The Influence of Negative Pressure and of the Harvesting Site on the Characteristics of Human Adipose Tissue-Derived Stromal Cells from Lipoaspirates

. 2020 ; 2020 () : 1016231. [epub] 20200210

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32104182

BACKGROUND: Adipose tissue-derived stromal cells (ADSCs) have great potential for cell-based therapies, including tissue engineering. However, various factors can influence the characteristics of isolated ADSCs. METHODS: We studied the influence of the harvesting site, i.e., inner thigh (n = 3), outer thigh (n = 3), outer thigh (n = 3), outer thigh (. RESULTS: We revealed higher initial cell yields from the outer thigh region than from the abdomen region. Negative pressure did not influence the cell yields from the outer thigh region, whereas the yields from the abdomen region were higher under high negative pressure than under low negative pressure. In the subsequent passage, in general, no significant relationship was identified between the different negative pressure and ADSC characteristics. No significant difference was observed in the characteristics of thigh ADSCs and abdomen ADSCs. Only on day 1, the diameter was significantly bigger in outer thigh ADSCs than in abdomen ADSCs. Moreover, we noted a tendency of thigh ADSCs (i.e., inner thigh+outer thigh) to reach a higher cell number on day 7. Discussion. The harvesting site and negative pressure can potentially influence initial cell yields from lipoaspirates. However, for subsequent in vitro culturing and for use in tissue engineering, it seems that the harvesting site and the level of negative pressure do not have a crucial or limiting effect on basic ADSC characteristics.in vitro culturing and for use in tissue engineering, it seems that the harvesting site and the level of negative pressure do not have a crucial or limiting effect on basic ADSC characteristics.

Zobrazit více v PubMed

Marquez-Curtis L. A., Janowska-Wieczorek A., McGann L. E., Elliott J. A. Mesenchymal stromal cells derived from various tissues: biological, clinical and cryopreservation aspects. Cryobiology. 2015;71(2):181–197. doi: 10.1016/j.cryobiol.2015.07.003. PubMed DOI

Kern S., Eichler H., Stoeve J., Klüter H., Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 2006;24(5):1294–1301. doi: 10.1634/stemcells.2005-0342. PubMed DOI

Bacakova L., Zarubova J., Travnickova M., et al. Stem cells: their source, potency and use in regenerative therapies with focus on adipose-derived stem cells - a review. Biotechnology Advances. 2018;36(4):1111–1126. doi: 10.1016/j.biotechadv.2018.03.011. PubMed DOI

Simonacci F., Bertozzi N., Raposio E. Off-label use of adipose-derived stem cells. Annals of Medicine and Surgery. 2017;24:44–51. doi: 10.1016/j.amsu.2017.10.023. PubMed DOI PMC

Bora P., Majumdar A. S. Adipose tissue-derived stromal vascular fraction in regenerative medicine: a brief review on biology and translation. Stem Cell Research & Therapy. 2017;8(1):p. 145. doi: 10.1186/s13287-017-0598-y. PubMed DOI PMC

Raposio E., Simonacci F., Perrotta R. E. Adipose-derived stem cells: comparison between two methods of isolation for clinical applications. Annals of Medicine and Surgery. 2017;20:87–91. doi: 10.1016/j.amsu.2017.07.018. PubMed DOI PMC

Estes B. T., Diekman B. O., Gimble J. M., Guilak F. Isolation of adipose-derived stem cells and their induction to a chondrogenic phenotype. Nature Protocols. 2010;5(7):1294–1311. doi: 10.1038/nprot.2010.81. PubMed DOI PMC

Lee J. H., Kirkham J. C., McCormack M. C., Nicholls A. M., Randolph M. A., Austen W. G., Jr. The effect of pressure and shear on autologous fat grafting. Plastic and Reconstructive Surgery. 2013;131(5):1125–1136. doi: 10.1097/PRS.0b013e3182879f4a. PubMed DOI

Charles-de-Sá L., Gontijo de Amorim N. F., Dantas D., et al. Influence of negative pressure on the viability of adipocytes and mesenchymal stem cell, considering the device method used to harvest fat tissue. Aesthetic Surgery Journal. 2015;35(3):334–344. doi: 10.1093/asj/sju047. PubMed DOI

Mojallal A., Auxenfans C., Lequeux C., Braye F., Damour O. Influence of negative pressure when harvesting adipose tissue on cell yield of the stromal-vascular fraction. Bio-medical Materials and Engineering. 2008;18(4-5):193–197. PubMed

Chen Y. W., Wang J. R., Liao X., et al. Effect of suction pressures on cell yield and functionality of the adipose- derived stromal vascular fraction. Journal of Plastic, Reconstructive & Aesthetic Surgery. 2017;70(2):257–266. doi: 10.1016/j.bjps.2016.10.028. PubMed DOI

Jurgens W. J. F. M., Oedayrajsingh-Varma M. J., Helder M. N., et al. Effect of tissue-harvesting site on yield of stem cells derived from adipose tissue: implications for cell-based therapies. Cell and Tissue Research. 2008;332(3):415–426. doi: 10.1007/s00441-007-0555-7. PubMed DOI PMC

Padoin A. V., Braga-Silva J., Martins P., et al. Sources of processed lipoaspirate cells: influence of donor site on cell concentration. Plastic and Reconstructive Surgery. 2008;122(2):614–618. doi: 10.1097/PRS.0b013e31817d5476. PubMed DOI

Tsekouras A., Mantas D., Tsilimigras D. I., Moris D., Kontos M., Zografos G. C. Comparison of the viability and yield of adipose-derived stem cells (ASCs) from different donor areas. In Vivo. 2017;31(6):1229–1234. doi: 10.21873/invivo.11196. PubMed DOI PMC

Lim A. A., Fan K., Allam K. A., et al. Autologous fat transplantation in the craniofacial patient: the UCLA experience. The Journal of Craniofacial Surgery. 2012;23(4):1061–1066. doi: 10.1097/SCS.0b013e31824e695b. PubMed DOI

Small K., Choi M., Petruolo O., Lee C., Karp N. Is there an ideal donor site of fat for secondary breast reconstruction? Aesthetic Surgery Journal. 2014;34(4):545–550. doi: 10.1177/1090820X14526751. PubMed DOI

Rohrich R. J., Sorokin E. S., Brown S. A. In search of improved fat transfer viability: a quantitative analysis of the role of centrifugation and harvest site. Plastic and Reconstructive Surgery. 2004;113(1):391–395. doi: 10.1097/01.PRS.0000097293.56504.00. PubMed DOI

Iyyanki T., Hubenak J., Liu J., Chang E. I., Beahm E. K., Zhang Q. Harvesting technique affects adipose-derived stem cell yield. Aesthetic Surgery Journal. 2015;35(4):467–476. doi: 10.1093/asj/sju055. PubMed DOI PMC

Varghese J., Griffin M., Mosahebi A., Butler P. Systematic review of patient factors affecting adipose stem cell viability and function: implications for regenerative therapy. Stem Cell Research & Therapy. 2017;8(1):1–15. doi: 10.1186/s13287-017-0483-8. PubMed DOI PMC

Przekora A., Vandrovcova M., Travnickova M., et al. Evaluation of the potential of chitosan/β-1,3-glucan/hydroxyapatite material as a scaffold for living bone graft production in vitro by comparison of ADSC and BMDSC behaviour on its surface. Biomedical Materials. 2017;12(1, article 015030) doi: 10.1088/1748-605X/aa56f9. PubMed DOI

Oedayrajsingh-Varma M. J., van Ham S. M., Knippenberg M., et al. Adipose tissue-derived mesenchymal stem cell yield and growth characteristics are affected by the tissue-harvesting procedure. Cytotherapy. 2006;8(2):166–177. doi: 10.1080/14653240600621125. PubMed DOI

Fraser J. K., Wulur I., Alfonso Z., Zhu M., Wheeler E. S. Differences in stem and progenitor cell yield in different subcutaneous adipose tissue depots. Cytotherapy. 2007;9(5):459–467. doi: 10.1080/14653240701358460. PubMed DOI

Cheriyan T., Kao H. K., Qiao X., Guo L. Low harvest pressure enhances autologous fat graft viability. Plastic and Reconstructive Surgery. 2014;133(6):1365–1368. doi: 10.1097/PRS.0000000000000185. PubMed DOI

Tchkonia T., Lenburg M., Thomou T., et al. Identification of depot-specific human fat cell progenitors through distinct expression profiles and developmental gene patterns. American Journal of Physiology-Endocrinology and Metabolism. 2007;292(1):E298–E307. doi: 10.1152/ajpendo.00202.2006. PubMed DOI

Russo V., Yu C., Belliveau P., Hamilton A., Flynn L. E. Comparison of human adipose-derived stem cells isolated from subcutaneous, omental, and intrathoracic adipose tissue depots for regenerative applications. Stem Cells Translational Medicine. 2014;3(2):206–217. doi: 10.5966/sctm.2013-0125. PubMed DOI PMC

Lee N. E., Kim S. J., Yang S. J., et al. Comparative characterization of mesenchymal stromal cells from multiple abdominal adipose tissues and enrichment of angiogenic ability via CD146 molecule. Cytotherapy. 2017;19(2):170–180. doi: 10.1016/j.jcyt.2016.11.002. PubMed DOI

Di Taranto G., Cicione C., Visconti G., et al. Qualitative and quantitative differences of adipose-derived stromal cells from superficial and deep subcutaneous lipoaspirates: a matter of fat. Cytotherapy. 2015;17(8):1076–1089. doi: 10.1016/j.jcyt.2015.04.004. PubMed DOI

Dani C., Foissac R., Ladoux A., Chignon-Sicard B. Autologous fat grafts: can we match the donor fat site and the host environment for better postoperative outcomes and safety? Current Surgery Reports. 2017;5(7):p. 14. doi: 10.1007/s40137-017-0178-1. DOI

Kouidhi M., Villageois P., Mounier C. M., et al. Characterization of human knee and chin adipose-derived stromal cells. Stem Cells International. 2015;2015:11. doi: 10.1155/2015/592090.592090 PubMed DOI PMC

Iwen K. A., Priewe A. C., Winnefeld M., et al. Gluteal and abdominal subcutaneous adipose tissue depots as stroma cell source: gluteal cells display increased adipogenic and osteogenic differentiation potentials. Experimental Dermatology. 2014;23(6):395–400. doi: 10.1111/exd.12406. PubMed DOI

de Girolamo L., Lopa S., Arrigoni E., Sartori M. F., Baruffaldi Preis F. W., Brini A. T. Human adipose-derived stem cells isolated from young and elderly women: their differentiation potential and scaffold interaction during in vitro osteoblastic differentiation. Cytotherapy. 2009;11(6):793–803. doi: 10.3109/14653240903079393. PubMed DOI

Faustini M., Bucco M., Chlapanidas T., et al. Nonexpanded mesenchymal stem cells for regenerative medicine: yield in stromal vascular fraction from adipose tissues. Tissue Engineering Part C: Methods. 2010;16(6):1515–1521. doi: 10.1089/ten.TEC.2010.0214. PubMed DOI

Yang H. J., Kim K. J., Kim M. K., et al. The stem cell potential and multipotency of human adipose tissue-derived stem cells vary by cell donor and are different from those of other types of stem cells. Cells, Tissues, Organs. 2014;199(5-6):373–383. doi: 10.1159/000369969. PubMed DOI

Parsons A. M., Ciombor D. M., Liu P. Y., Darling E. M. Regenerative potential and inflammation-induced secretion profile of human adipose-derived stromal vascular cells are influenced by donor variability and prior breast cancer diagnosis. Stem Cell Reviews. 2018;14(4):546–557. doi: 10.1007/s12015-018-9813-1. PubMed DOI PMC

Kizilay Mancini O., Lora M., Cuillerier A., et al. Mitochondrial oxidative stress reduces the immunopotency of mesenchymal stromal cells in adults with coronary artery disease. Circulation Research. 2018;122(2):255–266. doi: 10.1161/CIRCRESAHA.117.311400. PubMed DOI

Saad A., Zhu X. Y., Herrmann S., et al. Adipose-derived mesenchymal stem cells from patients with atherosclerotic renovascular disease have increased DNA damage and reduced angiogenesis that can be modified by hypoxia. Stem Cell Research & Therapy. 2016;7(1):p. 128. doi: 10.1186/s13287-016-0389-x. PubMed DOI PMC

Griffin M., Ryan C. M., Pathan O., Abraham D., Denton C. P., Butler P. E. M. Characteristics of human adipose derived stem cells in scleroderma in comparison to sex and age matched normal controls: implications for regenerative medicine. Stem Cell Research & Therapy. 2017;8:p. 23. doi: 10.1186/s13287-016-0444-7. PubMed DOI PMC

McLeod C. M., Mauck R. L. On the origin and impact of mesenchymal stem cell heterogeneity: new insights and emerging tools for single cell analysis. European Cells and Materials. 2017;34:217–231. doi: 10.22203/eCM.v034a14. PubMed DOI PMC

Bourin P., Bunnell B. A., Casteilla L., et al. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT) Cytotherapy. 2013;15(6):641–648. doi: 10.1016/j.jcyt.2013.02.006. PubMed DOI PMC

Zimmerlin L., Donnenberg V. S., Pfeifer M. E., et al. Stromal vascular progenitors in adult human adipose tissue. Cytometry: Part A. 2010;77(1):22–30. doi: 10.1002/cyto.a.20813. PubMed DOI PMC

Bajek A., Gurtowska N., Olkowska J., Kazmierski L., Maj M., Drewa T. Adipose-derived stem cells as a tool in cell-based therapies. Archivum Immunologiae et Therapiae Experimentalis. 2016;64(6):443–454. doi: 10.1007/s00005-016-0394-x. PubMed DOI PMC

Espagnolle N., Guilloton F., Deschaseaux F., Gadelorge M., Sensébé L., Bourin P. CD146 expression on mesenchymal stem cells is associated with their vascular smooth muscle commitment. Journal of Cellular and Molecular Medicine. 2014;18(1):104–114. doi: 10.1111/jcmm.12168. PubMed DOI PMC

Kilinc M. O., Santidrian A., Minev I., et al. The ratio of ADSCs to HSC-progenitors in adipose tissue derived SVF may provide the key to predict the outcome of stem-cell therapy. Clinical and Translational Medicine. 2018;7(1):p. 5. doi: 10.1186/s40169-018-0183-8. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...