• This record comes from PubMed

Hybrid fibres: a new path in tissue regeneration

. 2025 Mar 26 ; 36 (1) : 29. [epub] 20250326

Language English Country United States Media electronic

Document type Journal Article

Grant support
SGS-2022-4059 Technická Univerzita v Liberci
CZ.02.01.01/00/22_008/0004562 Ministerstvo Školství, Mládeže a Tělovýchovy

Links

PubMed 40138044
PubMed Central PMC11946956
DOI 10.1007/s10856-025-06875-6
PII: 10.1007/s10856-025-06875-6
Knihovny.cz E-resources

Nowadays, various forms of organosilane materials are well established in the field of regenerative medicine, but interestingly, fibrous organosilanes have yet to be described. So far, technological obstacles prevent the preparation of such fibrous materials without any presence of spinnability-supporting organic polymers, various types of surfactants, or non-polar organic solvents, which are in many cases highly toxic and economically inconvenient. Recently, these obstacles were overcome by a complex, yet simple, technology combining different science perspectives from supramolecular chemistry through material science to tissue engineering. This paper suggests a synthesis of two biomedically promising monomeric organosilane precursors, N,N´-bis(3-(triethoxysilyl)propyl)terephthalamide (BTT) and N,N´-bis(3-(triethoxysilyl)propyl)pyridine-2,6-dicarboxamide (BTP), which are submitted to a sol-gel process combined with subsequent electrospinning technology. Such a unique procedure not only allows the preparation of toxic-free organosilane fibrous mats by suitable adjustment of sol-gel and electrospinning parameters but also simplifies material production via a one-pot synthesis approach further tuneable with appropriate organosilane precursors. The BTT and BTP fibrous materials prepared displayed not only a promising interface among the materials and 3T3 fibroblast cell lines but moreover, the interaction of nanofibrous materials with stem cells has yielded encouraging outcomes. Stem cell adhesion, proliferation, and differentiation were notably enhanced in the presence of these materials, suggesting a supportive microenvironment conducive to regenerative responses. The ability of the material to modulate the cellular behaviour of stem cells holds promising implications for the development of targeted and effective regenerative therapies.

See more in PubMed

Roth JG, Huang MS, Li TL, Feig VR, Jiang Y, Cui B, et al. Advancing models of neural development with biomaterials. Nat Rev Neurosci. 2021;22:593–615. 10.1038/s41583-021-00496-y PubMed PMC

George PM, Bliss TM, Hua T, Lee A, Oh B, Levinson A, et al. Electrical preconditioning of stem cells with a conductive polymer scaffold enhances stroke recovery. Biomaterials. 2017;142:31–40. 10.1016/j.biomaterials.2017.07.020 PubMed PMC

Gould E, Reeves AJ, Fallah M, Tanapat P, Gross CG, Fuchs E. Hippocampal neurogenesis in adult Old World primates. Proc Natl Acad Sci USA. 1999;96:5263–7. 10.1073/pnas.96.9.5263 PubMed PMC

Alvarez-Buylla A, Kirn JR. Birth, migration, incorporation, and death of vocal control neurons in adult songbirds. J Neurobiol. 1997;33:585–601. PubMed

Sugaya K. Neuroreplacement therapy and stem cell biology under disease conditions. CMLS, Cell Mol Life Sci. 2003;60:1891–902. 10.1007/s00018-002-3014-y PubMed PMC

Teixeira FG, Carvalho MM, Sousa N, Salgado AJ. Mesenchymal stem cells secretome: a new paradigm for central nervous system regeneration? Cell Mol Life Sci. 2013;70:3871–82. 10.1007/s00018-013-1290-8 PubMed PMC

Basak S. Redesigning the modern applied medical sciences and engineering with shape memory polymers. Adv Compos Hybrid Mater. 2021;4:223–34. 10.1007/s42114-021-00216-1

Nagappan PG, Chen H, Wang D-Y. Neuroregeneration and plasticity: a review of the physiological mechanisms for achieving functional recovery postinjury. Military Med Res. 2020;7:30. 10.1186/s40779-020-00259-3 PubMed PMC

Abbas WA, Ibrahim ME, El-Naggar M, Abass WA, Abdullah IH, Awad BI, et al. Recent advances in the regenerative approaches for traumatic spinal cord injury: materials perspective. ACS Biomater Sci Eng. 2020;6:6490–509. 10.1021/acsbiomaterials.0c01074 PubMed

Balint R, Cassidy NJ, Cartmell SH. Conductive polymers: Towards a smart biomaterial for tissue engineering. Acta Biomaterialia. 2014;10:2341–53. 10.1016/j.actbio.2014.02.015 PubMed

Song S. Controlling properties of human neural progenitor cells using 2D and 3D conductive polymer scaffolds. Sci Rep. 2019;9:19565. 10.1038/s41598-019-56021-w PubMed PMC

Kaur G, Adhikari R, Cass P, Bown M, Gunatillake P. Electrically conductive polymers and composites for biomedical applications. RSC Adv. 2015;5:37553–67. 10.1039/C5RA01851J

Escobar A, Serafin A, Carvalho MR, Culebras M, Cantarero A, Beaucamp A, et al. Electroconductive poly(3,4-ethylenedioxythiophene) (PEDOT) nanoparticle-loaded silk fibroin biocomposite conduits for peripheral nerve regeneration. Adv Compos Hybrid Mater. 2023;6:118. 10.1007/s42114-023-00689-2

Mao J, Zhang Z. Polypyrrole as electrically conductive biomaterials: synthesis, biofunctionalization, potential applications and challenges. Adv Exp Med Biol. 2018;1078:347–70. 10.1007/978-981-13-0950-2_18 PubMed

Shin SR, Li Y-C, Jang HL, Khoshakhlagh P, Akbari M, Nasajpour A, et al. Graphene-based materials for tissue engineering. Adv Drug Del Rev. 2016;105:255–74. 10.1016/j.addr.2016.03.007 PubMed PMC

Kim C-H, Lee S-Y, Rhee KY, Park S-J. Carbon-based composites in biomedical applications: a comprehensive review of properties, applications, and future directions. Adv Compos Hybrid Mater. 2024;7:55. 10.1007/s42114-024-00846-1

Fadeel B, Kostarelos K. Grouping all carbon nanotubes into a single substance category is scientifically unjustified. Nat Nanotechnol. 2020;15:164–164. 10.1038/s41565-020-0654-0 PubMed

Lalwani G, D’Agati M, Khan AM, Sitharaman B. Toxicology of graphene-based nanomaterials. Adv Drug Del Rev. 2016;105:109–44. 10.1016/j.addr.2016.04.028 PubMed PMC

Voge CM, Stegemann JP. Carbon nanotubes in neural interfacing applications. J Neural Eng. 2011;8:011001. 10.1088/1741-2560/8/1/011001 PubMed

Vashist A, Kaushik A, Vashist A, Sagar V, Ghosal A, Gupta YK, et al. Advances in carbon nanotubes-hydrogel hybrids in nanomedicine for therapeutics. Adv Healthc Mater. 2018;7:e1701213. 10.1002/adhm.201701213 PubMed PMC

Liang Y, Qiao L, Qiao B, Guo B. Conductive hydrogels for tissue repair. Chem Sci. 2023;14:3091–116. 10.1039/D3SC00145H PubMed PMC

Choi S, Raja IS, Selvaraj AR, Kang MS, Park T-E, Kim KS, et al. Activated carbon nanofiber nanoparticles incorporated electrospun polycaprolactone scaffolds to promote fibroblast behaviors for application to skin tissue engineering. Adv Compos Hybrid Mater. 2023;6:24. 10.1007/s42114-022-00608-x

Mendes P M. Cellular nanotechnology: making biological interfaces smarter. Chem Soc Rev. 2013;42:9207–18. 10.1039/C3CS60198F PubMed PMC

Chen J, Zhang G, Zhao Y, Zhou M, Zhong A, Sun J. Promotion of skin regeneration through co-axial electrospun fibers loaded with basic fibroblast growth factor. Adv Compos Hybrid Mater. 2022;5:1111–25. 10.1007/s42114-022-00439-w

Verma S, Domb AJ, Kumar N. Nanomaterials for regenerative medicine. Nanomedicine. 2011;6:157–81. 10.2217/nnm.10.146 PubMed

Biazar E, Khorasani M, Montazeri N, Pourshamsian K, Daliri M, MR T, et al. Types of neural guides and using nanotechnology for peripheral nerve reconstruction. Int J Nanomed. 2010;5:839–52. 10.2147/IJN.S11883 PubMed PMC

Basu B (2020) Crossing the Boundaries. In: Biomaterials Science and Implants: Status, Challenges and Recommendations. Springer, Singapore, pp 1–27

Holubová B, Máková V, Müllerová J, Brus J, Havlíčková K, Jenčová V, et al. Novel chapter in hybrid materials: One-pot synthesis of purely organosilane fibers. Polymer. 2020;190:122234. 10.1016/j.polymer.2020.122234

Travnickova M, Pajorova J, Zarubova J, Krocilova N, Molitor M, Bacakova L. The influence of negative pressure and of the harvesting site on the characteristics of human adipose tissue-derived stromal cells from lipoaspirates. Stem Cells Int. 2020;2020:e1016231. 10.1155/2020/1016231 PubMed PMC

Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318:1917–20. 10.1126/science.1151526 PubMed

Polentes J, Jendelova P, Cailleret M, Braun H, Romanyuk N, Tropel P, et al. Human induced pluripotent stem cells improve stroke outcome and reduce secondary degeneration in the recipient brain. Cell Transplant. 2012;21:2587–602. 10.3727/096368912X653228 PubMed

Máková V, Holubová B, Krabicová I, Kulhánková J, Řezanka M. Hybrid organosilane fibrous materials and their contribution to modern science. Polymer. 2021;228. 10.1016/j.polymer.2021.123862

Brinker CJ. Hydrolysis and condensation of silicates: Effects on structure. J Non-Crystalline Solids. 1988;100:31–50. 10.1016/0022-3093(88)90005-1

Jiang H, Zheng Z, Wang X. Kinetic study of methyltriethoxysilane (MTES) hydrolysis by FTIR spectroscopy under different temperatures and solvents. Vibrational Spectroscopy. 2008;1:1–7. 10.1016/j.vibspec.2007.07.002

Tejedor-Tejedor MI, Paredes L, Anderson MA. Evaluation of ATR−FTIR Spectroscopy as an “in Situ” tool for following the hydrolysis and condensation of alkoxysilanes under rich H2O Conditions. Chem Mater. 1998;10:3410–21. 10.1021/cm980146l

Pavan C, Delle Piane M, Gullo M, Filippi F, Fubini B, Hoet P, et al. The puzzling issue of silica toxicity: are silanols bridging the gaps between surface states and pathogenicity?. Particle Fibre Toxicol. 2019;16:32–41. 10.1186/s12989-019-0315-3 PubMed PMC

Morais R, Hochheim S, Camargo de Oliveira C, Riegel-Vidotti I, Marino C. Skin interaction, permeation, and toxicity of silica nanoparticles: Challenges and recent therapeutic and cosmetic advances. International Journal Pharmaceutics. 2022;614:121439. 10.1016/j.ijpharm.2021.121439 PubMed

Máková V, Holubová B, Tetour D, Brus J, Řezanka M, Rysová M, et al. (1S,2S)-Cyclohexane-1,2-diamine-based Organosilane Fibres as a Powerful Tool Against Pathogenic Bacteria. Polymers. 2020;12:206. 10.3390/polym12010206 PubMed PMC

Shinto H, Fukasawa T, Yoshisue K, Tezuka M, Orita M. Cell membrane disruption induced by amorphous silica nanoparticles in erythrocytes, lymphocytes, malignant melanocytes, and macrophages. Adv Powder Technol. 2014;25:1872–81. 10.1016/j.apt.2014.09.002 PubMed

Dowling DP, Miller IS, Ardhaoui M, Gallagher WM. Effect of surface wettability and topography on the adhesion of osteosarcoma cells on plasma-modified polystyrene. J Biomater Appl. 2011;26:327–47. 10.1177/0885328210372148 PubMed

Meyer U, Szulczewski D, Moeller K, Heide H, Jones D. Attachment kinetics and differentiations of osteoblasts on different biomaterials. Cells Mater. 1993;3:129–40.

Musilkova J, Filova E, Pala J, Matejka R, Hadraba D, Vondrasek D, et al. Human decellularized and crosslinked pericardium coated with bioactive molecular assemblies. Biomed Mater. 2019;15:015008. 10.1088/1748-605X/ab52db PubMed

Hobbs C, Kulhánková J, Nikendey Holubová B, Mahun A, Kobera L, Erben J, et al. Hybrid organosilane nanofibre scaffold formation supporting cell adhesion and growth. J Mater Sci. 2024;59:19612–27. 10.1007/s10853-024-10324-0

Danilová I, Lovětinská-Šlamborová I, Máková V, Voleský L, Rysová M. Immobilization of esterase enzyme onto silica nanofibers for biomedical applications. Vlakna a Textil. 2014;21:3–11.

Steinerova M, Matejka R, Stepanovska J, Filova E, Stankova L, Rysova M, et al. Human osteoblast-like SAOS-2 cells on submicron-scale fibers coated with nanocrystalline diamond films. Mater Sci Eng: C. 2021;121:111792. 10.1016/j.msec.2020.111792 PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...