Complexation of CXCL12, FGF-2 and VEGF with Heparin Modulates the Protein Release from Alginate Microbeads

. 2021 Oct 28 ; 22 (21) : . [epub] 20211028

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu hodnotící studie, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34769095

Grantová podpora
No. 16-28254A Czech Health Research Council, the Ministry of Health of the Czech Republic
No. NV19-02-00068 Czech Health Research Council, the Ministry of Health of the Czech Republic
No. 20-08679S the Czech Science Fundation
No. 2-SRA-2018-521-S-B Juvenile Diabetes Research Foundation - United States
APVV-18-0480 the Slovak Research and Development Agency
APVV-14-0858 the Slovak Research and Development Agency

Long-term delivery of growth factors and immunomodulatory agents is highly required to support the integrity of tissue in engineering constructs, e.g., formation of vasculature, and to minimize immune response in a recipient. However, for proteins with a net positive charge at the physiological pH, controlled delivery from negatively charged alginate (Alg) platforms is challenging due to electrostatic interactions that can hamper the protein release. In order to regulate such interactions between proteins and the Alg matrix, we propose to complex proteins of interest in this study - CXCL12, FGF-2, VEGF - with polyanionic heparin prior to their encapsulation into Alg microbeads of high content of α-L-guluronic acid units (high-G). This strategy effectively reduced protein interactions with Alg (as shown by model ITC and SPR experiments) and, depending on the protein type, afforded control over the protein release for at least one month. The released proteins retained their in vitro bioactivity: CXCL12 stimulated the migration of Jurkat cells, and FGF-2 and VEGF induced proliferation and maturation of HUVECs. The presence of heparin also intensified protein biological efficiency. The proposed approach for encapsulation of proteins with a positive net charge into high-G Alg hydrogels is promising for controlled long-term protein delivery under in vivo conditions.

Zobrazit více v PubMed

Wang Z., Wang Z., Lu W.W., Zhen W., Yang D., Peng S. Novel biomaterial strategies for controlled growth factor delivery for biomedical applications. NPG Asia Mater. 2017;9:e435. doi: 10.1038/am.2017.171. DOI

Aguilar L.M.C., Silva S.M., Moulton S.E. Growth factor delivery: Defining the next generation platforms for tissue engineering. J. Control. Release. 2019;306:40–58. doi: 10.1016/j.jconrel.2019.05.028. PubMed DOI

Rouwkema J., Rivron N.C., van Blitterswijk C.A. Vascularization in tissue engineering. Trends Biotechnol. 2008;26:434–441. doi: 10.1016/j.tibtech.2008.04.009. PubMed DOI

Vasita R., Katti D.S. Growth factor-delivery systems for tissue engineering: A materials perspective. Expert. Rev. Med. Devices. 2006;3:29–47. doi: 10.1586/17434440.3.1.29. PubMed DOI

Gombotz W.R., Wee S.F. Protein release from alginate matrices. Adv. Drug Deliv. Rev. 2012;64:194–205. doi: 10.1016/j.addr.2012.09.007. PubMed DOI

Lee K.Y., Mooney D.J. Alginate: Properties and biomedical applications. Prog. Polym. Sci. 2012;37:106–126. doi: 10.1016/j.progpolymsci.2011.06.003. PubMed DOI PMC

Wawrzyńska E., Kubies D. Alginate matrices for protein delivery—A short review. Physiol. Res. 2018;67((Suppl. 2)):S319–S334. doi: 10.33549/physiolres.933980. PubMed DOI

Szekalska M., Puciłowska A., Szymańska E., Ciosek P., Winnicka K. Alginate: Current Use and Future Perspectives in Pharmaceutical and Biomedical Applications. Int. J. Polym. Sci. 2016;2016:7697031. doi: 10.1155/2016/7697031. DOI

Zhang H., Cheng J., Ao Q. Preparation of Alginate-Based Biomaterials and Their Applications in Biomedicine. Mar. Drugs. 2021;19:264. doi: 10.3390/md19050264. PubMed DOI PMC

George M., Abraham T.E. Polyionic hydrocolloids for the intestinal delivery of protein drugs: Alginate and chitosan—A review. J. Control. Release. 2006;114:1–14. doi: 10.1016/j.jconrel.2006.04.017. PubMed DOI

Huang L., Abdalla A.M.E., Xiao L., Yang G. Biopolymer-Based Microcarriers for Three-Dimensional Cell Culture and Engineered Tissue Formation. Int. J. Mol. Sci. 2020;21:1895. doi: 10.3390/ijms21051895. PubMed DOI PMC

Axpe E., Oyen M.L. Applications of Alginate-Based Bioinks in 3D Bioprinting. Int. J. Mol. Sci. 2016;17:1976. doi: 10.3390/ijms17121976. PubMed DOI PMC

Mumper R.J., Hoffman A.S., Puolakkainen P.A., Bouchard L.S., Gombotz W.R. Calcium-alginate beads for the oral delivery of transrofming grosth faktro-beta(1) (TGF-beta(1))-stabilization of TGF-beta(1) by the addition of polyacrylic acid within acid-treated beads. J. Control. Release. 1994;30:241–251. doi: 10.1016/0168-3659(94)90030-2. DOI

Gu F., Amsden B., Neufeld R. Sustained delivery of vascular endothelial growth factor with alginate beads. J. Control. Release. 2004;96:463–472. doi: 10.1016/j.jconrel.2004.02.021. PubMed DOI

Ghiselli G. Heparin Binding Proteins as Therapeutic Target: An Historical Account and Current Trends. Medicines. 2019;6:80. doi: 10.3390/medicines6030080. PubMed DOI PMC

Hudalla G.A., Murphy W.L. Biomaterials that Regulate Growth Factor Activity via Bioinspired Interactions. Adv. Funct. Mater. 2011;21:1754–1768. doi: 10.1002/adfm.201002468. PubMed DOI PMC

He C., Ji H., Qian Y., Wang Q., Liu X., Zhao W., Zhao C. Heparin-based and heparin-inspired hydrogels: Size-effect, gelation and biomedical applications. J. Mater. Chem. B. 2019;7:1186–1208. doi: 10.1039/C8TB02671H. PubMed DOI

Benoit D.S., Collins S.D., Anseth K.S. Multifunctional hydrogels that promote osteogenic hMSC differentiation through stimulation and sequestering of BMP2. Adv. Funct. Mater. 2007;17:2085–2093. doi: 10.1002/adfm.200700012. PubMed DOI PMC

Vijayan A., Sabareeswaran A., Kumar G.S.V. PEG grafted chitosan scaffold for dual growth factor delivery for enhanced wound healing. Sci. Rep. 2019;9:19165. doi: 10.1038/s41598-019-55214-7. PubMed DOI PMC

Ho Y.-C., Mi F.-L., Sung H.-W., Kuo P.-L. Heparin-functionalized chitosan–alginate scaffolds for controlled release of growth factor. Int. J. Pharm. 2009;376:69–75. doi: 10.1016/j.ijpharm.2009.04.048. PubMed DOI

Jha A.K., Mathur A., Svedlund F.L., Ye J., Yeghiazarians Y., Healy K.E. Molecular weight and concentration of heparin in hyaluronic acid-based matrices modulates growth factor retention kinetics and stem cell fate. J. Control. Release. 2015;209:308–316. doi: 10.1016/j.jconrel.2015.04.034. PubMed DOI PMC

Jeon O., Powell C., Solorio L.D., Krebs M.D., Alsberg E. Affinity-based growth factor delivery using biodegradable, photocrosslinked heparin-alginate hydrogels. J. Control. Release. 2011;154:258–266. doi: 10.1016/j.jconrel.2011.06.027. PubMed DOI PMC

Henderson P.W., Singh S.P., Krijgh D.D., Yamamoto M., Rafii D.C., Sung J.J., Rafii S., Rabbany S.Y., Spector J.A. Stromal-derived factor-1 delivered via hydrogel drug-delivery vehicle accelerates wound healing in vivo. Wound Repair Regen. 2011;19:420–425. doi: 10.1111/j.1524-475X.2011.00687.x. PubMed DOI

Janssens R., Struyf S., Proost P. The unique structural and functional features of CXCL12. Cell. Mol. Immunol. 2018;15:299–311. doi: 10.1038/cmi.2017.107. PubMed DOI PMC

Righetti A., Giulietti M., Šabanović B., Occhipinti G., Principato G., Piva F. CXCL12 and Its Isoforms: Different Roles in Pancreatic Cancer? J. Oncol. 2019:9681698. doi: 10.1155/2019/9681698. PubMed DOI PMC

García-Cuesta E.M., Santiago C.A., Vallejo-Díaz J., Juarranz Y., Rodríguez-Frade J.M., Mellado M. The Role of the CXCL12/CXCR4/ACKR3 Axis in Autoimmune Diseases. Front. Endocrinol. 2019;10:585. doi: 10.3389/fendo.2019.00585. PubMed DOI PMC

Guyon A. CXCL12 chemokine and its receptors as major players in the interactions between immune and nervous systems. Front. Cell. Neurosci. 2014;8:65. doi: 10.3389/fncel.2014.00065. PubMed DOI PMC

Alagpulinsa D.A., Cao J.J.L., Driscol R.K., Sirbulescu R.F., Penson M.F.E., Sremac M., Engquist E.N., Brauns T.A., Markmann J.F., Melton D.A., et al. Alginate-microencapsulation of human stem cell-derived beta cells with CXCL12 prolongs their survival and function in immunocompetent mice without systemic immunosuppression. Am. J. Transplant. 2019;19:1930–1940. doi: 10.1111/ajt.15308. PubMed DOI

Sremac M., Lei J., Penson M.F.E., Schuetz C., Lakey J.R.T., Papas K.K., Varde P.S., Hering B., de Vos P., Brauns T., et al. Preliminary Studies of the Impact of CXCL12 on the Foreign Body Reaction to Pancreatic Islets Microencapsulated in Alginate in Nonhuman Primates. Transplant. Direct. 2019;5:e447. doi: 10.1097/TXD.0000000000000890. PubMed DOI PMC

Cross M.J., Claesson-Welsh L. FGF and VEGF function in angiogenesis: Signalling pathways, biological responses and therapeutic inhibition. Trends Pharmacol. Sci. 2001;22:201–207. doi: 10.1016/S0165-6147(00)01676-X. PubMed DOI

Apte R.S., Chen D.S., Ferrara N. VEGF in Signaling and Disease: Beyond Discovery and Development. Cell. 2019;176:1248–1264. doi: 10.1016/j.cell.2019.01.021. PubMed DOI PMC

Chen T., Yuan J., Duncanson S., Hibert M.L., Kodish B.C., Mylavaganam G., Maker M., Li H., Sremac M., Santosuosso M., et al. Alginate encapsulant incorporating CXCL12 supports long-term allo- and xenoislet transplantation without systemic immune suppression. Am. J. Transplant. 2015;15:618–627. doi: 10.1111/ajt.13049. PubMed DOI

Duncanson S., Sambanis A. Dual factor delivery of CXCL12 and Exendin-4 for improved survival and function of encapsulated beta cells under hypoxic conditions. Biotechnol. Bioeng. 2013;110:2292–2300. doi: 10.1002/bit.24872. PubMed DOI

Wang Y., Irvine D.J. Engineering chemoattractant gradients using chemokine-releasing polysaccharide microspheres. Biomaterials. 2011;32:4903–4913. doi: 10.1016/j.biomaterials.2011.03.027. PubMed DOI PMC

Finn T.E., Nunez A.C., Sunde M., Easterbrook-Smith S.B. Serum albumin prevents protein aggregation and amyloid formation and retains chaperone-like activity in the presence of physiological ligands. J. Biol. Chem. 2012;287:21530–21540. doi: 10.1074/jbc.M112.372961. PubMed DOI PMC

Mørch Y.A., Qi M., Gundersen P.O.M., Formo K., Lacik I., Skjåk-Bræk G., Oberholzer J., Strand B.L. Binding and leakage of barium in alginate microbeads. J. Biomed. Mater. Res. A. 2012;100A:2939–2947. doi: 10.1002/jbm.a.34237. PubMed DOI PMC

Qi M., Mørch Y., Lacík I., Formo K., Marchese E., Wang Y., Danielson K.K., Kinzer K., Wang S., Barbaro B., et al. Survival of human islets in microbeads containing high guluronic acid alginate crosslinked with Ca2+ and Ba2+ Xenotransplantation. 2012;19:355–364. doi: 10.1111/xen.12009. PubMed DOI PMC

Wang H.M., Loganathan D., Linhardt R.J. Determination of the pKa of glucuronic acid and the carboxy groups of heparin by 13C-nuclear-magnetic-resonance spectroscopy. Biochem. J. 1991;278:689–695. doi: 10.1042/bj2780689. PubMed DOI PMC

Vilcacundo R., Mendez P., Reyes W., Romero H., Pinto A., Carrillo W. Antibacterial Activity of Hen Egg White Lysozyme Denatured by Thermal and Chemical Treatments. Sci. Pharm. 2018;86:48. doi: 10.3390/scipharm86040048. PubMed DOI

Malamud D., Drysdale J.W. Isoelectric points of proteins—Table. Anal. Biochem. 1978;86:620–647. doi: 10.1016/0003-2697(78)90790-X. PubMed DOI

Xu X., Han Q., Shi J., Zhang H., Wang Y. Structural, thermal and rheological characterization of bovine serum albumin binding with sodium alginate. J. Mol. Liq. 2020;299:112123. doi: 10.1016/j.molliq.2019.112123. DOI

Zhao Y., Li F., Carvajal M.T., Harris M.T. Interactions between bovine serum albumin and alginate: An evaluation of alginate as protein carrier. J. Colloid Interface Sci. 2009;332:345–353. doi: 10.1016/j.jcis.2008.12.048. PubMed DOI

Jay S.M., Saltzman W.M. Controlled delivery of VEGF via modulation of alginate microparticle ionic crosslinking. J. Control. Release. 2009;134:26–34. doi: 10.1016/j.jconrel.2008.10.019. PubMed DOI PMC

Miao T.X., Rao K.S., Spees J.L., Oldinski R.A. Osteogenic differentiation of human mesenchymal stem cells through alginate-graft-poly(ethylene glycol) microsphere-mediated intracellular growth factor delivery. J. Control. Release. 2014;192:57–66. doi: 10.1016/j.jconrel.2014.06.029. PubMed DOI PMC

Quinlan E., López-Noriega A., Thompson E.M., Hibbitts A., Cryan S.A., O'Brien F.J. Controlled release of vascular endothelial growth factor from spray-dried alginate microparticles in collagen–hydroxyapatite scaffolds for promoting vascularization and bone repair. J. Tissue Eng. Regen. Med. 2017;11:1097–1109. doi: 10.1002/term.2013. PubMed DOI

Campbell K.T., Hadley D.J., Kukis D.L., Silva E.A. Alginate hydrogels allow for bioactive and sustained release of VEGF-C and VEGF-D for lymphangiogenic therapeutic applications. PLoS ONE. 2017;12:15. doi: 10.1371/journal.pone.0181484. PubMed DOI PMC

Lee K.Y., Peters M.C., Mooney D.J. Comparison of vascular endothelial growth factor and basic fibroblast growth factor on angiogenesis in SCID mice. J. Control. Release. 2003;87:49–56. doi: 10.1016/S0168-3659(02)00349-8. PubMed DOI

Elçin Y.M., Dixit V., Gitnick G. Extensive in vivo angiogenesis following controlled release of human vascular endothelial cell growth factor: Implications for tissue engineering and wound healing. Artif. Organs. 2001;25:558–565. doi: 10.1046/j.1525-1594.2001.025007558.x. PubMed DOI

Peters M.C., Isenberg B.C., Rowley J.A., Mooney D.J. Release from alginate enhances the biological activity of vascular endothelial growth factor. J. Biomater. Sci.-Polym. Ed. 1998;9:1267–1278. doi: 10.1163/156856298X00389. PubMed DOI

Hao X., Silva E.A., Månsson-Broberg A., Grinnemo K.H., Siddiqui A.J., Dellgren G., Wärdell E., Brodin L.A., Mooney D.J., Sylvén C. Angiogenic effects of sequential release of VEGF-A165 and PDGF-BB with alginate hydrogels after myocardial infarction. Cardiovasc. Res. 2007;75:1781–1785. doi: 10.1016/j.cardiores.2007.03.028. PubMed DOI

Silva E.A., Mooney D.J. Effects of VEGF temporal and spatial presentation on angiogenesis. Biomaterials. 2010;31:1235–1241. doi: 10.1016/j.biomaterials.2009.10.052. PubMed DOI PMC

Khanna O., Moya M.L., Opara E.C., Brey E.M. Synthesis of multilayered alginate microcapsules for the sustained release of fibroblast growth factor-1. J. Biomed. Mater. Res. A. 2010;95:632–640. doi: 10.1002/jbm.a.32883. PubMed DOI PMC

Tanihara M., Suzuki Y., Yamamoto E., Noguchi A., Mizushima Y. Sustained release of basic fibroblast growth factor and angiogenesis in a novel covalently crosslinked gel of heparin and alginate. J. Biomed. Mater. Res. 2001;56:216–221. doi: 10.1002/1097-4636(200108)56:2<216::AID-JBM1086>3.0.CO;2-N. PubMed DOI

Su J., Xu H., Sun J., Gong X., Zhao H. Dual Delivery of BMP-2 and bFGF from a New Nano-Composite Scaffold, Loaded with Vascular Stents for Large-Size Mandibular Defect Regeneration. Int. J. Mol. Sci. 2013;14:12714–12728. doi: 10.3390/ijms140612714. PubMed DOI PMC

Miao T.X., Little A.C., Aronshtam A., Marquis T., Fenn S.L., Hristova M., Krementsov D.N., van der Vliet A., Spees J.L., Oldinski R.A. Internalized FGF-2-Loaded Nanoparticles Increase Nuclear ERK1/2 Content and Result in Lung Cancer Cell Death. Nanomaterials. 2020;10:612. doi: 10.3390/nano10040612. PubMed DOI PMC

Greenwood-Goodwin M., Teasley E.S., Heilshorn S.C. Dual-stage growth factor release within 3D protein-engineered hydrogel niches promotes adipogenesis. Biomater. Sci. 2014;2:1627–1639. doi: 10.1039/C4BM00142G. PubMed DOI PMC

Wells L.A., Sheardown H. Extended release of high pI proteins from alginate microspheres via a novel encapsulation technique. Eur. J. Pharm. Biopharm. 2007;65:329–335. doi: 10.1016/j.ejpb.2006.10.018. PubMed DOI

Rahmani V., Sheardown H. Protein-alginate complexes as pH-/ion-sensitive carriers of proteins. Int. J. Pharm. 2018;535:452–461. doi: 10.1016/j.ijpharm.2017.11.039. PubMed DOI

Wang Z., Yang H., Zhu Z. Study on the blends of silk fibroin and sodium alginate: Hydrogen bond formation, structure and properties. Polymer. 2019;163:144–153. doi: 10.1016/j.polymer.2019.01.004. DOI

Takacova M., Hlouskova G., Zatovicova M., Benej M., Sedlakova O., Kopacek J., Pastorek J., Lacik I., Pastorekova S. Encapsulation of anti-carbonic anhydrase IX antibody in hydrogel microspheres for tumor targeting. J. Enzyme Inhib. Med. Chem. 2016;31:110–118. doi: 10.1080/14756366.2016.1177523. PubMed DOI

Stoppel W.L., White J.C., Horava S.D., Bhatia S.R., Roberts S.C. Transport of biological molecules in surfactant-alginate composite hydrogels. Acta Biomater. 2011;7:3988–3998. doi: 10.1016/j.actbio.2011.07.009. PubMed DOI PMC

Venturoli D., Rippe B. Ficoll and dextran vs. globular proteins as probes for testing glomerular permselectivity: Effects of molecular size, shape, charge, and deformability. Am. J. Physiol. Renal. Physiol. 2005;288:F605–F613. doi: 10.1152/ajprenal.00171.2004. PubMed DOI

Ziarek J.J., Veldkamp C.T., Zhang F., Murray N.J., Kartz G.A., Liang X., Su J., Baker J.E., Linhardt R.J., Volkman B.F. Heparin oligosaccharides inhibit chemokine (CXC motif) ligand 12 (CXCL12) cardioprotection by binding orthogonal to the dimerization interface, promoting oligomerization, and competing with the chemokine (CXC motif) receptor 4 (CXCR4) N terminus. J. Biol. Chem. 2013;288:737–746. doi: 10.1074/jbc.M112.394064. PubMed DOI PMC

Freeman I., Kedem A., Cohen S. The effect of sulfation of alginate hydrogels on the specific binding and controlled release of heparin-binding proteins. Biomaterials. 2008;29:3260–3268. doi: 10.1016/j.biomaterials.2008.04.025. PubMed DOI

Sedlář A., Trávníčková M., Matějka R., Pražák Š., Mészáros Z., Bojarová P., Bačáková L., Křen V., Slámová K. Growth Factors VEGF-A165 and FGF-2 as Multifunctional Biomolecules Governing Cell Adhesion and Proliferation. Int. J. Mol. Sci. 2021;22:1843. doi: 10.3390/ijms22041843. PubMed DOI PMC

Forsten K.E., Fannon M., Nugent M.A. Potential mechanisms for the regulation of growth factor binding by heparin. J. Theor. Biol. 2000;205:215–230. doi: 10.1006/jtbi.2000.2064. PubMed DOI

Hayashi M., Majumdar A., Li X., Adler J., Sun Z., Vertuani S., Hellberg C., Mellberg S., Koch S., Dimberg A., et al. VE-PTP regulates VEGFR2 activity in stalk cells to establish endothelial cell polarity and lumen formation. Nat. Commun. 2013;4:1672. doi: 10.1038/ncomms2683. PubMed DOI PMC

Tsuji-Tamura K., Ogawa M. Inhibition of the PI3K–Akt and mTORC1 signaling pathways promotes the elongation of vascular endothelial cells. J. Cell Sci. 2016;129:1165–1178. doi: 10.1242/jcs.178434. PubMed DOI

Chiaverina G., di Blasio L., Monica V., Accardo M., Palmiero M., Peracino B., Vara-Messler M., Puliafito A., Primo L. Dynamic Interplay between Pericytes and Endothelial Cells during Sprouting Angiogenesis. Cells. 2019;8:1109. doi: 10.3390/cells8091109. PubMed DOI PMC

Filova E., Steinerova M., Travnickova M., Knitlova J., Musilkova J., Eckhardt A., Hadraba D., Matejka R., Prazak S., Stepanovska J., et al. Accelerated in vitro recellularization of decellularized porcine pericardium for cardiovascular grafts. Biomed. Mater. 2021;16:025024. doi: 10.1088/1748-605X/abbdbd. PubMed DOI

Kong X., Kong C., Wen S., Shi J. The use of heparin, bFGF, and VEGF 145 grafted acellular vascular scaffold in small diameter vascular graft. J. Biomed. Mater. Res. B Appl. Biomater. 2019;107:672–679. doi: 10.1002/jbm.b.34160. PubMed DOI

Kasoju N., Pátíková A., Wawrzynska E., Vojtíšková A., Sedlačík T., Kumorek M., Pop-Georgievski O., Sticová E., Kříž J., Kubies D. Bioengineering a pre-vascularized pouch for subsequent islet transplantation using VEGF-loaded polylactide capsules. Biomater. Sci. 2020;8:631–647. doi: 10.1039/C9BM01280J. PubMed DOI

Gryshkov O., Mutsenko V., Tarusin D., Khayyat D., Naujok O., Riabchenko E., Nemirovska Y., Danilov A., Petrenko A.Y., Glasmacher B. Coaxial Alginate Hydrogels: From Self-Assembled 3D Cellular Constructs to Long-Term Storage. Int. J. Mol. Sci. 2021;22:3096. doi: 10.3390/ijms22063096. PubMed DOI PMC

Sigal G.B., Mrksich M., Whitesides G.M. Effect of surface wettability on the adsorption of proteins and detergents. J. Am. Chem. Soc. 1998;120:3464–3473. doi: 10.1021/ja970819l. DOI

Bandyopadhyay D., Prashar D., Luk Y.Y. Stereochemical effects of chiral monolayers on enhancing the resistance to mammalian cell adhesion. Chem. Commun. 2011;47:6165–6167. doi: 10.1039/c1cc10855g. PubMed DOI

Kumorek M., Kubies D., Riedel T. Protein Interactions With Quaternized Chitosan/Heparin Multilayers. Physiol. Res. 2016;65:S253–S261. doi: 10.33549/physiolres.933427. PubMed DOI

Pop-Georgievski O., Kubies D., Zemek J., Neykova N., Demianchuk R., Mazl Chanova E., Slouf M., Houska M., Rypacek F. Self-assembled anchor layers/polysaccharide coatings on titanium surfaces: A study of functionalization and stability. Beilstein J. Nanotechnol. 2015;6:617–631. doi: 10.3762/bjnano.6.63. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Quaternized Chitosan/Heparin Polyelectrolyte Multilayer Films for Protein Delivery

. 2022 Nov 14 ; 23 (11) : 4734-4748. [epub] 20221026

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...