Interaction between Galectin-3 and Integrins Mediates Cell-Matrix Adhesion in Endothelial Cells and Mesenchymal Stem Cells

. 2021 May 13 ; 22 (10) : . [epub] 20210513

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34067978

Grantová podpora
. 18-01163S Grantová Agentura České Republiky
LTC18041 Ministerstvo Školství, Mládeže a Tělovýchovy
LTC18038 Ministerstvo Školství, Mládeže a Tělovýchovy

Galectin-3 (Gal-3) is a β-galactoside-binding protein that influences various cell functions, including cell adhesion. We focused on the role of Gal-3 as an extracellular ligand mediating cell-matrix adhesion. We used human adipose tissue-derived stem cells and human umbilical vein endothelial cells that are promising for vascular tissue engineering. We found that these cells naturally contained Gal-3 on their surface and inside the cells. Moreover, they were able to associate with exogenous Gal-3 added to the culture medium. This association was reduced with a β-galactoside LacdiNAc (GalNAcβ1,4GlcNAc), a selective ligand of Gal-3, which binds to the carbohydrate recognition domain (CRD) in the Gal-3 molecule. This ligand was also able to detach Gal-3 newly associated with cells but not Gal-3 naturally present on cells. In addition, Gal-3 preadsorbed on plastic surfaces acted as an adhesion ligand for both cell types, and the cell adhesion was resistant to blocking with LacdiNAc. This result suggests that the adhesion was mediated by a binding site different from the CRD. The blocking of integrin adhesion receptors on cells with specific antibodies revealed that the cell adhesion to the preadsorbed Gal-3 was mediated, at least partially, by β1 and αV integrins-namely α5β1, αVβ3, and αVβ1 integrins.

Zobrazit více v PubMed

Hughes R.C. Galectins as modulators of cell adhesion. Biochimie. 2001;83:667–676. doi: 10.1016/S0300-9084(01)01289-5. PubMed DOI

Cummings R.D., Liu F.T. Galectins. In: Varki A., Cummings R.D., Esko J.D., Freeze H.H., Stanley P., Bertozzi C.R., Hart G.W., Etzler M.E., editors. Essentials of Glycobiology. 2nd ed. Cold Spring Harbor; New York, NY, USA: 2009. PubMed

Xin M., Dong X.W., Guo X.L. Role of the interaction between galectin-3 and cell adhesion molecules in cancer metastasis. Biomed. Pharmacother. 2015;69:179–185. doi: 10.1016/j.biopha.2014.11.024. PubMed DOI

Barman S.A., Li X.Y., Haigh S., Kondrikov D., Mahboubi K., Bordan Z., Stepp D.W., Zhou J.L., Wang Y.S., Weintraub D.S., et al. Galectin-3 is expressed in vascular smooth muscle cells and promotes pulmonary hypertension through changes in proliferation, apoptosis, and fibrosis. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2019;316:L784–L797. doi: 10.1152/ajplung.00186.2018. PubMed DOI PMC

Brinchmann M.F., Patel D.M., Iversen M.H. The role of galectins as modulators of metabolism and inflammation. Mediat. Inflamm. 2018;2018:9186940. doi: 10.1155/2018/9186940. PubMed DOI PMC

Zick Y., Eisenstein M., Goren R.A., Hadari Y.R., Levy Y., Ronen D. Role of galectin-8 as a modulator of cell adhesion and cell growth. Glycoconj. J. 2002;19:517–526. doi: 10.1023/B:GLYC.0000014081.55445.af. PubMed DOI

Bojarová P., Křen V. Sugared biomaterial binding lectins: Achievements and perspectives. Biomat. Sci. 2016;4:1142–1160. doi: 10.1039/C6BM00088F. PubMed DOI

Johannes L., Jacob R., Leffler H. Galectins at a glance. J. Cell Sci. 2018;131:jcs208884. doi: 10.1242/jcs.208884. PubMed DOI

Liu F.T., Wan L. Galectin-3 and inflammation. Glycobiol. Insights. 2016;6:1–9. doi: 10.4137/GBI.S13921. DOI

Fashanu O.E., Heckbert S.R., Aguilar D., Jensen P.N., Ballantyne C.M., Basu S., Hoogeveen R.C., deFilippi C., Cushman M., Folsom A.R. Galectin-3 and venous thromboembolism incidence: The atherosclerosis risk in communities (ARIC) study. Res. Pract. Thromb. Haemost. 2017;1:223–230. doi: 10.1002/rth2.12038. PubMed DOI PMC

Bojarová P., Tavares M.R., Laaf D., Bumba L., Petrásková L., Konefal R., Bláhová M., Pelantová H., Elling L., Etrych T., et al. Biocompatible glyconanomaterials based on HPMA-copolymer for specific targeting of galectin-3. J. Nanobiotechnol. 2018;16:73. doi: 10.1186/s12951-018-0399-1. PubMed DOI PMC

Laaf D., Bojarová P., Pelantová H., Křen V., Elling L. Tailored multivalent neo-glycoproteins: Synthesis, evaluation, and application of a library of galectin-3-binding glycan ligands. Bioconjug. Chem. 2017;28:2832–2840. doi: 10.1021/acs.bioconjchem.7b00520. PubMed DOI

Laaf D., Bojarová P., Elling L., Křen V. Galectin-carbohydrate interactions in biomedicine and biotechnology. Trends Biotechnol. 2019;37:402–415. doi: 10.1016/j.tibtech.2018.10.001. PubMed DOI

Panjwani N. Role of galectins in re-epithelialization of wounds. Ann. Transl. Med. 2014;2:89. doi: 10.3978/j.issn.2305-5839.2014.09.09. PubMed DOI PMC

Iacobini C., Menini S., Ricci C., Scipioni A., Sansoni V., Cordone S., Taurino M., Serino M., Marano G., Federici M., et al. Accelerated lipid-induced atherogenesis in galectin-3-deficient mice: Role of lipoxidation via receptor-mediated mechanisms. Arterioscler. Thromb. Vasc. Biol. 2009;29:831–836. doi: 10.1161/ATVBAHA.109.186791. PubMed DOI

Nangia-Makker P., Honjo Y., Sarvis R., Akahani S., Hogan V., Pienta K.J., Raz A. Galectin-3 induces endothelial cell morphogenesis and angiogenesis. Am. J. Pathol. 2000;156:899–909. doi: 10.1016/S0002-9440(10)64959-0. PubMed DOI PMC

Laaf D., Bojarová P., Mikulová B., Pelantová H., Křen V., Elling L. Two-step enzymatic synthesis of ß-d-N-acetylgalactosamine-(1→4)-d-N-acetylglucosamine (LacdiNAc) chitooligomers for deciphering galectin binding behavior. Adv. Synth. Catal. 2017;359:2101–2108. doi: 10.1002/adsc.201700331. DOI

Tavares M.R., Bláhová M., Sedláková L., Elling L., Pelantová H., Konefal R., Etrych T., Křen V., Bojarová P., Chytil P. High-affinity N-(2-hydroxypropyl) methacrylamide copolymers with tailored N-acetyllactosamine presentation discriminate between galectins. Biomacromolecules. 2020;21:641–652. doi: 10.1021/acs.biomac.9b01370. PubMed DOI

Bratteby K., Torkelsson E., L’Estrade E.T., Peterson K., Shalgunov V., Xiong M.F., Leffler H., Zetterberg F.R., Olsson T.G., Gillings N., et al. In Vivo veritas: F-18-radiolabeled glycomimetics allow insights into the pharmacological fate of galectin-3 inhibitors. J. Med. Chem. 2020;63:747–755. doi: 10.1021/acs.jmedchem.9b01692. PubMed DOI

Vašíček T., Spiwok V., Červený J., Petrásková L., Bumba L., Vrbata D., Pelantová H., Křen V., Bojarová P. Regioselective 3-O-substitution of unprotected thiodigalactosides: Direct route to galectin inhibitors. Chem. Eur. J. 2020;26:9620–9631. doi: 10.1002/chem.202002084. PubMed DOI

Bumba L., Laaf D., Spiwok V., Elling L., Křen V., Bojarová P. Poly-N-acetyllactosamine neo-glycoproteins as nanomolar ligands of human galectin-3: Binding kinetics and modeling. Int. J. Mol. Sci. 2018;19:372. doi: 10.3390/ijms19020372. PubMed DOI PMC

Furuhata S., Ando K., Oki M., Aoki K., Ohnishi S., Aoyagi K., Sasaki H., Sakamoto H., Yoshida T., Ohnami S. Gene expression profiles of endothelial progenitor cells by oligonucleotide microarray analysis. Mol. Cell. Biochem. 2007;298:125–138. doi: 10.1007/s11010-006-9359-4. PubMed DOI

Chen W.T., Zhang F., Zhao X.Q., Yu B., Wang B.W. Galectin-3 and TRIM16 coregulate osteogenic differentiation of human bone marrow-derived mesenchymal stem cells at least partly via enhancing autophagy. Bone. 2020;131 doi: 10.1016/j.bone.2019.115059. PubMed DOI

Li Y.J., Xu X., Wang L.H., Liu G.J., Li Y.Q., Wu X.B., Jing Y.G., Li H.Y., Wang G.H. Senescent mesenchymal stem cells promote colorectal cancer cells growth via galectin-3 expression. Cell. Biosci. 2015;5:21. doi: 10.1186/s13578-015-0012-3. PubMed DOI PMC

Šimonová A., Kupper C.E., Böcker S., Müller A., Hofbauerová K., Pelantová H., Elling L., Křen V., Bojarová P. Chemo-enzymatic synthesis of LacdiNAc dimers of varying length as novel galectin ligands. J. Mol. Catal. B Enzym. 2014;101:47–55. doi: 10.1016/j.molcatb.2013.12.018. DOI

Hutchings H., Ortega N., Plouet J. Extracellular matrix-bound vascular endothelial growth factor promotes endothelial cell adhesion, migration, and survival through integrin ligation. FASEB J. 2003;17:1520–1522. doi: 10.1096/fj.02-0691fje. PubMed DOI

Lee M.H., Brass D.A., Morris R., Composto R.J., Ducheyne P. The effect of non-specific interactions on cellular adhesion using model surfaces. Biomaterials. 2005;26:1721–1730. doi: 10.1016/j.biomaterials.2004.05.026. PubMed DOI

da Silva R.G., Tavora B., Robinson S.D., Reynolds L.E., Szekeres C., Lamar J., Batista S., Kostourou V., Germain M.A., Reynolds A.R., et al. Endothelial alpha3beta1-integrin represses pathological angiogenesis and sustains endothelial-VEGF. Am. J. Pathol. 2010;177:1534–1548. doi: 10.2353/ajpath.2010.100043. PubMed DOI PMC

Hynes R.O. Integrins: Bidirectional, allosteric signaling machines. Cell. 2002;110:673–687. doi: 10.1016/S0092-8674(02)00971-6. PubMed DOI

Goessler U.R., Bugert P., Bieback K., Stern-Straeter J., Bran G., Hormann K., Riedel F. Integrin expression in stem cells from bone marrow and adipose tissue during chondrogenic differentiation. Int. J. Mol. Med. 2008;21:271–279. doi: 10.3892/ijmm.21.3.271. PubMed DOI

Reed N.I., Jo H., Chen C., Tsujino K., Arnold T.D., DeGrado W.F., Sheppard D. The αvβ1 integrin plays a critical in vivo role in tissue fibrosis. Sci. Transl. Med. 2015;7:288ra79. doi: 10.1126/scitranslmed.aaa5094. PubMed DOI PMC

Wilkinson A.L., Barrett J.W., Slack R.J. Pharmacological characterisation of a tool αvβ1 integrin small molecule RGD-mimetic inhibitor. Eur. J. Pharmacol. 2019;842:239–247. doi: 10.1016/j.ejphar.2018.10.045. PubMed DOI

Ahrens I., Domeij H., Topcic D., Haviv I., Merivirta R.M., Agrotis A., Leitner E., Jowett J.B., Bode C., Lappas M., et al. Successful in vitro expansion and differentiation of cord blood derived CD34+ cells into early endothelial progenitor cells reveals highly differential gene expression. PLoS ONE. 2011;6:e23210. doi: 10.1371/journal.pone.0023210. PubMed DOI PMC

Fukumori T., Takenaka Y., Yoshii T., Kim H.R.C., Hogan V., Inohara H., Kagawa S., Raz A. CD29 and CD7 mediate galectin-3-induced type II T-cell apoptosis. Cancer Res. 2003;63:8302–8311. PubMed

Suzuki O., Abe M. Cell surface N-glycosylation and sialylation regulate galectin-3-induced apoptosis in human diffuse large B cell lymphoma. Oncol. Rep. 2008;19:743–748. doi: 10.3892/or.19.3.743. PubMed DOI

Tadokoro T., Ikekita M., Toda T., Ito H., Sato T., Nakatani R., Hamaguchi Y., Furukawa K. Involvement of galectin-3 with vascular cell adhesion molecule-1 in growth regulation of mouse BALB/3T3 cells. J. Biol. Chem. 2009;284:35556–35563. doi: 10.1074/jbc.M109.063339. PubMed DOI PMC

Zhuo Y., Chammas R., Bellis S.L. Sialylation of β1 Integrins blocks cell adhesion to galectin-3 and protects cells against galectin-3-induced apoptosis. J. Biol. Chem. 2008;283:22177–22185. doi: 10.1074/jbc.M800015200. PubMed DOI PMC

Lepur A., Carlsson M.C., Novak R., Dumic J., Nilsson U.J., Leffler H. Galectin-3 endocytosis by carbohydrate independent and dependent pathways in different macrophage like cell types. Biochim. Biophys. Acta Gen. Subj. 2012;1820:804–818. doi: 10.1016/j.bbagen.2012.02.018. PubMed DOI

Gao X.G., Liu D., Fan Y.Y., Li X.Z., Xue H.T., Ma Y.Y., Zhou Y.F., Tai G.H. The two endocytic pathways mediated by the carbohydrate recognition domain and regulated by the collagen-like domain of galectin-3 in vascular endothelial cells. PLoS ONE. 2012;7:e52430. doi: 10.1371/journal.pone.0052430. PubMed DOI PMC

Gao X.G., Zhi Y., Sun L., Peng X.X., Zhang T., Xue H.T., Tai G.H., Zhou Y.F. The inhibitory effects of a rhamnogalacturonan I (RG-I) domain from ginseng pectin on galectin-3 and its structure-activity relationship. J. Biol. Chem. 2013;288:33953–33965. doi: 10.1074/jbc.M113.482315. PubMed DOI PMC

John C.M., Leffler H., Kahl-Knutsson B., Svensson I., Jarvis G.A. Truncated galectin-3 inhibits tumor growth and metastasis in orthotopic nude mouse model of human breast cancer. Clin. Cancer Res. 2003;9:2374–2383. PubMed

Filipová M., Bojarová P., Tavares M.R., Bumba L., Elling L., Chytil P., Gunár K., Křen V., Etrych T., Janoušková O. Glycopolymers for efficient inhibition of galectin-3: In Vitro proof of efficacy using suppression of T lymphocyte apoptosis and tumor cell migration. Biomacromolecules. 2020;21:3122–3133. doi: 10.1021/acs.biomac.0c00515. PubMed DOI

MacKinnon A.C., Gibbons M.A., Farnworth S.L., Leffler H., Nilsson U.J., Delaine T., Simpson A.J., Forbes S.J., Hirani N., Gauldie J., et al. Regulation of transforming growth factor-β1-driven lung fibrosis by galectin-3. J. Respir. Crit. Care Med. 2012;185:537–546. doi: 10.1164/rccm.201106-0965OC. PubMed DOI PMC

Ludwig A.K., Michalak M., Xiao Q., Gilles U., Medrano F.J., Ma H., FitzGerald F.G., Hasley W.D., Melendez-Davila A., Liu M., et al. Design-functionality relationships for adhesion/growth-regulatory galectins. Proc. Natl. Acad. Sci. USA. 2019;116:2837–2842. doi: 10.1073/pnas.1813515116. PubMed DOI PMC

Thijssen V.L., HuIsmans S., Griffioen A.W. The galectin profile of the endothelium—Altered expression and localization in activated and tumor endothelial cells. Am. J. Pathol. 2008;172:545–553. doi: 10.2353/ajpath.2008.070938. PubMed DOI PMC

Gieseke F., Bohringer J., Bussolari R., Dominici M., Handgretinger R., Muller I. Human multipotent mesenchymal stromal cells use galectin-1 to inhibit immune effector cells. Blood. 2010;116:3770–3779. doi: 10.1182/blood-2010-02-270777. PubMed DOI

Gonen T., Donaldson P., Kistler J. Galectin-3 is associated with the plasma membrane of lens fiber cells. Investig. Ophthal. Vis. Sci. 2000;41:199–203. PubMed PMC

Miller M.C., Ippel H., Suylen D., Klyosov A.A., Traber P.G., Hackeng T., Mayo K.H. Binding of polysaccharides to human galectin-3 at a noncanonical site in its carbohydrate recognition domain. Glycobiology. 2016;26:88–99. doi: 10.1093/glycob/cwv073. PubMed DOI PMC

Stegmayr J., Lepur A., Kahl-Knutson B., Aguilar-Moncayo M., Klyosov A.A., Field R.A., Oredsson S., Nilsson U.J., Leffler H. Low or no inhibitory potency of the canonical galectin carbohydrate-binding site by pectins and galactomannans. J. Biol. Chem. 2016;291:13318–13334. doi: 10.1074/jbc.M116.721464. PubMed DOI PMC

Zhang Z.Y., Miller M.C., Xu X.J., Song C.C., Zhang F., Zheng Y., Zhou Y.F., Tai G.H., Mayo K.H. NMR-based insight into galectin-3 binding to endothelial cell adhesion molecule CD146: Evidence for noncanonical interactions with the lectin’s CRD beta-sandwich F-face. Glycobiology. 2019;29:608–618. doi: 10.1093/glycob/cwz036. PubMed DOI

LeMarer N., Hughes R.C. Effects of the carbohydrate-binding protein galectin-3 on the invasiveness of human breast carcinoma cells. Cell. Physiol. 1996;168:51–58. doi: 10.1002/(SICI)1097-4652(199607)168:1<51::AID-JCP7>3.0.CO;2-7. PubMed DOI

Birdsall B., Feeney J., Burdett I.D.J., Bawumia S., Barboni E.A.M., Hughes R.C. NMR solution studies of hamster galectin-3 and electron microscopic visualization of surface-adsorbed complexes: Evidence for interactions between the N- and C-terminal domains. Biochemistry. 2001;40:4859–4866. doi: 10.1021/bi002907f. PubMed DOI

Benitez P.L., Mascharak S., Proctor A.C., Heilshorn S.C. Use of protein-engineered fabrics to identify design rules for integrin ligand clustering in biomaterials. Integr. Biol. 2016;8:50–61. doi: 10.1039/C5IB00258C. PubMed DOI PMC

Morandi E.M., Verstappen R., Zwierzina M.E., Geley S., Pierer G., Ploner C. ITGAV and ITGA5 diversely regulate proliferation and adipogenic differentiation of human adipose derived stem cells. Sci. Rep. 2016;6:28889. doi: 10.1038/srep28889. PubMed DOI PMC

Fang J., Wei Y.D., Lv C.R., Peng S., Zhao S.T., Hua J.L. CD61 promotes the differentiation of canine ADMSCs into PGC-like cells through modulation of TGF-beta signaling. Sci. Rep. 2017;7:43851. doi: 10.1038/srep43851. PubMed DOI PMC

Rico P., Rodrigo-Navarro A., de la Pena M., Moulisova V., Costell M., Salmeron-Sanchez M. Simultaneous boron ion-channel/growth factor receptor activation for enhanced vascularization. Adv. Biosyst. 2019;3:e1800220. doi: 10.1002/adbi.201800220. PubMed DOI

Foubert P., Varner J.A. Integrins in tumor angiogenesis and lymphangiogenesis. Methods Mol. Biol. 2011;757:471–486. doi: 10.1007/978-1-61779-166-6_27. PubMed DOI PMC

Suzuki O., Abe M., Hashimoto Y. Sialylation and glycosylation modulate cell adhesion and invasion to extracellular matrix in human malignant lymphoma: Dependency on integrin and the Rho GTPase family. Int. J. Oncol. 2015;47:2091–2099. doi: 10.3892/ijo.2015.3211. PubMed DOI PMC

Horton M.A. The αvβ3 integrin “vitronectin receptor”. Int. J. Biochem. Cell B. 1997;29:721–725. doi: 10.1016/S1357-2725(96)00155-0. PubMed DOI

Saravanan C., Liu F.T., Gipson I.K., Panjwani N. Galectin-3 promotes lamellipodia formation in epithelial cells by interacting with complex N-glycans on alpha3beta1 integrin. J. Cell Sci. 2009;122:3684–3693. doi: 10.1242/jcs.045674. PubMed DOI PMC

Sivkova R., Taborska J., Reparaz A., de Los Santos Pereira A., Kotelnikov I., Proks V., Kucka J., Svoboda J., Riedel T., Pop-Georgievski O. Surface design of antifouling vascular constructs bearing biofunctional peptides for tissue regeneration applications. Int. J. Mol. Sci. 2020;21:6800. doi: 10.3390/ijms21186800. PubMed DOI PMC

Tang D., Chen S., Hou D., Gao J., Jiang L., Shi J., Liang Q., Kong D., Wang S. Regulation of macrophage polarization and promotion of endothelialization by NO generating and PEG-YIGSR modified vascular graft. Mater. Sci. Eng. C Mater. Biol. Appl. 2018;84:1–11. doi: 10.1016/j.msec.2017.11.005. PubMed DOI

Devalliere J., Chen Y., Dooley K., Yarmush M.L., Uygun B.E. Improving functional re-endothelialization of acellular liver scaffold using REDV cell-binding domain. Acta Biomater. 2018;78:151–164. doi: 10.1016/j.actbio.2018.07.046. PubMed DOI PMC

Estes B.T., Diekman B.O., Gimble J.M., Guilak F. Isolation of adipose-derived stem cells and their induction to a chondrogenic phenotype. Nat. Protoc. 2010;5:1294–1311. doi: 10.1038/nprot.2010.81. PubMed DOI PMC

Bačáková L., Zárubová J., Trávníčková M., Musílková J., Pajorová J., Slepička P., Kasálková N.S., Švorčík V., Kolská Z., Motarjemi H., et al. Stem cells: Their source, potency and use in regenerative therapies with focus on adipose-derived stem cells—A review. Biotechnol. Adv. 2018;36:1111–1126. doi: 10.1016/j.biotechadv.2018.03.011. PubMed DOI

Trávníčková M., Pajorová J., Zárubová J., Kročilová N., Molitor M., Bačáková L. The influence of negative pressure and of the harvesting site on the characteristics of human adipose tissue-derived stromal cells from lipoaspirates. Stem Cells Int. 2020;2020:1016231. doi: 10.1155/2020/1016231. PubMed DOI PMC

Ratnikov B.I., Rozanov D.V., Postnova T.I., Baciu P.G., Zhang H., DiScipio R.G., Chestukhina G.G., Smith J.W., Deryugina E.I., Strongin A.Y. An alternative processing of integrin alpha(v) subunit in tumor cells by membrane type-1 matrix metalloproteinase. J. Biol. Chem. 2002;277:7377–7385. doi: 10.1074/jbc.M109580200. PubMed DOI

Benoit Y.D., Lussier C., Ducharme P.A., Sivret S., Schnapp L.M., Basora N., Beaulieu J.F. Integrin alpha 8 beta 1 regulates adhesion, migration and proliferation of human intestinal crypt cells via a predominant RhoA/ROCK-dependent mechanism. Biol. Cell. 2009;101:695–708. doi: 10.1042/BC20090060. PubMed DOI PMC

Wayner E.A., Carter W.G. Identification of multiple cell-adhesion receptors for collagen and fibronectin in human fibrosarcoma cells possessing unique alpha-subunits and common beta-subunits. J. Cell Biol. 1987;105:1873–1884. doi: 10.1083/jcb.105.4.1873. PubMed DOI PMC

Wilkins J.A., Li A.L., Ni H.Y., Stupack D.G., Shen C.X. Control of beta(1) integrin function—Localization of stimulatory epitopes. J. Biol. Chem. 1996;271:3046–3051. doi: 10.1074/jbc.271.6.3046. PubMed DOI

Nguyen T.T.B., Ward J.P.T., Hirst S.J. Beta 1-integrins mediate enhancement of airway smooth muscle proliferation by collagen and fibronectin. Am. J. Respir. Crit. Care. 2005;171:217–223. doi: 10.1164/rccm.200408-1046OC. PubMed DOI

Maeshima Y., Yerramalla U.L., Dhanabal M., Holthaus K.A., Barbashov S., Kharbanda S., Reimer C., Manfredi M., Dickerson W.M., Kalluri R. Extracellular matrix-derived peptide binds to alpha(v)beta(3) integrin and inhibits angiogenesis. J. Biol. Chem. 2001;276:31959–31968. doi: 10.1074/jbc.M103024200. PubMed DOI

Irigoyen M., Pajares M.J., Agorreta J., Ponz-Sarvise M., Salvo E., Lozano M.D., Pio R., Gil-Bazo I., Rouzaut A. TGFBI expression is associated with a better response to chemotherapy in NSCLC. Mol. Cancer. 2010;9:130. doi: 10.1186/1476-4598-9-130. PubMed DOI PMC

Cheresh D.A., Spiro R.C. Biosynthetic and functional-properties of an Arg-Gly-Asp-directed receptor involved in human-melanoma cell attachment to vitronectin, fibrinogen, and vonwillebrand-factor. J. Biol. Chem. 1987;262:17703–17711. doi: 10.1016/S0021-9258(18)45436-1. PubMed DOI

Mould A.P., Garratt A.N., Puzon-McLaughlin W., Takada Y., Humphries M.J. Regulation of integrin function: Evidence that bivalent-cation-induced conformational changes lead to the unmasking of ligand-binding sites within integrin alpha 5 beta 1. Biochem. J. 1998;331:821–828. doi: 10.1042/bj3310821. PubMed DOI PMC

Imoto E., Kakuta S., Hori M., Yagami K., Nagumo M. Adhesion of a chondrocytic cell line (USAC) to fibronectin and its regulation by proteoglycan. J. Oral Pathol. Med. 2002;31:35–44. doi: 10.1046/j.0904-2512.2001.00202.x. PubMed DOI

Hangan D., Uniyal S., Morris V.L., MacDonald I.C., vonBallestrem C., Chau T., Schmidt E.E., Chambers A.F., Groom A.C., Chan B.M.C. Integrin VLA-2 (alpha(2)beta(1)) function in postextravasation movement of human rhabdomyosarcoma RD cells in the liver. Cancer Res. 1996;56:3142–3149. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...