutic options. BioMed Res. Int. 2021;2021:8840598. doi: 10.1155/2021/8840598. PubMed DOI PMC

Wang H., Zhou W.X., Huang J.F., Zheng X.Q., Tian H.J., Wang B., Fu W.L., Wu A.M. Endocrine therapy for the functional recovery of spinal cord injury. Front. Neurosci. 2020;14:590570. doi: 10.3389/fnins.2020.590570. PubMed DOI PMC

Salem S.A.M., Fezeaa T.A., El Khazragy N., Soltan M.Y. Effect of platelet-rich plasma on the outcome of mini-punch grafting procedure in localized stable vitiligo: Clinical evaluation and relation to lesional basic fibroblast growth factor. Dermatol. Ther. 2021:e14738. doi: 10.1111/dth.14738. PubMed DOI

Edamura K., Takahashi Y., Fujii A., Masuhiro Y., Narita T., Seki M., Asano K. Recombinant canine basic fibroblast growth factor-induced differentiation of canine bone marrow mesenchymal stem cells into voltage- and glutamate-responsive neuron-like cells. Regen. Ther. 2020;15:121–128. doi: 10.1016/j.reth.2020.07.005. PubMed DOI PMC

Kurniawan D.W., Booijink R., Pater L., Wols I., Vrynas A., Storm G., Prakash J., Bansal R. Fibroblast growth factor 2 conjugated superparamagnetic iron oxide nanoparticles (FGF2-SPIONs) ameliorate hepatic stellate cells activation in vitro and acute liver injury in vivo. J. Control. Release. 2020;328:640–652. doi: 10.1016/j.jconrel.2020.09.041. PubMed DOI

Kapoor R., Shome D., Vadera S., Kumar V., Ram M.S. QR678 & QR678 neo hair growth formulations: A cellular toxicity & animal efficacy study. Plast. Reconstr. Surg. Glob. Open. 2020;8 doi: 10.1097/GOX.0000000000002843. PubMed DOI PMC

Zhang J., Liu Z., Tang J., Li Y., You Q., Yang J., Jin Y., Zou G., Ge Z., Zhu X., et al. Fibroblast growth factor 2-induced human amniotic mesenchymal stem cells combined with autologous platelet rich plasma augmented tendon-to-bone healing. J. Orthop. Transl. 2020;24:155–165. doi: 10.1016/j.jot.2020.01.003. PubMed DOI PMC

Rusnati M., Tanghetti E., Dell’Era P., Gualandris A., Presta M. αvβ3 integrin mediates the cell-adhesive capacity and biological activity of basic fibroblast growth factor (FGF-2) in cultured endothelial cells. Mol. Biol. Cell. 1997;8:2449–2461. doi: 10.1091/mbc.8.12.2449. PubMed DOI PMC

Kang J.M., Han M., Park I.S., Jung Y., Kim S.H., Kim S.H. Adhesion and differentiation of adipose-derived stem cells on a substrate with immobilized fibroblast growth factor. Acta Biomater. 2012;8:1759–1767. doi: 10.1016/j.actbio.2012.01.005. PubMed DOI

Shin Y.M., Lee Y.B., Kim S.J., Kang J.K., Park J.C., Jang W., Shin H. Mussel-inspired immobilization of vascular endothelial growth factor (VEGF) for enhanced endothelialization of vascular grafts. Biomacromolecules. 2012;13:2020–2028. doi: 10.1021/bm300194b. PubMed DOI

Shen Y.H., Shoichet M.S., Radisic M. Vascular endothelial growth factor immobilized in collagen scaffold promotes penetration and proliferation of endothelial cells. Acta Biomater. 2008;4:477–489. doi: 10.1016/j.actbio.2007.12.011. PubMed DOI

Robinson D.E., Smith L.E., Steele D.A., Short R.D., Whittle J.D. Development of a surface to enhance the effectiveness of fibroblast growth factor 2 (FGF-2) Biomater. Sci. 2014;2:875–882. doi: 10.1039/C4BM00018H. PubMed DOI

Firoozi N., Kang Y. Immobilization of FGF on poly(xylitol dodecanedioic acid) polymer for tissue regeneration. Sci. Rep. 2020;10:10419. doi: 10.1038/s41598-020-67261-6. PubMed DOI PMC

Taborska J., Riedelova Z., Brynda E., Majek P., Riedel T. Endothelialisation of ePTFE vessel prosthesis modified with an antithrombogenic fibrin/heparin coating enriched with bound growth factors. RSC Adv. 2021;11:5903–5913. doi: 10.1039/D1RA00053E. PubMed DOI PMC

Kaplan O., Zarubova J., Mikulova B., Filova E., Bartova J., Bacakova L., Brynda E. Enhanced mitogenic activity of recombinant human vascular endothelial growth factor VEGF121 expressed in E. coli Origami B (DE3) with molecular chaperones. PLoS ONE. 2016;11:e0163697. doi: 10.1371/journal.pone.0163697. PubMed DOI PMC

Taktak-BenAmar A., Morjen M., Ben Mabrouk H., Abdelmaksoud-Dammak R., Guerfali M., Fourati-Masmoudi N., Marrakchi N., Gargouri A. Expression, purification and functionality of bioactive recombinant human vascular endothelial growth factor VEGF165 in E. coli. AMB Express. 2017;7:33. doi: 10.1186/s13568-016-0300-2. PubMed DOI PMC

Lee J.H., Lee J.E., Kang K.J., Jang Y.J. Functional efficacy of human recombinant FGF-2s tagged with (His)6 and (His-Asn)6 at the N- and C-termini in human gingival fibroblast and periodontal ligament-derived cells. Protein Expr. Purif. 2017;135:37–44. doi: 10.1016/j.pep.2017.05.001. PubMed DOI

Sauer D.G., Mosor M., Frank A.C., Weiss F., Christler A., Walch N., Jungbauer A., Durauer A. A two-step process for capture and purification of human basic fibroblast growth factor from E. coli homogenate: Yield versus endotoxin clearance. Protein Expr. Purif. 2019;153:70–82. doi: 10.1016/j.pep.2018.08.009. PubMed DOI

Slamova K., Bojarova P., Gerstorferova D., Fliedrova B., Hofmeisterova J., Fiala M., Pompach P., Kren V. Sequencing, cloning and high-yield expression of a fungal β-N-acetylhexosaminidase in Pichia pastoris. Protein Expr. Purif. 2012;82:212–217. doi: 10.1016/j.pep.2012.01.004. PubMed DOI

Krejzova J., Kulik N., Slamova K., Kren V. Expression of human β-N-acetylhexosaminidase B in yeast eases the search for selective inhibitors. Enzym. Microb. Technol. 2016;89:1–6. doi: 10.1016/j.enzmictec.2016.03.003. PubMed DOI

Arjmand S., Tavasoli Z., Siadat S.O.R., Saeidi B., Tavana H. Enhancing chimeric hydrophobin II-vascular endothelial growth factor A165 expression in Pichia pastoris and its efficient purification using hydrophobin counterpart. Int. J. Biol. Macromol. 2019;139:1028–1034. doi: 10.1016/j.ijbiomac.2019.08.080. PubMed DOI

Zisch A.H., Schenk U., Schense J.C., Sakiyama-Elbert S.E., Hubbell J.A. Covalently conjugated VEGF-fibrin matrices for endothelialization. J. Control. Release. 2001;72:101–113. doi: 10.1016/S0168-3659(01)00266-8. PubMed DOI

Rockwell N.C., Krysan D.J., Komiyama T., Fuller R.S. Precursor processing by Kex2/furin proteases. Chem. Rev. 2002;102:4525–4548. doi: 10.1021/cr010168i. PubMed DOI

Khan S., Villalobos M.A., Choron R.L., Chang S., Brown S.A., Carpenter J.P., Tulenko T.N., Zhang P. Fibroblast growth factor and vascular endothelial growth factor play a critical role in endotheliogenesis from human adipose-derived stem cells. J. Vasc. Surg. 2017;65:1483–1492. doi: 10.1016/j.jvs.2016.04.034. PubMed DOI

Bassaneze V., Barauna V.G., Lavini-Ramos C., Kalil J., Schettert I.T., Miyakawa A.A., Krieger J.E. Shear stress induces nitric oxide-mediated vascular endothelial growth factor production in human adipose tissue mesenchymal stem cells. Stem Cells Dev. 2010;19:371–378. doi: 10.1089/scd.2009.0195. PubMed DOI

Estes B.T., Diekman B.O., Gimble J.M., Guilak F. Isolation of adipose-derived stem cells and their induction to a chondrogenic phenotype. Nat. Protoc. 2010;5:1294–1311. doi: 10.1038/nprot.2010.81. PubMed DOI PMC

Ori A., Free P., Courty J., Wilkinson M.C., Fernig D.G. Identification of heparin-binding sites in proteins by selective labeling. Mol. Cell. Proteom. 2009;8:2256–2265. doi: 10.1074/mcp.M900031-MCP200. PubMed DOI PMC

Thompson L.D., Pantoliano M.W., Springer B.A. Energetic characterization of the basic fibroblast growth factor-heparin interaction: Identification of the heparin binding domain. Biochemistry. 1994;33:3831–3840. doi: 10.1021/bi00179a006. PubMed DOI

Presta M., Statuto M., Isacchi A., Caccia P., Pozzi A., Gualandris A., Rusnati M., Bergonzoni L., Sarmientos P. Structure-function relationship of basic fibroblast growth factor: Site-directed mutagenesis of a putative heparin-binding and receptor-binding region. Biochem. Biophys. Res. Commun. 1992;185:1098–1107. doi: 10.1016/0006-291X(92)91739-D. PubMed DOI

Isacchi A., Bergonzoni L., Statuto M., Rusnati M., Chiesa R., Caccia P., Sarmientos P., Presta M., Ragnoiti G. A mutant of basic fibroblast growth factor that has lost the ability to stimulate plasminogen activator synthesis in endothelial cells. Ann. N. Y. Acad. Sci. 1991;638:369–377. doi: 10.1111/j.1749-6632.1991.tb49047.x. PubMed DOI

Tahara H., Matsuda S., Yamamoto Y., Yoshizawa H., Fujita M., Katsuoka Y., Kasahara T. High-content image analysis (HCIA) assay has the highest correlation with direct counting cell suspension compared to the ATP, WST-8 and Alamar blue assays for measurement of cytotoxicity. J. Pharmacol. Toxicol. Methods. 2017;88:92–99. doi: 10.1016/j.vascn.2017.08.003. PubMed DOI

Walzl A., Unger C., Kramer N., Unterleuthner D., Scherzer M., Hengstschlager M., Schwanzer-Pfeiffer D., Dolznig H. The resazurin reduction assay can distinguish cytotoxic from cytostatic compounds in spheroid screening assays. J. Biomol. Screen. 2014;19:1047–1059. doi: 10.1177/1087057114532352. PubMed DOI

Uzarski J.S., DiVito M.D., Wertheim J.A., Miller W.M. Essential design considerations for the resazurin reduction assay to noninvasively quantify cell expansion within perfused extracellular matrix scaffolds. Biomaterials. 2017;129:163–175. doi: 10.1016/j.biomaterials.2017.02.015. PubMed DOI PMC

Chiu L.L., Radisic M. Scaffolds with covalently immobilized VEGF and angiopoietin-1 for vascularization of engineered tissues. Biomaterials. 2010;31:226–241. doi: 10.1016/j.biomaterials.2009.09.039. PubMed DOI

Miyagi Y., Chiu L.L., Cimini M., Weisel R.D., Radisic M., Li R.K. Biodegradable collagen patch with covalently immobilized VEGF for myocardial repair. Biomaterials. 2011;32:1280–1290. doi: 10.1016/j.biomaterials.2010.10.007. PubMed DOI

Underwood P.A., Whitelock J.M., Bean P.A., Steele J.G. Effects of base material, plasma proteins and FGF2 on endothelial cell adhesion and growth. J. Biomater. Sci. Polym. Ed. 2002;13:845–862. doi: 10.1163/156856202320401924. PubMed DOI

Kang J., Park H.M., Kim Y.W., Kim Y.H., Varghese S., Seok H.K., Kim Y.G., Kim S.H. Control of mesenchymal stem cell phenotype and differentiation depending on cell adhesion mechanism. Eur. Cell Mater. 2014;28:387–403. doi: 10.22203/eCM.v028a27. PubMed DOI

Tanghetti E., Ria R., Dell’Era P., Urbinati C., Rusnati M., Ennas M.G., Presta M. Biological activity of substrate-bound basic fibroblast growth factor (FGF2): Recruitment of FGF receptor-1 in endothelial cell adhesion contacts. Oncogene. 2002;21:3889–3897. doi: 10.1038/sj.onc.1205407. PubMed DOI

Kumorek M., Kubies D., Filova E., Houska M., Kasoju N., Mazl Chanova E., Matejka R., Kryslova M., Bacakova L., Rypacek F. Cellular responses modulated by FGF-2 adsorbed on albumin/heparin layer-by-layer assemblies. PLoS ONE. 2015;10:e0125484. doi: 10.1371/journal.pone.0125484. PubMed DOI PMC

Spitaleri A., Mari S., Curnis F., Traversari C., Longhi R., Bordignon C., Corti A., Rizzardi G.P., Musco G. Structural basis for the interaction of isoDGR with the RGD-binding site of αvβ3 integrin. J. Biol. Chem. 2008;283:19757–19768. doi: 10.1074/jbc.M710273200. PubMed DOI

Corti A., Curnis F. Isoaspartate-dependent molecular switches for integrin-ligand recognition. J. Cell Sci. 2011;124:515–522. doi: 10.1242/jcs.077172. PubMed DOI

Traub S., Morgner J., Martino M.M., Honing S., Swartz M.A., Wickstrom S.A., Hubbell J.A., Eming S.A. The promotion of endothelial cell attachment and spreading using FNIII10 fused to VEGF-A165. Biomaterials. 2013;34:5958–5968. doi: 10.1016/j.biomaterials.2013.04.050. PubMed DOI

Dee K.C., Andersen T.T., Bizios R. Design and function of novel osteoblast-adhesive peptides for chemical modification of biomaterials. J. Biomed. Mater. Res. 1998;40:371–377. doi: 10.1002/(SICI)1097-4636(19980605)40:3<371::AID-JBM5>3.0.CO;2-C. PubMed DOI

Baird A., Schubert D., Ling N., Guillemin R. Receptor-binding and heparin-binding domains of basic fibroblast growth factor. Proc. Natl. Acad. Sci. USA. 1988;85:2324–2328. doi: 10.1073/pnas.85.7.2324. PubMed DOI PMC

Mitchell A.C., Briquez P.S., Hubbell J.A., Cochran J.R. Engineering growth factors for regenerative medicine applications. Acta Biomater. 2016;30:1–12. doi: 10.1016/j.actbio.2015.11.007. PubMed DOI PMC

Bacakova L., Zarubova J., Travnickova M., Musilkova J., Pajorova J., Slepicka P., Kasalkova N.S., Svorcik V., Kolska Z., Motarjemi H., et al. Stem cells: Their source, potency and use in regenerative therapies with focus on adipose-derived stem cells—A review. Biotechnol. Adv. 2018;36:1111–1126. doi: 10.1016/j.biotechadv.2018.03.011. PubMed DOI

Matejka R., Konarik M., Stepanovska J., Lipensky J., Chlupac J., Turek D., Prazak I., Broz A., Simunkova Z., Mrazova I., et al. Bioreactor processed stromal cell seeding and cultivation on decellularized pericardium patches for cardiovascular use. Appl. Sci. 2020;10:5473. doi: 10.3390/app10165473. DOI

Bradford M.M., Williams W.L. New, Rapid, sensitive method for protein determination. Fed. Proc. 1976;35:274.

Przekora A., Vandrovcova M., Travnickova M., Pajorova J., Molitor M., Ginalska G., Bacakova L. Evaluation of the potential of chitosan/β-1,3-glucan/hydroxyapatite material as a scaffold for living bone graft production in vitro by comparison of ADSC and BMDSC behaviour on its surface. Biomed. Mater. 2017;12:015030. doi: 10.1088/1748-605X/aa56f9. PubMed DOI

Travnickova M., Pajorova J., Zarubova J., Krocilova N., Molitor M., Bacakova L. The influence of negative pressure and of the harvesting site on the characteristics of human adipose tissue-derived stromal cells from lipoaspirates. Stem Cells Int. 2020;2020:1016231. doi: 10.1155/2020/1016231. PubMed DOI PMC

Bunnell B.A., Flaat M., Gagliardi C., Patel B., Ripoll C. Adipose-derived stem cells: Isolation, expansion and differentiation. Methods. 2008;45:115–120. doi: 10.1016/j.ymeth.2008.03.006. PubMed DOI PMC

Megaloikonomos P.D., Panagopoulos G.N., Bami M., Igoumenou V.G., Dimopoulos L., Milonaki A., Kyriakidou M., Mitsiokapa E., Anastassopoulou J., Mavrogenis A.F. Harvesting, isolation and differentiation of rat adipose-derived stem cells. Curr. Pharm. Biotechnol. 2018;19:19–29. doi: 10.2174/1389201019666180418101323. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...