PURPOSE: To evaluate the role of an anti-reflux diet in the treatment of patients with chronic cough caused by laryngopharyngeal reflux (LPR). METHODS: This prospective observational study included patients with chronic cough (lasting over 3 months) and laryngopharyngeal reflux (LPR) confirmed by hypopharyngeal-esophageal 24-h multichannel intraluminal impedance-pH monitoring (HEMII-pH), according to Dubai criteria. Participants were categorized based on cough severity using a visual analog scale (VAS) from 1 to 10. A VAS < 5 was considered to indicate mild cough, whereas a VAS ≥ 5 were considered to indicate severe cough. Patients with mild cough were treated by anti-reflux diet only, while those with severe cough received additional treatment with proton pump inhibitors (PPIs) and alginates. After 3 months, treatment effectiveness was evaluated by assessing the reduction in cough severity. RESULTS: In patients with mild cough, anti-reflux diet alone proved to be effective, yielding improvement in 83.3% of cases. Among patients with severe cough, a combination of anti-reflux diet, proton pump inhibitors (PPIs), and alginates proved was effective in 81.8% of cases. CONCLUSION: Diet alone is an effective and sufficient treatment for mild chronic cough in patients with LPR. For patients with severe chronic cough with LPT, combined anti-reflux measures are effective.
- MeSH
- algináty terapeutické užití MeSH
- chronická nemoc MeSH
- chronický kašel MeSH
- dospělí MeSH
- inhibitory protonové pumpy * terapeutické užití MeSH
- kašel * etiologie farmakoterapie MeSH
- laryngofaryngeální reflux * komplikace dietoterapie farmakoterapie MeSH
- lidé středního věku MeSH
- lidé MeSH
- monitorování jícnového pH MeSH
- prospektivní studie MeSH
- senioři MeSH
- stupeň závažnosti nemoci MeSH
- výsledek terapie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- pozorovací studie MeSH
Skin represents the largest organ in the human body, functioning as a protective barrier against environmental factors while playing a critical role in thermoregulation. Acne vulgaris is recognized as the most common dermatological condition affecting adolescents, and if left untreated, it can result in lasting skin damage and associated psychosocial challenges. This study aims to develop innovative polymeric biomaterials that could effectively support the treatment of acne vulgaris. The synthesis of these biomaterials involves the use of polyethylene glycol 6000, sodium alginate, and the antioxidant protein glutathione (GHS) to create polymeric hydrogels. These hydrogels were generated via a UV-mediated crosslinking process. To enhance the functional properties of the hydrogels, zinc oxide microparticles (ZnO), synthesized through a wet precipitation method, were incorporated into the formulations. Characterization of the ZnO was performed using Fourier-Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), particle sizer analysis, and Scanning Electron Microscopy (SEM). Additionally, the bioactivity of the synthesized materials was evaluated through incubation in media simulating physiological body fluids. The cytotoxic effects of the biomaterials were assessed using an indirect test on mouse fibroblast (L929) cells, in accordance with ISO 10993-5 guidelines. The results of our research indicate that the developed biomaterials exhibit potential as a carrier for active substances, contributing positively to the treatment of acne vulgaris and potentially improving overall skin health.
- MeSH
- acne vulgaris farmakoterapie MeSH
- algináty chemie MeSH
- biokompatibilní materiály chemie farmakologie MeSH
- buněčné linie MeSH
- fibroblasty účinky léků metabolismus MeSH
- glutathion * metabolismus MeSH
- hydrogely * chemie MeSH
- kůže * účinky léků metabolismus MeSH
- lidé MeSH
- myši MeSH
- nosiče léků chemie MeSH
- oxid zinečnatý * chemie farmakologie MeSH
- regenerace účinky léků MeSH
- spektroskopie infračervená s Fourierovou transformací MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The purpose of the current study was to evaluate the functional activity and storage viability (at 4 °C and 35 °C) of an immobilized as well as lyophilized multienzyme, viz., pectinase, cellulase, and amylase (PCA) that was produced by Bacillus subtilis NG105 under solid state fermentation (SSF) at 35 °C for 10 days using mosambi peel as a substrate. After SSF, the culture media was divided into two aliquots. From the first aliquot, the produced ME was extracted, precipitated, and further immobilized on calcium alginate beads (MEICA). In order to immobilize on mosambi peel matrix, the second aliquot was mixed with acetone and subsequently lyophilized (MELMP). Thus, ready MEICA and MELMP extracted 87.5 and 91.5% juice from mango pulp, respectively. In the reusability study, after 5 cycles, MEICA exhibited 23.8%, 24.4%, and 36.5% PCA activity, respectively. The PCA activity of MEICA and MELMP was examined after 60 days of storage at 4 °C. The result revealed that the PCA for MEICA declined from 100 to 66%, 58.2%, and 64.5%, respectively, while for MELMP, it dropped from 100 to 84.2%, 82.1%, and 69.7%, respectively. Further, after 60 days of storage, the reduction of total protein content (TPC) in free multienzyme (FME), MEICA, and MELMP was 92.2%, 91.5%, and 36.3% observed, respectively. In the localization study, the maximum levels of multienzyme activity were found in cell exudates. This study demonstrated that immobilizing of multienzyme through lyophilization on waste substrates like mosambi peel boosted its stability and shelf-life along with greatly reducing the cost of products.
Alginate lyases have countless potential for application in industries and medicine particularly as an appealing biocatalyst for the production of biofuels and bioactive oligosaccharides. Solid-state fermentation (SSF) allows improved production of enzymes and consumes less energy compared to submerged fermentation. Seaweeds can serve as the most promising biomass for the production of biochemicals. Alginate present in the seaweed can be used by alginate lyase-producing bacteria to support growth and can secrete alginate lyase. In this perspective, the current study was directed on the bioprocessing of brown seaweeds for the production of alginate lyase using marine bacterial isolate. A novel alginate-degrading marine bacterium Enterobacter tabaci RAU2C which was previously isolated in the laboratory was used for the production of alginate lyase using Sargassum swartzii as a low-cost solid substrate. Process parameters such as inoculum incubation period and moisture content were optimized for alginate lyase production. SSF resulted in 33.56 U/mL of alginate lyase under the static condition maintained with 75% moisture after 4 days. Further, the effect of different buffers, pH, and temperature on alginate lyase activity was also analyzed. An increase in alginate lyase activity was observed with an increase in moisture content from 60 to 75%. Maximum enzyme activity was perceived with phosphate buffer at pH 7 and 37 °C. Further, the residual biomass after SSF could be employed as biofertilizer for plant growth promotion based on the preliminary analysis. To our knowledge, this is the first report stating the usage of seaweed biomass as a substrate for the production of alginate lyase using solid-state fermentation.
- MeSH
- algináty * metabolismus MeSH
- biomasa MeSH
- Enterobacter * metabolismus enzymologie izolace a purifikace růst a vývoj MeSH
- fermentace * MeSH
- koncentrace vodíkových iontů MeSH
- kyselina glukuronová metabolismus MeSH
- mořské řasy * mikrobiologie MeSH
- Phaeophyceae mikrobiologie MeSH
- polysacharid-lyasy * metabolismus MeSH
- Sargassum * mikrobiologie metabolismus MeSH
- teplota MeSH
- Publikační typ
- časopisecké články MeSH
Alginates have been widely explored due to their salient advantages of hydrophilicity, biocompatibility, mucoadhesive features, bioavailability, environmentally-benign properties, and cost-effectiveness. They are applied for designing micro- and nanosystems for controlled and targeted drug delivery and cancer therapy as alginate biopolymers find usage in encapsulating anticancer drugs to improve their bioavailability, sustained release, pharmacokinetics, and bio-clearance. Notably, these nanomaterials can be applied for photothermal, photodynamic, and chemodynamic therapy of cancers/tumors. Future explorations ought to be conducted to find novel alginate-based (nano)systems for targeted cancer therapy using advanced drug delivery techniques with benefits of non-invasiveness, patient compliance, and convenience of drug administration. Thus, some critical parameters such as mucosal permeability, stability in the gastrointestinal tract environment, and drug solubility ought to be considered. In addition, the comprehensive clinical translational studies along with the optimization of synthesis techniques still need to be addressed. Herein, we present an overview of the current state of knowledge and recent developments pertaining to the applications of alginate-based micro- and nanosystems for targeted cancer therapy based on controlled drug delivery, photothermal therapy, and chemodynamic/photodynamic therapy approaches, focusing on important challenges and future directions.
- MeSH
- algináty * MeSH
- biologická dostupnost MeSH
- lékové transportní systémy metody MeSH
- léky s prodlouženým účinkem MeSH
- lidé MeSH
- nádory * farmakoterapie MeSH
- rozpustnost MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The accumulation of chitin waste from the seafood industry is a serious environmental problem. However, this residue can be degraded by chitinases and its subproducts, such as chitosan, economically exploited. In this study, a chitinase producer bacteria, identified as Paenibacillus illinoisensis, was isolated from the Brazilian coastal city of Terra de Areia - Rio Grande Do Sul (RS) and was immobilized within alginate beads to evaluate its chitinase production. The alginate beads containing cells presented an average size of 4 mm, 99% of immobilization efficiency and increased the enzymatic activity in 40.71% compared to the free cells. The biomass during enzymatic production increased 62.01% and the total cells leaked from the alginate beads corresponded to 6.46% after 96 h. Immobilized cells were reused in a sequential batch system and remained stable for production for up to four 96-h cycles, decreasing only 21.04% of the initial activity at the end of the fourth cycle. Therefore, the methodology used for cell immobilization resulted in adequate beads to maintain cell viability during the enzymatic production, increasing enzymatic activity, showing low cell leakage from the support and appropriate recyclable capacity.
- MeSH
- algináty chemie MeSH
- chitinasy * MeSH
- kyseliny hexuronové chemie MeSH
- půda MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Brazílie MeSH
Surface coatings of materials by polysaccharide polymers are an acknowledged strategy to modulate interfacial biocompatibility. Polysaccharides from various algal species represent an attractive source of structurally diverse compounds that have found application in the biomedical field. Furcellaran obtained from the red algae Furcellaria lumbricalis is a potential candidate for biomedical applications due to its gelation properties and mechanical strength. In the present study, immobilization of furcellaran onto polyethylene terephthalate surfaces by a multistep approach was studied. In this approach, N-allylmethylamine was grafted onto a functionalized polyethylene terephthalate (PET) surface via air plasma treatment. Furcellaran, as a bioactive agent, was anchored on such substrates. Surface characteristics were measured by means of contact angle measurements, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Subsequently, samples were subjected to selected cell interaction assays, such as antibacterial activity, anticoagulant activity, fibroblasts and stem cell cytocompatibility, to investigate the Furcellaran potential in biomedical applications. Based on these results, furcellaran-coated PET films showed significantly improved embryonic stem cell (ESC) proliferation compared to the initial untreated material.
Conversion to mucoid form is a crucial step in the pathogenesis of P. aeruginosa in burns and cystic fibrosis (CF) patients. Alginate is considered the major component of biofilm and is highly associated with the formation of mucoid biofilm in this species. Nonsteroid anti-inflammatory drugs (NSAIDs), including ibuprofen, have shown promising antibacterial and antibiofilm potential for bacterial pathogens. In this study, we aimed to evaluate the effect of ibuprofen on the expression of alginate synthetase (alg8), GDP-mannose dehydrogenase (algD), and alginate lyase (algL) genes in multiple drug-resistant (MDR) P. aeruginosa strains. The biofilm formation potential and the expression of alg8, algD, and algL among the bacteria treated with ibuprofen (at sub-inhibitory concentration) were investigated using the crystal violet staining and real-time PCR assays, respectively. The minimum inhibitory concentration of ibuprofen for the studied strains was determined 1024-2048 μg/mL. We observed that ibuprofen was able to reduce bacterial biofilm by 51-77%. Also, the expression of alg8, algD, and algL decreased by 32, 52, and 48%, respectively. The reduction of the genes responsible for alginate synthesis indicates promising antivirulece potential of ibuprofen to combat P. aeruginosa infection, especially in burns and CF patients. Our findings suggest that ibuprofen could be used to reduce the pathogenicity of P. aeruginosa that could be used in combination with antibiotics to treat drug-resistant infections.
- MeSH
- algináty MeSH
- antibakteriální látky metabolismus farmakologie MeSH
- biofilmy MeSH
- cystická fibróza * mikrobiologie MeSH
- ibuprofen metabolismus farmakologie MeSH
- lidé MeSH
- pseudomonádové infekce * farmakoterapie mikrobiologie MeSH
- Pseudomonas aeruginosa MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Marine macroalgae have a very high carbohydrate content due to complex algal polysaccharides (APS) like agar, alginate, and ulvan in their cell wall. Despite numerous reports on their biomedical properties, their hydrocolloid nature limits their applications. Algal oligosaccharides (AOS), which are hydrolyzed forms of complex APS, are gaining importance due to their low molecular weight, biocompatibility, bioactivities, safety, and solubility in water that makes it a lucrative alternative. The AOS produced through enzymatic hydrolysis using microbial enzymes have far-reaching applications because of its stereospecific nature. Identification and characterization of novel microorganisms producing APS hydrolyzing enzymes are the major bottlenecks for the efficient production of AOS. This review will discuss the marine microbial enzymes identified for AOS production and the bioactive potential of enzymatically produced AOS. This can improve our understanding of the biotechnological potential of microbial enzymes for the production of AOS and facilitate the sustainable utilization of algal biomass. Enzymatically produced AOS are shown to have bioactivities such as antioxidant, antiglycemic, prebiotic, immunomodulation, antiobesity or antihypercholesterolemia, anti-inflammatory, anticancer, and antimicrobial activity. The myriad of health benefits provided by the AOS is the need of the hour as there is an alarming increase in physiological disorders among a wide range of the global population.
- MeSH
- algináty MeSH
- mořské řasy * MeSH
- oligosacharidy * MeSH
- potravní doplňky MeSH
- prebiotika MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH