Enhanced Mitogenic Activity of Recombinant Human Vascular Endothelial Growth Factor VEGF121 Expressed in E. coli Origami B (DE3) with Molecular Chaperones

. 2016 ; 11 (10) : e0163697. [epub] 20161007

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27716773

We describe the production of a highly-active mutant VEGF variant, α2-PI1-8-VEGF121, which contains a substrate sequence for factor XIIIa at the aminoterminus designed for incorporation into a fibrin gel. The α2-PI1-8-VEGF121 gene was synthesized, cloned into a pET-32a(+) vector and expressed in Escherichia coli Origami B (DE3) host cells. To increase the protein folding and the solubility, the resulting thioredoxin-α2-PI1-8-VEGF121 fusion protein was co-expressed with recombinant molecular chaperones GroES/EL encoded by independent plasmid pGro7. The fusion protein was purified from the soluble fraction of cytoplasmic proteins using affinity chromatography. After cleavage of the thioredoxin fusion part with thrombin, the target protein was purified by a second round of affinity chromatography. The yield of purified α2-PI1-8-VEGF121 was 1.4 mg per liter of the cell culture. The α2-PI1-8-VEGF121 expressed in this work increased the proliferation of endothelial cells 3.9-8.7 times in comparison with commercially-available recombinant VEGF121. This very high mitogenic activity may be caused by co-expression of the growth factor with molecular chaperones not previously used in VEGF production. At the same time, α2-PI1-8-VEGF121 did not elicit considerable inflammatory activation of human endothelial HUVEC cells and human monocyte-like THP-1 cells.

Erratum v

PubMed

Zobrazit více v PubMed

Liu P, Zhao Y, Yan Y, Hu Y, Yang W, Cai K. Construction of extracellular microenvironment to improve surface endothelialization of NiTi alloy substrate. Mater Sci Eng C Mater Biol Appl. 2015; 55:1–7. Epub 2015 May 21. ; 10.1016/j.msec.2015.05.047 PubMed DOI

Wang J, An Q, Li D, Wu T, Chen W, Sun B, et al. Heparin and vascular endothelial growth factor loaded poly(L-lactide-co-caprolactone) nanofiber covered stent-graft for aneurysm treatment. J Biomed Nanotechnol. 2015;11(11):1947–60. 10.1166/jbn.2015.2138 . PubMed DOI

Kim JH, Kim TH, Jin GZ, Park JH, Yun YR, Jang JH, et al. Mineralized poly(lactic acid) scaffolds loading vascular endothelial growth factor and the in vivo performance in rat subcutaneous model. J Biomed Mater Res A. 2013;101(5):1447–55. Epub 2012 Oct 31. , 10.1002/jbm.a.34446 PubMed DOI

Maglione D, Guerriero V, Viglietto G, Delli-Bovi P, Persico MG. Isolation of a human placenta cDNA coding for a protein related to the vascular permeability factor. Proc Natl Acad Sci U S A. 1991; 88(20):9267–71. Epub 1991/10/15. 10.1073/pnas.88.20.9267 ; PubMed Central PMCID: PMCPmc52695. PubMed DOI PMC

Olofsson B, Pajusola K, Kaipainen A, von Euler G, Joukov V, Saksela O, et al. Vascular endothelial growth factor B, a novel growth factor for endothelial cells. Proc Natl Acad Sci U S A. 1996; 93(6):2576–81. Epub 1996/03/19. 10.1073/pnas.93.6.2576 ; PubMed Central PMCID: PMCPmc39839. PubMed DOI PMC

Joukov V, Pajusola K, Kaipainen A, Chilov D, Lahtinen I, Kukk E, et al. A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. The EMBO Journal. 1996; 15(2):290–98. Epub 1996/01/15. ; PubMed Central PMCID: PMCPmc449944. PubMed PMC

Achen MG, Jeltsch M, Kukk E, Makinen T, Vitali A, Wilks AF, et al. Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4). Proc Natl Acad Sci U S A. 1998; 95(2):548–53. Epub 1998/01/22. 10.1073/pnas.95.2.548 ; PubMed Central PMCID: PMCPmc18457. PubMed DOI PMC

Houck KA, Ferrara N, Winer J, Cachianes G, Li B, Leung DW. The vascular endothelial growth factor family: identification of a fourth molecular species and characterization of alternative splicing of RNA. Mol Endocrinol (Baltimore, Md). 1991; 5(12):1806–14. Epub 1991/12/01. 10.1210/mend-5-12-1806 . PubMed DOI

Lee S, Jilani SM, Nikolova GV, Carpizo D, Iruela-Arispe ML. Processing of VEGF-A by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors. J Cell Biol. 2005; 169(4):681–91. Epub 2005/05/25. 10.1083/jcb.200409115 ; PubMed Central PMCID: PMCPmc2171712. PubMed DOI PMC

Delcombel R, Janssen L, Vassy R, Gammons M, Haddad O, Richard B, et al. New prospects in the roles of the C-terminal domains of VEGF-A and their cooperation for ligand binding, cellular signaling and vessels formation. Angiogenesis. 2013; 16(2):353–71. Epub 2012/12/21. 10.1007/s10456-012-9320-y . PubMed DOI

Vempati P, Popel AS, Mac Gabhann F. Extracellular regulation of VEGF: isoforms, proteolysis, and vascular patterning. Cytokine & Growth Factor Rev. 2014; 25(1):1–19. Epub 2013/12/18. 10.1016/j.cytogfr.2013.11.002 ; PubMed Central PMCID: PMCPmc3977708. PubMed DOI PMC

Houck KA, Leung DW, Rowland AM, Winer J, Ferrara N. Dual regulation of vascular endothelial growth factor bioavailability by genetic and proteolytic mechanisms. J Biol Chem. 1992; 267(36):26031–7. Epub 1992/12/25. . PubMed

Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med. 2003; 9(6):669–76. Epub 2003/06/05. 10.1038/nm0603-669 . PubMed DOI

Keyt BA, Berleau LT, Nguyen HV, Chen H, Heinsohn H, Vandlen R, et al. The carboxyl-terminal domain (111–165) of vascular endothelial growth factor is critical for its mitogenic potency. J Biol Chem. 1996; 271(13):7788–95. Epub 1996/03/29. . PubMed

Carmeliet P, Ng YS, Nuyens D, Theilmeier G, Brusselmans K, Cornelissen I, et al. Impaired myocardial angiogenesis and ischemic cardiomyopathy in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188. Nat Med. 1999; 5(5):495–502. Epub 1999/05/06. 10.1038/8379 . PubMed DOI

Arcondeguy T, Lacazette E, Millevoi S, Prats H, Touriol C. VEGF-A mRNA processing, stability and translation: a paradigm for intricate regulation of gene expression at the post-transcriptional level. Nucleic Acids Res. 2013; 41(17):7997–8010. Epub 2013/07/16. 10.1093/nar/gkt539 ; PubMed Central PMCID: PMCPmc3783158. PubMed DOI PMC

Ruhrberg C, Gerhardt H, Golding M, Watson R, Ioannidou S, Fujisawa H, et al. Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis. Genes & Development. 2002; 16(20):2684–98. Epub 2002/10/17. 10.1101/gad.242002 ; PubMed Central PMCID: PMCPmc187458. PubMed DOI PMC

Stalmans I, Ng YS, Rohan R, Fruttiger M, Bouche A, Yuce A, et al. Arteriolar and venular patterning in retinas of mice selectively expressing VEGF isoforms. J Clin Investig. 2002; 109(3):327–36. Epub 2002/02/06. 10.1172/jci14362 ; PubMed Central PMCID: PMCPmc150858. PubMed DOI PMC

Maes C, Stockmans I, Moermans K, Van Looveren R, Smets N, Carmeliet P, et al. Soluble VEGF isoforms are essential for establishing epiphyseal vascularization and regulating chondrocyte development and survival. J Clin Investig. 2004; 113(2):188–99. Epub 2004/01/15. 10.1172/jci19383 ; PubMed Central PMCID: PMCPmc312596. PubMed DOI PMC

Ferrara N. Binding to the extracellular matrix and proteolytic processing: two key mechanisms regulating vascular endothelial growth factor action. Mol Biol Cell. 2010; 21(5):687–90. Epub 2010/02/27. 10.1091/mbc.E09-07-0590 ; PubMed Central PMCID: PMCPmc2828956. PubMed DOI PMC

Park JE, Keller GA, Ferrara N. The vascular endothelial growth factor (VEGF) isoforms: differential deposition into the subepithelial extracellular matrix and bioactivity of extracellular matrix-bound VEGF. Mol Biol Cell. 1993; 4(12):1317–26. Epub 1993/12/01. 10.1091/mbc.4.12.1317 ; PubMed Central PMCID: PMCPmc275767. PubMed DOI PMC

Yla-Herttuala S, Rissanen TT, Vajanto I, Hartikainen J. Vascular endothelial growth factors: biology and current status of clinical applications in cardiovascular medicine. J Am Coll Cardiol. 2007; 49(10):1015–26. Epub 2007/03/14. 10.1016/j.jacc.2006.09.053 . PubMed DOI

Hendel RC, Henry TD, Rocha-Singh K, Isner JM, Kereiakes DJ, Giordano FJ, et al. Effect of intracoronary recombinant human vascular endothelial growth factor on myocardial perfusion: evidence for a dose-dependent effect. Circulation. 2000; 101(2):118–21. Epub 2000/01/19. 10.1161/01.CIR.101.2.118 . PubMed DOI

Rosengart TK, Lee LY, Patel SR, Kligfield PD, Okin PM, Hackett NR, et al. Six-month assessment of a phase I trial of angiogenic gene therapy for the treatment of coronary artery disease using direct intramyocardial administration of an adenovirus vector expressing the VEGF121 cDNA. Annals of Surgery. 1999; 230(4):466–70; discussion 70–2. Epub 1999/10/16. 10.1097/00000658-199910000-00002 ; PubMed Central PMCID: PMCPmc1420895. PubMed DOI PMC

Simon-Yarza T, Formiga FR, Tamayo E, Pelacho B, Prosper F, Blanco-Prieto MJ. Vascular endothelial growth factor-delivery systems for cardiac repair: an overview. Theranostics. 2012; 2(6):541–52. Epub 2012/06/28. 10.7150/thno.3682 ; PubMed Central PMCID: PMCPmc3381347. PubMed DOI PMC

Gupta R, Tongers J, Losordo DW. Human studies of angiogenic gene therapy. Circul Res. 2009; 105(8):724–36. Epub 2009/10/10. 10.1161/circresaha.109.200386 ; PubMed Central PMCID: PMCPmc2770893. PubMed DOI PMC

Henry TD, Annex BH, McKendall GR, Azrin MA, Lopez JJ, Giordano FJ, et al. The VIVA trial: Vascular endothelial growth factor in Ischemia for Vascular Angiogenesis. Circulation. 2003; 107(10):1359–65. Epub 2003/03/19. 10.1161/01.CIR.0000061911.47710.8A . PubMed DOI

Eppler SM, Combs DL, Henry TD, Lopez JJ, Ellis SG, Yi JH, et al. A target-mediated model to describe the pharmacokinetics and hemodynamic effects of recombinant human vascular endothelial growth factor in humans. Clin Pharmacol Therapeutics. 2002; 72(1):20–32. Epub 2002/08/02. 10.1067/mcp.2002.126179 . PubMed DOI

Lee K, Silva EA, Mooney DJ. Growth factor delivery-based tissue engineering: general approaches and a review of recent developments. J R Soc Interface. 2011; 8(55):153–70. Epub 2010/08/20. 10.1098/rsif.2010.0223 ; PubMed Central PMCID: PMCPmc3033020. PubMed DOI PMC

Zisch AH, Schenk U, Schense JC, Sakiyama-Elbert SE, Hubbell JA. Covalently conjugated VEGF—fibrin matrices for endothelialization. J Control Release. 2001; 72(1–3):101–13. Epub 2001/06/08. 10.1016/S0168-3659(01)00266-8 . PubMed DOI

LaVallie ER, DiBlasio EA, Kovacic S, Grant KL, Schendel PF, McCoy JM. A thioredoxin gene fusion expression system that circumvents inclusion body formation in the E. coli cytoplasm. Bio-Technology. 1993; 11(2):187–93. 10.1038/nbt0293-187 PubMed DOI

LaVallie ER, McCoy JM. Gene fusion expression systems in Escherichia coli. Curr Opin in Biotechnol. 1995; 6(5):501–6. 10.1016/0958-1669(95)80083-2 PubMed DOI

Costa SJ, Almeida A, Castro A, Domingues L, Besir H. The novel Fh8 and H fusion partners for soluble protein expression in Escherichia coli: a comparison with the traditional gene fusion technology. Appl Microbiol Biotechnol. 2013; 97(15):6779–91. 10.1007/s00253-012-4559-1 . PubMed DOI

Sachdev D, Chirgwin JM. Solubility of proteins isolated from inclusion bodies is enhanced by fusion to maltose-binding protein or thioredoxin. Protein Expr Purif. 1998; 12(1):122–32. Epub 1998/03/14. 10.1006/prep.1997.0826 . PubMed DOI

An N, Kang Y. Thioredoxin and hematologic malignancies. Adv Cancer Res. 2014; 122:245–79. 10.1016/B978-0-12-420117-0.00007-4 . PubMed DOI

Matsushima S, Zablocki D, Sadoshima J. Application of recombinant thioredoxin1 for treatment of heart disease. J Mol Cell Cardiol. 2011; 51(4):570–3. 10.1016/j.yjmcc.2010.09.020 PubMed DOI PMC

Dunn LL, Buckle AM, Cooke JP, Ng MK. The emerging role of the thioredoxin system in angiogenesis. Arterioscler Thromb Vasc Biol. 2010; 30(11):2089–98. 10.1161/ATVBAHA.110.209643 PubMed DOI PMC

Kim S, Mohamedali KA, Cheung LH, Rosenblum MG. Overexpression of biologically active VEGF121 fusion proteins in Escherichia coli. J Biotechnol. 2007; 128(3):638–47. Epub 2007/01/16. 10.1016/j.jbiotec.2006.11.027 . PubMed DOI

Gasparian ME, Elistratov PA, Drize NI, Nifontova IN, Dolgikh DA, Kirpichnikov MP. Overexpression in Escherichia coli and purification of human fibroblast growth factor (FGF-2). Biochemistry (Mosc). 2009; 74(2):221–5. Epub 2009/03/10. 10.1134/S000629790902014X . PubMed DOI

Xiong S, Wang YF, Ren XR, Li B, Zhang MY, Luo Y, et al. Solubility of disulfide-bonded proteins in the cytoplasm of Escherichia coli and its "oxidizing" mutant. World J Gastroenter (WJG). 2005; 11(7):1077–82. Epub 2005/03/03. ; PubMed Central PMCID: PMCPmc4250777. PubMed PMC

Wang HS, Li F, Runge MS, Chaikof EL. Endothelial cells exhibit differential chemokinetic and mitogenic responsiveness to alpha-thrombin. J Surg Res. 1997; 68(2):139–44. Epub 1997/03/01. 10.1006/jsre.1997.5044 . PubMed DOI

Zucker S, Mirza H, Conner CE, Lorenz AF, Drews MH, Bahou WF, et al. Vascular endothelial growth factor induces tissue factor and matrix metalloproteinase production in endothelial cells: conversion of prothrombin to thrombin results in progelatinase A activation and cell proliferation. Int J Cancer. 1998; 75(5):780–6. Epub 1998/03/12. . PubMed

Borrelli V, Sterpetti AV, Coluccia P, Randone B, Cavallaro A, Santoro D'Angelo L, et al. Bimodal concentration-dependent effect of thrombin on endothelial cell proliferation and growth factor release in culture. J Surg Res. 2001; 100(2):154–60. Epub 2001/10/11. 10.1006/jsre.2001.6231 . PubMed DOI

Zhou TB, Yang GS. Roles of vascular endothelial growth factor in acute rejection reaction following liver transplantation. Transpl Immunol. 2011;25(4):207–9. Epub 2011 Aug 11. ; 10.1016/j.trim.2011.08.001 PubMed DOI

Dormond O, Dufour M, Seto T, Bruneau S, Briscoe DM. Targeting the intragraft microenvironment and the development of chronic allograft rejection. Hum Immunol. 2012;73(12):1261–8. Epub 2012 Aug 3. ; PMCID: PMC3496805; 10.1016/j.humimm.2012.07.334 PubMed DOI PMC

Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976; 72:248–54. Epub 1976/05/07. 10.1016/0003-2697(76)90527-3 . PubMed DOI

Parizek M, Douglas TE, Novotna K, Kromka A, Brady MA, Renzing A, et al. Nanofibrous poly(lactide-co-glycolide) membranes loaded with diamond nanoparticles as promising substrates for bone tissue engineering. Int J Nanomedicine. 2012;7:1931–51. Epub 2012 Apr 17. ; PMCID: PMC3356197; 10.2147/IJN.S26665 PubMed DOI PMC

Scrofani SD, Fabri LJ, Xu P, Maccarone P, Nash AD. Purification and refolding of vascular endothelial growth factor-B. Protein Sci. 2000; 9(10):2018–25. Epub 2000/12/06. 10.1110/ps.9.10.2018 PubMed DOI PMC

Backer MV, Backer JM. Functionally active VEGF fusion proteins. Protein Expr Purif. 2001; 23(1):1–7. Epub 2001/09/26. 10.1006/prep.2001.1472 . PubMed DOI

Morera Y, Lamdan H, Bequet M, Ayala M, Rojas G, Munoz Y, et al. Biologically active vascular endothelial growth factor as a bacterial recombinant glutathione S-transferase fusion protein. Biotechnology and Appl Biochem. 2006; 44(1):45–53. 10.1042/ba20050169. PubMed WOS:000236451200006. PubMed DOI

Pizarro SA, Gunson J, Field MJ, Dinges R, Khoo S, Dalal M, et al. High-yield expression of human vascular endothelial growth factor VEGF(165) in Escherichia coli and purification for therapeutic applications. Protein Expr Purif. 2010; 72(2):184–93. 10.1016/j.pep.2010.03.007 . PubMed DOI

Lee IL, Li PS, Yu WL, Shen HH. Prokaryotic expression, refolding, and purification of functional human vascular endothelial growth factor isoform 165: purification procedures and refolding conditions revisited. Protein Expr Purif. 2011; 76(1):54–8. 10.1016/j.pep.2010.08.014 . PubMed DOI

Kazemi-Lomedasht F, Behdani M, Pooshang Bagheri K, Habibi Anbouhi M, Abolhassani M, Khanahmad H, et al. Expression and purification of functional human vascular endothelial growth factor-a121; the most important angiogenesis factor. Adv Pharmaceut Bull. 2014; 4(4):323–8. 10.5681/apb.2014.047. PubMed DOI PMC

Kang W, Kim S, Lee S, Jeon E, Lee Y, Yun YR, et al. Characterization and optimization of vascular endothelial growth factor(165) (rhVEGF(165)) expression in Escherichia coli. Protein Expr Purif. 2013; 87(2):55–60. Epub 2012/10/31. 10.1016/j.pep.2012.10.004 . PubMed DOI

Heiring C, Muller YA. Folding screening assayed by proteolysis: application to various cystine deletion mutants of vascular endothelial growth factor. Protein Eng. 2001; 14(3):183–8. Epub 2001/05/09. 10.1093/protein/14.3.183 . PubMed DOI

Petrickova A, Vesela AB, Kaplan O, Kubac D, Uhnakova B, Malandra A, et al. Purification and characterization of heterologously expressed nitrilases from filamentous fungi. Appl Microbiol Biotechnol. 2012; 93(4):1553–61. 10.1007/s00253-011-3525-7 . PubMed DOI

Maeng BH, Nam DH, Kim YH. Coexpression of molecular chaperones to enhance functional expression of anti-BNP scFv in the cytoplasm of Escherichia coli for the detection of B-type natriuretic peptide. World J Microbiol Biotechnol. 2011; 27(6):1391–8. 10.1007/s11274-010-0590-5 . PubMed DOI

Yang F, Yang X, Li Z, Du C, Wang J, Li S. Overexpression and characterization of a glucose-tolerant beta-glucosidase from T. aotearoense with high specific activity for cellobiose. Appl Microbiol Biotechnol. 2015; 99(21):8903–15. 10.1007/s00253-015-6619-9 . PubMed DOI

Rodrigo WW, Dassanayake RS, Karunanayake EH, Gunawardene YINS, Weerasena OVJ. Heterologous expression, chaperone mediated solubilization and purification of parasitic nematode–specific growth factor–like protein of Setaria digitata. Asian Pacific J Tropical Med. 2014; 7(2):85–92. 10.1016/s1995-7645(14)60001-8 PubMed DOI

Pfeffer J, Rusnak M, Hansen C-E, Rhlid RB, Schmid RD, Maurer SC. Functional expression of lipase A from Candida antarctica in Escherichia coli—A prerequisite for high-throughput screening and directed evolution. J Mol Catalysis B: Enzymatic. 2007; 45(1–2):62–7. 10.1016/j.molcatb.2006.11.006 DOI

Sonoda H, Kumada Y, Katsuda T, Yamaji H. Functional expression of single-chain Fv antibody in the cytoplasm of Escherichia coli by thioredoxin fusion and co-expression of molecular chaperones. Protein Expr Purif. 2010; 70(2):248–53. 10.1016/j.pep.2009.11.003 PubMed DOI

Mitsuda M, Iwasaki M. Improvement in the expression of CYP2B6 by co-expression with molecular chaperones GroES/EL in Escherichia coli. Protein Expr Purif. 2006; 46(2):401–5. 10.1016/j.pep.2005.10.017 . PubMed DOI

Hu ZM, Ma L, Zhou MQ, Gao JM, Wang XN. Refolding and purification of recombinant human VEGF-121 expressed as inclusion bodies in Escherichia coli. Nan Fang Yike Daxue Xuebao. 2006; 26(8):1083–6. Epub 2006/08/31. . PubMed

Suresh SC, Selvaraju V, Thirunavukkarasu M, Goldman JW, Husain A, Alexander Palesty J, et al. Thioredoxin-1 (Trx1) engineered mesenchymal stem cell therapy increased pro-angiogenic factors, reduced fibrosis and improved heart function in the infarcted rat myocardium. Int J Cardiol. 2015; 201(Dec):517–28. 10.1016/j.ijcard.2015.08.117 . PubMed DOI

Gasdaska JR, Berggren M, Powis G. Cell growth stimulation by the redox protein thioredoxin occurs by a novel helper mechanism. Cell Growth & Differentiation. 1995; 6(12):1643–50. Epub 1995/12/01. . PubMed

Shuo-shuo C, Xue-zheng L, Ji-hong S. Effects of co-expression of molecular chaperones on heterologous soluble expression of the cold-active lipase Lip-948. Protein Expr Purif. 2011; 77(2):166–72. 10.1016/j.pep.2011.01.009 . PubMed DOI

Morera Y, Bequet-Romero M, Ayala M, Velazco JC, Pérez PP, Alba JS, et al. Immunogenicity and some safety features of a VEGF-based cancer therapeutic vaccine in rats, rabbits and non-human primates. Vaccine. 2010;28(19):3453–61. Epub 2010 Mar 1. ; 10.1016/j.vaccine.2010.02.069 PubMed DOI

Pérez SL, Morera DY, Bequet-Romero M, Ramses HG, Rodríguez Y, Castro VJ, et al. Experimental studies of a vaccine formulation of recombinant human VEGF antigen with aluminum phosphate. Hum Vaccin Immunother. 2015;11(8):2030–7. ; PMCID: PMC4635891; 10.1080/21645515.2015.1029213 PubMed DOI PMC

Gavilondo JV, Hernández-Bernal F, Ayala-Ávila M, de la Torre AV, de la Torre J, Morera-Díaz Y, et al. Specific active immunotherapy with a VEGF vaccine in patients with advanced solid tumors. Results of the CENTAURO antigen dose escalation phase I clinical trial. Vaccine. 2014;32(19):2241–50. Epub 2014 Feb 11. ; 10.1016/j.vaccine.2013.11.102 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...