Hybrid fibres: a new path in tissue regeneration
Language English Country United States Media electronic
Document type Journal Article
Grant support
SGS-2022-4059
Technická Univerzita v Liberci
CZ.02.01.01/00/22_008/0004562
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
40138044
PubMed Central
PMC11946956
DOI
10.1007/s10856-025-06875-6
PII: 10.1007/s10856-025-06875-6
Knihovny.cz E-resources
- MeSH
- Biocompatible Materials chemistry MeSH
- Cell Adhesion MeSH
- Humans MeSH
- Mice MeSH
- Nanofibers * chemistry MeSH
- Cell Proliferation MeSH
- Regeneration * MeSH
- Regenerative Medicine methods MeSH
- Materials Testing MeSH
- Tissue Engineering * methods MeSH
- Tissue Scaffolds * chemistry MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Biocompatible Materials MeSH
Nowadays, various forms of organosilane materials are well established in the field of regenerative medicine, but interestingly, fibrous organosilanes have yet to be described. So far, technological obstacles prevent the preparation of such fibrous materials without any presence of spinnability-supporting organic polymers, various types of surfactants, or non-polar organic solvents, which are in many cases highly toxic and economically inconvenient. Recently, these obstacles were overcome by a complex, yet simple, technology combining different science perspectives from supramolecular chemistry through material science to tissue engineering. This paper suggests a synthesis of two biomedically promising monomeric organosilane precursors, N,N´-bis(3-(triethoxysilyl)propyl)terephthalamide (BTT) and N,N´-bis(3-(triethoxysilyl)propyl)pyridine-2,6-dicarboxamide (BTP), which are submitted to a sol-gel process combined with subsequent electrospinning technology. Such a unique procedure not only allows the preparation of toxic-free organosilane fibrous mats by suitable adjustment of sol-gel and electrospinning parameters but also simplifies material production via a one-pot synthesis approach further tuneable with appropriate organosilane precursors. The BTT and BTP fibrous materials prepared displayed not only a promising interface among the materials and 3T3 fibroblast cell lines but moreover, the interaction of nanofibrous materials with stem cells has yielded encouraging outcomes. Stem cell adhesion, proliferation, and differentiation were notably enhanced in the presence of these materials, suggesting a supportive microenvironment conducive to regenerative responses. The ability of the material to modulate the cellular behaviour of stem cells holds promising implications for the development of targeted and effective regenerative therapies.
See more in PubMed
Roth JG, Huang MS, Li TL, Feig VR, Jiang Y, Cui B, et al. Advancing models of neural development with biomaterials. Nat Rev Neurosci. 2021;22:593–615. 10.1038/s41583-021-00496-y PubMed PMC
George PM, Bliss TM, Hua T, Lee A, Oh B, Levinson A, et al. Electrical preconditioning of stem cells with a conductive polymer scaffold enhances stroke recovery. Biomaterials. 2017;142:31–40. 10.1016/j.biomaterials.2017.07.020 PubMed PMC
Gould E, Reeves AJ, Fallah M, Tanapat P, Gross CG, Fuchs E. Hippocampal neurogenesis in adult Old World primates. Proc Natl Acad Sci USA. 1999;96:5263–7. 10.1073/pnas.96.9.5263 PubMed PMC
Alvarez-Buylla A, Kirn JR. Birth, migration, incorporation, and death of vocal control neurons in adult songbirds. J Neurobiol. 1997;33:585–601. PubMed
Sugaya K. Neuroreplacement therapy and stem cell biology under disease conditions. CMLS, Cell Mol Life Sci. 2003;60:1891–902. 10.1007/s00018-002-3014-y PubMed PMC
Teixeira FG, Carvalho MM, Sousa N, Salgado AJ. Mesenchymal stem cells secretome: a new paradigm for central nervous system regeneration? Cell Mol Life Sci. 2013;70:3871–82. 10.1007/s00018-013-1290-8 PubMed PMC
Basak S. Redesigning the modern applied medical sciences and engineering with shape memory polymers. Adv Compos Hybrid Mater. 2021;4:223–34. 10.1007/s42114-021-00216-1
Nagappan PG, Chen H, Wang D-Y. Neuroregeneration and plasticity: a review of the physiological mechanisms for achieving functional recovery postinjury. Military Med Res. 2020;7:30. 10.1186/s40779-020-00259-3 PubMed PMC
Abbas WA, Ibrahim ME, El-Naggar M, Abass WA, Abdullah IH, Awad BI, et al. Recent advances in the regenerative approaches for traumatic spinal cord injury: materials perspective. ACS Biomater Sci Eng. 2020;6:6490–509. 10.1021/acsbiomaterials.0c01074 PubMed
Balint R, Cassidy NJ, Cartmell SH. Conductive polymers: Towards a smart biomaterial for tissue engineering. Acta Biomaterialia. 2014;10:2341–53. 10.1016/j.actbio.2014.02.015 PubMed
Song S. Controlling properties of human neural progenitor cells using 2D and 3D conductive polymer scaffolds. Sci Rep. 2019;9:19565. 10.1038/s41598-019-56021-w PubMed PMC
Kaur G, Adhikari R, Cass P, Bown M, Gunatillake P. Electrically conductive polymers and composites for biomedical applications. RSC Adv. 2015;5:37553–67. 10.1039/C5RA01851J
Escobar A, Serafin A, Carvalho MR, Culebras M, Cantarero A, Beaucamp A, et al. Electroconductive poly(3,4-ethylenedioxythiophene) (PEDOT) nanoparticle-loaded silk fibroin biocomposite conduits for peripheral nerve regeneration. Adv Compos Hybrid Mater. 2023;6:118. 10.1007/s42114-023-00689-2
Mao J, Zhang Z. Polypyrrole as electrically conductive biomaterials: synthesis, biofunctionalization, potential applications and challenges. Adv Exp Med Biol. 2018;1078:347–70. 10.1007/978-981-13-0950-2_18 PubMed
Shin SR, Li Y-C, Jang HL, Khoshakhlagh P, Akbari M, Nasajpour A, et al. Graphene-based materials for tissue engineering. Adv Drug Del Rev. 2016;105:255–74. 10.1016/j.addr.2016.03.007 PubMed PMC
Kim C-H, Lee S-Y, Rhee KY, Park S-J. Carbon-based composites in biomedical applications: a comprehensive review of properties, applications, and future directions. Adv Compos Hybrid Mater. 2024;7:55. 10.1007/s42114-024-00846-1
Fadeel B, Kostarelos K. Grouping all carbon nanotubes into a single substance category is scientifically unjustified. Nat Nanotechnol. 2020;15:164–164. 10.1038/s41565-020-0654-0 PubMed
Lalwani G, D’Agati M, Khan AM, Sitharaman B. Toxicology of graphene-based nanomaterials. Adv Drug Del Rev. 2016;105:109–44. 10.1016/j.addr.2016.04.028 PubMed PMC
Voge CM, Stegemann JP. Carbon nanotubes in neural interfacing applications. J Neural Eng. 2011;8:011001. 10.1088/1741-2560/8/1/011001 PubMed
Vashist A, Kaushik A, Vashist A, Sagar V, Ghosal A, Gupta YK, et al. Advances in carbon nanotubes-hydrogel hybrids in nanomedicine for therapeutics. Adv Healthc Mater. 2018;7:e1701213. 10.1002/adhm.201701213 PubMed PMC
Liang Y, Qiao L, Qiao B, Guo B. Conductive hydrogels for tissue repair. Chem Sci. 2023;14:3091–116. 10.1039/D3SC00145H PubMed PMC
Choi S, Raja IS, Selvaraj AR, Kang MS, Park T-E, Kim KS, et al. Activated carbon nanofiber nanoparticles incorporated electrospun polycaprolactone scaffolds to promote fibroblast behaviors for application to skin tissue engineering. Adv Compos Hybrid Mater. 2023;6:24. 10.1007/s42114-022-00608-x
Mendes P M. Cellular nanotechnology: making biological interfaces smarter. Chem Soc Rev. 2013;42:9207–18. 10.1039/C3CS60198F PubMed PMC
Chen J, Zhang G, Zhao Y, Zhou M, Zhong A, Sun J. Promotion of skin regeneration through co-axial electrospun fibers loaded with basic fibroblast growth factor. Adv Compos Hybrid Mater. 2022;5:1111–25. 10.1007/s42114-022-00439-w
Verma S, Domb AJ, Kumar N. Nanomaterials for regenerative medicine. Nanomedicine. 2011;6:157–81. 10.2217/nnm.10.146 PubMed
Biazar E, Khorasani M, Montazeri N, Pourshamsian K, Daliri M, MR T, et al. Types of neural guides and using nanotechnology for peripheral nerve reconstruction. Int J Nanomed. 2010;5:839–52. 10.2147/IJN.S11883 PubMed PMC
Basu B (2020) Crossing the Boundaries. In: Biomaterials Science and Implants: Status, Challenges and Recommendations. Springer, Singapore, pp 1–27
Holubová B, Máková V, Müllerová J, Brus J, Havlíčková K, Jenčová V, et al. Novel chapter in hybrid materials: One-pot synthesis of purely organosilane fibers. Polymer. 2020;190:122234. 10.1016/j.polymer.2020.122234
Travnickova M, Pajorova J, Zarubova J, Krocilova N, Molitor M, Bacakova L. The influence of negative pressure and of the harvesting site on the characteristics of human adipose tissue-derived stromal cells from lipoaspirates. Stem Cells Int. 2020;2020:e1016231. 10.1155/2020/1016231 PubMed PMC
Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318:1917–20. 10.1126/science.1151526 PubMed
Polentes J, Jendelova P, Cailleret M, Braun H, Romanyuk N, Tropel P, et al. Human induced pluripotent stem cells improve stroke outcome and reduce secondary degeneration in the recipient brain. Cell Transplant. 2012;21:2587–602. 10.3727/096368912X653228 PubMed
Máková V, Holubová B, Krabicová I, Kulhánková J, Řezanka M. Hybrid organosilane fibrous materials and their contribution to modern science. Polymer. 2021;228. 10.1016/j.polymer.2021.123862
Brinker CJ. Hydrolysis and condensation of silicates: Effects on structure. J Non-Crystalline Solids. 1988;100:31–50. 10.1016/0022-3093(88)90005-1
Jiang H, Zheng Z, Wang X. Kinetic study of methyltriethoxysilane (MTES) hydrolysis by FTIR spectroscopy under different temperatures and solvents. Vibrational Spectroscopy. 2008;1:1–7. 10.1016/j.vibspec.2007.07.002
Tejedor-Tejedor MI, Paredes L, Anderson MA. Evaluation of ATR−FTIR Spectroscopy as an “in Situ” tool for following the hydrolysis and condensation of alkoxysilanes under rich H2O Conditions. Chem Mater. 1998;10:3410–21. 10.1021/cm980146l
Pavan C, Delle Piane M, Gullo M, Filippi F, Fubini B, Hoet P, et al. The puzzling issue of silica toxicity: are silanols bridging the gaps between surface states and pathogenicity?. Particle Fibre Toxicol. 2019;16:32–41. 10.1186/s12989-019-0315-3 PubMed PMC
Morais R, Hochheim S, Camargo de Oliveira C, Riegel-Vidotti I, Marino C. Skin interaction, permeation, and toxicity of silica nanoparticles: Challenges and recent therapeutic and cosmetic advances. International Journal Pharmaceutics. 2022;614:121439. 10.1016/j.ijpharm.2021.121439 PubMed
Máková V, Holubová B, Tetour D, Brus J, Řezanka M, Rysová M, et al. (1S,2S)-Cyclohexane-1,2-diamine-based Organosilane Fibres as a Powerful Tool Against Pathogenic Bacteria. Polymers. 2020;12:206. 10.3390/polym12010206 PubMed PMC
Shinto H, Fukasawa T, Yoshisue K, Tezuka M, Orita M. Cell membrane disruption induced by amorphous silica nanoparticles in erythrocytes, lymphocytes, malignant melanocytes, and macrophages. Adv Powder Technol. 2014;25:1872–81. 10.1016/j.apt.2014.09.002 PubMed
Dowling DP, Miller IS, Ardhaoui M, Gallagher WM. Effect of surface wettability and topography on the adhesion of osteosarcoma cells on plasma-modified polystyrene. J Biomater Appl. 2011;26:327–47. 10.1177/0885328210372148 PubMed
Meyer U, Szulczewski D, Moeller K, Heide H, Jones D. Attachment kinetics and differentiations of osteoblasts on different biomaterials. Cells Mater. 1993;3:129–40.
Musilkova J, Filova E, Pala J, Matejka R, Hadraba D, Vondrasek D, et al. Human decellularized and crosslinked pericardium coated with bioactive molecular assemblies. Biomed Mater. 2019;15:015008. 10.1088/1748-605X/ab52db PubMed
Hobbs C, Kulhánková J, Nikendey Holubová B, Mahun A, Kobera L, Erben J, et al. Hybrid organosilane nanofibre scaffold formation supporting cell adhesion and growth. J Mater Sci. 2024;59:19612–27. 10.1007/s10853-024-10324-0
Danilová I, Lovětinská-Šlamborová I, Máková V, Voleský L, Rysová M. Immobilization of esterase enzyme onto silica nanofibers for biomedical applications. Vlakna a Textil. 2014;21:3–11.
Steinerova M, Matejka R, Stepanovska J, Filova E, Stankova L, Rysova M, et al. Human osteoblast-like SAOS-2 cells on submicron-scale fibers coated with nanocrystalline diamond films. Mater Sci Eng: C. 2021;121:111792. 10.1016/j.msec.2020.111792 PubMed