Complexation of CXCL12, FGF-2 and VEGF with Heparin Modulates the Protein Release from Alginate Microbeads
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu hodnotící studie, časopisecké články
Grantová podpora
No. 16-28254A
Czech Health Research Council, the Ministry of Health of the Czech Republic
No. NV19-02-00068
Czech Health Research Council, the Ministry of Health of the Czech Republic
No. 20-08679S
the Czech Science Fundation
No. 2-SRA-2018-521-S-B
Juvenile Diabetes Research Foundation - United States
APVV-18-0480
the Slovak Research and Development Agency
APVV-14-0858
the Slovak Research and Development Agency
PubMed
34769095
PubMed Central
PMC8583835
DOI
10.3390/ijms222111666
PII: ijms222111666
Knihovny.cz E-zdroje
- Klíčová slova
- CXCL12, FGF-2, HUVECs, ITC, SPR, VEGF, alginate microbeads, bioactivity, heparin, protein release,
- MeSH
- algináty chemie MeSH
- chemokin CXCL12 chemie MeSH
- endoteliální buňky pupečníkové žíly (lidské) MeSH
- fibroblastový růstový faktor 2 chemie MeSH
- heparin chemie MeSH
- lidé MeSH
- mikrosféry MeSH
- nádorové buněčné linie MeSH
- tkáňové inženýrství MeSH
- vaskulární endoteliální růstový faktor A chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
- Názvy látek
- algináty MeSH
- chemokin CXCL12 MeSH
- fibroblastový růstový faktor 2 MeSH
- heparin MeSH
- vaskulární endoteliální růstový faktor A MeSH
Long-term delivery of growth factors and immunomodulatory agents is highly required to support the integrity of tissue in engineering constructs, e.g., formation of vasculature, and to minimize immune response in a recipient. However, for proteins with a net positive charge at the physiological pH, controlled delivery from negatively charged alginate (Alg) platforms is challenging due to electrostatic interactions that can hamper the protein release. In order to regulate such interactions between proteins and the Alg matrix, we propose to complex proteins of interest in this study - CXCL12, FGF-2, VEGF - with polyanionic heparin prior to their encapsulation into Alg microbeads of high content of α-L-guluronic acid units (high-G). This strategy effectively reduced protein interactions with Alg (as shown by model ITC and SPR experiments) and, depending on the protein type, afforded control over the protein release for at least one month. The released proteins retained their in vitro bioactivity: CXCL12 stimulated the migration of Jurkat cells, and FGF-2 and VEGF induced proliferation and maturation of HUVECs. The presence of heparin also intensified protein biological efficiency. The proposed approach for encapsulation of proteins with a positive net charge into high-G Alg hydrogels is promising for controlled long-term protein delivery under in vivo conditions.
Zobrazit více v PubMed
Wang Z., Wang Z., Lu W.W., Zhen W., Yang D., Peng S. Novel biomaterial strategies for controlled growth factor delivery for biomedical applications. NPG Asia Mater. 2017;9:e435. doi: 10.1038/am.2017.171. DOI
Aguilar L.M.C., Silva S.M., Moulton S.E. Growth factor delivery: Defining the next generation platforms for tissue engineering. J. Control. Release. 2019;306:40–58. doi: 10.1016/j.jconrel.2019.05.028. PubMed DOI
Rouwkema J., Rivron N.C., van Blitterswijk C.A. Vascularization in tissue engineering. Trends Biotechnol. 2008;26:434–441. doi: 10.1016/j.tibtech.2008.04.009. PubMed DOI
Vasita R., Katti D.S. Growth factor-delivery systems for tissue engineering: A materials perspective. Expert. Rev. Med. Devices. 2006;3:29–47. doi: 10.1586/17434440.3.1.29. PubMed DOI
Gombotz W.R., Wee S.F. Protein release from alginate matrices. Adv. Drug Deliv. Rev. 2012;64:194–205. doi: 10.1016/j.addr.2012.09.007. PubMed DOI
Lee K.Y., Mooney D.J. Alginate: Properties and biomedical applications. Prog. Polym. Sci. 2012;37:106–126. doi: 10.1016/j.progpolymsci.2011.06.003. PubMed DOI PMC
Wawrzyńska E., Kubies D. Alginate matrices for protein delivery—A short review. Physiol. Res. 2018;67((Suppl. 2)):S319–S334. doi: 10.33549/physiolres.933980. PubMed DOI
Szekalska M., Puciłowska A., Szymańska E., Ciosek P., Winnicka K. Alginate: Current Use and Future Perspectives in Pharmaceutical and Biomedical Applications. Int. J. Polym. Sci. 2016;2016:7697031. doi: 10.1155/2016/7697031. DOI
Zhang H., Cheng J., Ao Q. Preparation of Alginate-Based Biomaterials and Their Applications in Biomedicine. Mar. Drugs. 2021;19:264. doi: 10.3390/md19050264. PubMed DOI PMC
George M., Abraham T.E. Polyionic hydrocolloids for the intestinal delivery of protein drugs: Alginate and chitosan—A review. J. Control. Release. 2006;114:1–14. doi: 10.1016/j.jconrel.2006.04.017. PubMed DOI
Huang L., Abdalla A.M.E., Xiao L., Yang G. Biopolymer-Based Microcarriers for Three-Dimensional Cell Culture and Engineered Tissue Formation. Int. J. Mol. Sci. 2020;21:1895. doi: 10.3390/ijms21051895. PubMed DOI PMC
Axpe E., Oyen M.L. Applications of Alginate-Based Bioinks in 3D Bioprinting. Int. J. Mol. Sci. 2016;17:1976. doi: 10.3390/ijms17121976. PubMed DOI PMC
Mumper R.J., Hoffman A.S., Puolakkainen P.A., Bouchard L.S., Gombotz W.R. Calcium-alginate beads for the oral delivery of transrofming grosth faktro-beta(1) (TGF-beta(1))-stabilization of TGF-beta(1) by the addition of polyacrylic acid within acid-treated beads. J. Control. Release. 1994;30:241–251. doi: 10.1016/0168-3659(94)90030-2. DOI
Gu F., Amsden B., Neufeld R. Sustained delivery of vascular endothelial growth factor with alginate beads. J. Control. Release. 2004;96:463–472. doi: 10.1016/j.jconrel.2004.02.021. PubMed DOI
Ghiselli G. Heparin Binding Proteins as Therapeutic Target: An Historical Account and Current Trends. Medicines. 2019;6:80. doi: 10.3390/medicines6030080. PubMed DOI PMC
Hudalla G.A., Murphy W.L. Biomaterials that Regulate Growth Factor Activity via Bioinspired Interactions. Adv. Funct. Mater. 2011;21:1754–1768. doi: 10.1002/adfm.201002468. PubMed DOI PMC
He C., Ji H., Qian Y., Wang Q., Liu X., Zhao W., Zhao C. Heparin-based and heparin-inspired hydrogels: Size-effect, gelation and biomedical applications. J. Mater. Chem. B. 2019;7:1186–1208. doi: 10.1039/C8TB02671H. PubMed DOI
Benoit D.S., Collins S.D., Anseth K.S. Multifunctional hydrogels that promote osteogenic hMSC differentiation through stimulation and sequestering of BMP2. Adv. Funct. Mater. 2007;17:2085–2093. doi: 10.1002/adfm.200700012. PubMed DOI PMC
Vijayan A., Sabareeswaran A., Kumar G.S.V. PEG grafted chitosan scaffold for dual growth factor delivery for enhanced wound healing. Sci. Rep. 2019;9:19165. doi: 10.1038/s41598-019-55214-7. PubMed DOI PMC
Ho Y.-C., Mi F.-L., Sung H.-W., Kuo P.-L. Heparin-functionalized chitosan–alginate scaffolds for controlled release of growth factor. Int. J. Pharm. 2009;376:69–75. doi: 10.1016/j.ijpharm.2009.04.048. PubMed DOI
Jha A.K., Mathur A., Svedlund F.L., Ye J., Yeghiazarians Y., Healy K.E. Molecular weight and concentration of heparin in hyaluronic acid-based matrices modulates growth factor retention kinetics and stem cell fate. J. Control. Release. 2015;209:308–316. doi: 10.1016/j.jconrel.2015.04.034. PubMed DOI PMC
Jeon O., Powell C., Solorio L.D., Krebs M.D., Alsberg E. Affinity-based growth factor delivery using biodegradable, photocrosslinked heparin-alginate hydrogels. J. Control. Release. 2011;154:258–266. doi: 10.1016/j.jconrel.2011.06.027. PubMed DOI PMC
Henderson P.W., Singh S.P., Krijgh D.D., Yamamoto M., Rafii D.C., Sung J.J., Rafii S., Rabbany S.Y., Spector J.A. Stromal-derived factor-1 delivered via hydrogel drug-delivery vehicle accelerates wound healing in vivo. Wound Repair Regen. 2011;19:420–425. doi: 10.1111/j.1524-475X.2011.00687.x. PubMed DOI
Janssens R., Struyf S., Proost P. The unique structural and functional features of CXCL12. Cell. Mol. Immunol. 2018;15:299–311. doi: 10.1038/cmi.2017.107. PubMed DOI PMC
Righetti A., Giulietti M., Šabanović B., Occhipinti G., Principato G., Piva F. CXCL12 and Its Isoforms: Different Roles in Pancreatic Cancer? J. Oncol. 2019:9681698. doi: 10.1155/2019/9681698. PubMed DOI PMC
García-Cuesta E.M., Santiago C.A., Vallejo-Díaz J., Juarranz Y., Rodríguez-Frade J.M., Mellado M. The Role of the CXCL12/CXCR4/ACKR3 Axis in Autoimmune Diseases. Front. Endocrinol. 2019;10:585. doi: 10.3389/fendo.2019.00585. PubMed DOI PMC
Guyon A. CXCL12 chemokine and its receptors as major players in the interactions between immune and nervous systems. Front. Cell. Neurosci. 2014;8:65. doi: 10.3389/fncel.2014.00065. PubMed DOI PMC
Alagpulinsa D.A., Cao J.J.L., Driscol R.K., Sirbulescu R.F., Penson M.F.E., Sremac M., Engquist E.N., Brauns T.A., Markmann J.F., Melton D.A., et al. Alginate-microencapsulation of human stem cell-derived beta cells with CXCL12 prolongs their survival and function in immunocompetent mice without systemic immunosuppression. Am. J. Transplant. 2019;19:1930–1940. doi: 10.1111/ajt.15308. PubMed DOI
Sremac M., Lei J., Penson M.F.E., Schuetz C., Lakey J.R.T., Papas K.K., Varde P.S., Hering B., de Vos P., Brauns T., et al. Preliminary Studies of the Impact of CXCL12 on the Foreign Body Reaction to Pancreatic Islets Microencapsulated in Alginate in Nonhuman Primates. Transplant. Direct. 2019;5:e447. doi: 10.1097/TXD.0000000000000890. PubMed DOI PMC
Cross M.J., Claesson-Welsh L. FGF and VEGF function in angiogenesis: Signalling pathways, biological responses and therapeutic inhibition. Trends Pharmacol. Sci. 2001;22:201–207. doi: 10.1016/S0165-6147(00)01676-X. PubMed DOI
Apte R.S., Chen D.S., Ferrara N. VEGF in Signaling and Disease: Beyond Discovery and Development. Cell. 2019;176:1248–1264. doi: 10.1016/j.cell.2019.01.021. PubMed DOI PMC
Chen T., Yuan J., Duncanson S., Hibert M.L., Kodish B.C., Mylavaganam G., Maker M., Li H., Sremac M., Santosuosso M., et al. Alginate encapsulant incorporating CXCL12 supports long-term allo- and xenoislet transplantation without systemic immune suppression. Am. J. Transplant. 2015;15:618–627. doi: 10.1111/ajt.13049. PubMed DOI
Duncanson S., Sambanis A. Dual factor delivery of CXCL12 and Exendin-4 for improved survival and function of encapsulated beta cells under hypoxic conditions. Biotechnol. Bioeng. 2013;110:2292–2300. doi: 10.1002/bit.24872. PubMed DOI
Wang Y., Irvine D.J. Engineering chemoattractant gradients using chemokine-releasing polysaccharide microspheres. Biomaterials. 2011;32:4903–4913. doi: 10.1016/j.biomaterials.2011.03.027. PubMed DOI PMC
Finn T.E., Nunez A.C., Sunde M., Easterbrook-Smith S.B. Serum albumin prevents protein aggregation and amyloid formation and retains chaperone-like activity in the presence of physiological ligands. J. Biol. Chem. 2012;287:21530–21540. doi: 10.1074/jbc.M112.372961. PubMed DOI PMC
Mørch Y.A., Qi M., Gundersen P.O.M., Formo K., Lacik I., Skjåk-Bræk G., Oberholzer J., Strand B.L. Binding and leakage of barium in alginate microbeads. J. Biomed. Mater. Res. A. 2012;100A:2939–2947. doi: 10.1002/jbm.a.34237. PubMed DOI PMC
Qi M., Mørch Y., Lacík I., Formo K., Marchese E., Wang Y., Danielson K.K., Kinzer K., Wang S., Barbaro B., et al. Survival of human islets in microbeads containing high guluronic acid alginate crosslinked with Ca2+ and Ba2+ Xenotransplantation. 2012;19:355–364. doi: 10.1111/xen.12009. PubMed DOI PMC
Wang H.M., Loganathan D., Linhardt R.J. Determination of the pKa of glucuronic acid and the carboxy groups of heparin by 13C-nuclear-magnetic-resonance spectroscopy. Biochem. J. 1991;278:689–695. doi: 10.1042/bj2780689. PubMed DOI PMC
Vilcacundo R., Mendez P., Reyes W., Romero H., Pinto A., Carrillo W. Antibacterial Activity of Hen Egg White Lysozyme Denatured by Thermal and Chemical Treatments. Sci. Pharm. 2018;86:48. doi: 10.3390/scipharm86040048. PubMed DOI
Malamud D., Drysdale J.W. Isoelectric points of proteins—Table. Anal. Biochem. 1978;86:620–647. doi: 10.1016/0003-2697(78)90790-X. PubMed DOI
Xu X., Han Q., Shi J., Zhang H., Wang Y. Structural, thermal and rheological characterization of bovine serum albumin binding with sodium alginate. J. Mol. Liq. 2020;299:112123. doi: 10.1016/j.molliq.2019.112123. DOI
Zhao Y., Li F., Carvajal M.T., Harris M.T. Interactions between bovine serum albumin and alginate: An evaluation of alginate as protein carrier. J. Colloid Interface Sci. 2009;332:345–353. doi: 10.1016/j.jcis.2008.12.048. PubMed DOI
Jay S.M., Saltzman W.M. Controlled delivery of VEGF via modulation of alginate microparticle ionic crosslinking. J. Control. Release. 2009;134:26–34. doi: 10.1016/j.jconrel.2008.10.019. PubMed DOI PMC
Miao T.X., Rao K.S., Spees J.L., Oldinski R.A. Osteogenic differentiation of human mesenchymal stem cells through alginate-graft-poly(ethylene glycol) microsphere-mediated intracellular growth factor delivery. J. Control. Release. 2014;192:57–66. doi: 10.1016/j.jconrel.2014.06.029. PubMed DOI PMC
Quinlan E., López-Noriega A., Thompson E.M., Hibbitts A., Cryan S.A., O'Brien F.J. Controlled release of vascular endothelial growth factor from spray-dried alginate microparticles in collagen–hydroxyapatite scaffolds for promoting vascularization and bone repair. J. Tissue Eng. Regen. Med. 2017;11:1097–1109. doi: 10.1002/term.2013. PubMed DOI
Campbell K.T., Hadley D.J., Kukis D.L., Silva E.A. Alginate hydrogels allow for bioactive and sustained release of VEGF-C and VEGF-D for lymphangiogenic therapeutic applications. PLoS ONE. 2017;12:15. doi: 10.1371/journal.pone.0181484. PubMed DOI PMC
Lee K.Y., Peters M.C., Mooney D.J. Comparison of vascular endothelial growth factor and basic fibroblast growth factor on angiogenesis in SCID mice. J. Control. Release. 2003;87:49–56. doi: 10.1016/S0168-3659(02)00349-8. PubMed DOI
Elçin Y.M., Dixit V., Gitnick G. Extensive in vivo angiogenesis following controlled release of human vascular endothelial cell growth factor: Implications for tissue engineering and wound healing. Artif. Organs. 2001;25:558–565. doi: 10.1046/j.1525-1594.2001.025007558.x. PubMed DOI
Peters M.C., Isenberg B.C., Rowley J.A., Mooney D.J. Release from alginate enhances the biological activity of vascular endothelial growth factor. J. Biomater. Sci.-Polym. Ed. 1998;9:1267–1278. doi: 10.1163/156856298X00389. PubMed DOI
Hao X., Silva E.A., Månsson-Broberg A., Grinnemo K.H., Siddiqui A.J., Dellgren G., Wärdell E., Brodin L.A., Mooney D.J., Sylvén C. Angiogenic effects of sequential release of VEGF-A165 and PDGF-BB with alginate hydrogels after myocardial infarction. Cardiovasc. Res. 2007;75:1781–1785. doi: 10.1016/j.cardiores.2007.03.028. PubMed DOI
Silva E.A., Mooney D.J. Effects of VEGF temporal and spatial presentation on angiogenesis. Biomaterials. 2010;31:1235–1241. doi: 10.1016/j.biomaterials.2009.10.052. PubMed DOI PMC
Khanna O., Moya M.L., Opara E.C., Brey E.M. Synthesis of multilayered alginate microcapsules for the sustained release of fibroblast growth factor-1. J. Biomed. Mater. Res. A. 2010;95:632–640. doi: 10.1002/jbm.a.32883. PubMed DOI PMC
Tanihara M., Suzuki Y., Yamamoto E., Noguchi A., Mizushima Y. Sustained release of basic fibroblast growth factor and angiogenesis in a novel covalently crosslinked gel of heparin and alginate. J. Biomed. Mater. Res. 2001;56:216–221. doi: 10.1002/1097-4636(200108)56:2<216::AID-JBM1086>3.0.CO;2-N. PubMed DOI
Su J., Xu H., Sun J., Gong X., Zhao H. Dual Delivery of BMP-2 and bFGF from a New Nano-Composite Scaffold, Loaded with Vascular Stents for Large-Size Mandibular Defect Regeneration. Int. J. Mol. Sci. 2013;14:12714–12728. doi: 10.3390/ijms140612714. PubMed DOI PMC
Miao T.X., Little A.C., Aronshtam A., Marquis T., Fenn S.L., Hristova M., Krementsov D.N., van der Vliet A., Spees J.L., Oldinski R.A. Internalized FGF-2-Loaded Nanoparticles Increase Nuclear ERK1/2 Content and Result in Lung Cancer Cell Death. Nanomaterials. 2020;10:612. doi: 10.3390/nano10040612. PubMed DOI PMC
Greenwood-Goodwin M., Teasley E.S., Heilshorn S.C. Dual-stage growth factor release within 3D protein-engineered hydrogel niches promotes adipogenesis. Biomater. Sci. 2014;2:1627–1639. doi: 10.1039/C4BM00142G. PubMed DOI PMC
Wells L.A., Sheardown H. Extended release of high pI proteins from alginate microspheres via a novel encapsulation technique. Eur. J. Pharm. Biopharm. 2007;65:329–335. doi: 10.1016/j.ejpb.2006.10.018. PubMed DOI
Rahmani V., Sheardown H. Protein-alginate complexes as pH-/ion-sensitive carriers of proteins. Int. J. Pharm. 2018;535:452–461. doi: 10.1016/j.ijpharm.2017.11.039. PubMed DOI
Wang Z., Yang H., Zhu Z. Study on the blends of silk fibroin and sodium alginate: Hydrogen bond formation, structure and properties. Polymer. 2019;163:144–153. doi: 10.1016/j.polymer.2019.01.004. DOI
Takacova M., Hlouskova G., Zatovicova M., Benej M., Sedlakova O., Kopacek J., Pastorek J., Lacik I., Pastorekova S. Encapsulation of anti-carbonic anhydrase IX antibody in hydrogel microspheres for tumor targeting. J. Enzyme Inhib. Med. Chem. 2016;31:110–118. doi: 10.1080/14756366.2016.1177523. PubMed DOI
Stoppel W.L., White J.C., Horava S.D., Bhatia S.R., Roberts S.C. Transport of biological molecules in surfactant-alginate composite hydrogels. Acta Biomater. 2011;7:3988–3998. doi: 10.1016/j.actbio.2011.07.009. PubMed DOI PMC
Venturoli D., Rippe B. Ficoll and dextran vs. globular proteins as probes for testing glomerular permselectivity: Effects of molecular size, shape, charge, and deformability. Am. J. Physiol. Renal. Physiol. 2005;288:F605–F613. doi: 10.1152/ajprenal.00171.2004. PubMed DOI
Ziarek J.J., Veldkamp C.T., Zhang F., Murray N.J., Kartz G.A., Liang X., Su J., Baker J.E., Linhardt R.J., Volkman B.F. Heparin oligosaccharides inhibit chemokine (CXC motif) ligand 12 (CXCL12) cardioprotection by binding orthogonal to the dimerization interface, promoting oligomerization, and competing with the chemokine (CXC motif) receptor 4 (CXCR4) N terminus. J. Biol. Chem. 2013;288:737–746. doi: 10.1074/jbc.M112.394064. PubMed DOI PMC
Freeman I., Kedem A., Cohen S. The effect of sulfation of alginate hydrogels on the specific binding and controlled release of heparin-binding proteins. Biomaterials. 2008;29:3260–3268. doi: 10.1016/j.biomaterials.2008.04.025. PubMed DOI
Sedlář A., Trávníčková M., Matějka R., Pražák Š., Mészáros Z., Bojarová P., Bačáková L., Křen V., Slámová K. Growth Factors VEGF-A165 and FGF-2 as Multifunctional Biomolecules Governing Cell Adhesion and Proliferation. Int. J. Mol. Sci. 2021;22:1843. doi: 10.3390/ijms22041843. PubMed DOI PMC
Forsten K.E., Fannon M., Nugent M.A. Potential mechanisms for the regulation of growth factor binding by heparin. J. Theor. Biol. 2000;205:215–230. doi: 10.1006/jtbi.2000.2064. PubMed DOI
Hayashi M., Majumdar A., Li X., Adler J., Sun Z., Vertuani S., Hellberg C., Mellberg S., Koch S., Dimberg A., et al. VE-PTP regulates VEGFR2 activity in stalk cells to establish endothelial cell polarity and lumen formation. Nat. Commun. 2013;4:1672. doi: 10.1038/ncomms2683. PubMed DOI PMC
Tsuji-Tamura K., Ogawa M. Inhibition of the PI3K–Akt and mTORC1 signaling pathways promotes the elongation of vascular endothelial cells. J. Cell Sci. 2016;129:1165–1178. doi: 10.1242/jcs.178434. PubMed DOI
Chiaverina G., di Blasio L., Monica V., Accardo M., Palmiero M., Peracino B., Vara-Messler M., Puliafito A., Primo L. Dynamic Interplay between Pericytes and Endothelial Cells during Sprouting Angiogenesis. Cells. 2019;8:1109. doi: 10.3390/cells8091109. PubMed DOI PMC
Filova E., Steinerova M., Travnickova M., Knitlova J., Musilkova J., Eckhardt A., Hadraba D., Matejka R., Prazak S., Stepanovska J., et al. Accelerated in vitro recellularization of decellularized porcine pericardium for cardiovascular grafts. Biomed. Mater. 2021;16:025024. doi: 10.1088/1748-605X/abbdbd. PubMed DOI
Kong X., Kong C., Wen S., Shi J. The use of heparin, bFGF, and VEGF 145 grafted acellular vascular scaffold in small diameter vascular graft. J. Biomed. Mater. Res. B Appl. Biomater. 2019;107:672–679. doi: 10.1002/jbm.b.34160. PubMed DOI
Kasoju N., Pátíková A., Wawrzynska E., Vojtíšková A., Sedlačík T., Kumorek M., Pop-Georgievski O., Sticová E., Kříž J., Kubies D. Bioengineering a pre-vascularized pouch for subsequent islet transplantation using VEGF-loaded polylactide capsules. Biomater. Sci. 2020;8:631–647. doi: 10.1039/C9BM01280J. PubMed DOI
Gryshkov O., Mutsenko V., Tarusin D., Khayyat D., Naujok O., Riabchenko E., Nemirovska Y., Danilov A., Petrenko A.Y., Glasmacher B. Coaxial Alginate Hydrogels: From Self-Assembled 3D Cellular Constructs to Long-Term Storage. Int. J. Mol. Sci. 2021;22:3096. doi: 10.3390/ijms22063096. PubMed DOI PMC
Sigal G.B., Mrksich M., Whitesides G.M. Effect of surface wettability on the adsorption of proteins and detergents. J. Am. Chem. Soc. 1998;120:3464–3473. doi: 10.1021/ja970819l. DOI
Bandyopadhyay D., Prashar D., Luk Y.Y. Stereochemical effects of chiral monolayers on enhancing the resistance to mammalian cell adhesion. Chem. Commun. 2011;47:6165–6167. doi: 10.1039/c1cc10855g. PubMed DOI
Kumorek M., Kubies D., Riedel T. Protein Interactions With Quaternized Chitosan/Heparin Multilayers. Physiol. Res. 2016;65:S253–S261. doi: 10.33549/physiolres.933427. PubMed DOI
Pop-Georgievski O., Kubies D., Zemek J., Neykova N., Demianchuk R., Mazl Chanova E., Slouf M., Houska M., Rypacek F. Self-assembled anchor layers/polysaccharide coatings on titanium surfaces: A study of functionalization and stability. Beilstein J. Nanotechnol. 2015;6:617–631. doi: 10.3762/bjnano.6.63. PubMed DOI PMC
Quaternized Chitosan/Heparin Polyelectrolyte Multilayer Films for Protein Delivery