Interaction between Galectin-3 and Integrins Mediates Cell-Matrix Adhesion in Endothelial Cells and Mesenchymal Stem Cells
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
. 18-01163S
Grantová Agentura České Republiky
LTC18041
Ministerstvo Školství, Mládeže a Tělovýchovy
LTC18038
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
34067978
PubMed Central
PMC8152275
DOI
10.3390/ijms22105144
PII: ijms22105144
Knihovny.cz E-zdroje
- Klíčová slova
- ADSC, HUVEC, carbohydrate, galectin, integrin,
- MeSH
- buněčná adheze * MeSH
- endoteliální buňky pupečníkové žíly (lidské) cytologie fyziologie MeSH
- galektiny metabolismus MeSH
- integriny metabolismus MeSH
- krevní proteiny metabolismus MeSH
- kultivované buňky MeSH
- lidé MeSH
- mezenchymální kmenové buňky cytologie fyziologie MeSH
- spoje buňka-matrix metabolismus MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- galektiny MeSH
- integriny MeSH
- krevní proteiny MeSH
- LGALS3 protein, human MeSH Prohlížeč
Galectin-3 (Gal-3) is a β-galactoside-binding protein that influences various cell functions, including cell adhesion. We focused on the role of Gal-3 as an extracellular ligand mediating cell-matrix adhesion. We used human adipose tissue-derived stem cells and human umbilical vein endothelial cells that are promising for vascular tissue engineering. We found that these cells naturally contained Gal-3 on their surface and inside the cells. Moreover, they were able to associate with exogenous Gal-3 added to the culture medium. This association was reduced with a β-galactoside LacdiNAc (GalNAcβ1,4GlcNAc), a selective ligand of Gal-3, which binds to the carbohydrate recognition domain (CRD) in the Gal-3 molecule. This ligand was also able to detach Gal-3 newly associated with cells but not Gal-3 naturally present on cells. In addition, Gal-3 preadsorbed on plastic surfaces acted as an adhesion ligand for both cell types, and the cell adhesion was resistant to blocking with LacdiNAc. This result suggests that the adhesion was mediated by a binding site different from the CRD. The blocking of integrin adhesion receptors on cells with specific antibodies revealed that the cell adhesion to the preadsorbed Gal-3 was mediated, at least partially, by β1 and αV integrins-namely α5β1, αVβ3, and αVβ1 integrins.
Zobrazit více v PubMed
Hughes R.C. Galectins as modulators of cell adhesion. Biochimie. 2001;83:667–676. doi: 10.1016/S0300-9084(01)01289-5. PubMed DOI
Cummings R.D., Liu F.T. Galectins. In: Varki A., Cummings R.D., Esko J.D., Freeze H.H., Stanley P., Bertozzi C.R., Hart G.W., Etzler M.E., editors. Essentials of Glycobiology. 2nd ed. Cold Spring Harbor; New York, NY, USA: 2009. PubMed
Xin M., Dong X.W., Guo X.L. Role of the interaction between galectin-3 and cell adhesion molecules in cancer metastasis. Biomed. Pharmacother. 2015;69:179–185. doi: 10.1016/j.biopha.2014.11.024. PubMed DOI
Barman S.A., Li X.Y., Haigh S., Kondrikov D., Mahboubi K., Bordan Z., Stepp D.W., Zhou J.L., Wang Y.S., Weintraub D.S., et al. Galectin-3 is expressed in vascular smooth muscle cells and promotes pulmonary hypertension through changes in proliferation, apoptosis, and fibrosis. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2019;316:L784–L797. doi: 10.1152/ajplung.00186.2018. PubMed DOI PMC
Brinchmann M.F., Patel D.M., Iversen M.H. The role of galectins as modulators of metabolism and inflammation. Mediat. Inflamm. 2018;2018:9186940. doi: 10.1155/2018/9186940. PubMed DOI PMC
Zick Y., Eisenstein M., Goren R.A., Hadari Y.R., Levy Y., Ronen D. Role of galectin-8 as a modulator of cell adhesion and cell growth. Glycoconj. J. 2002;19:517–526. doi: 10.1023/B:GLYC.0000014081.55445.af. PubMed DOI
Bojarová P., Křen V. Sugared biomaterial binding lectins: Achievements and perspectives. Biomat. Sci. 2016;4:1142–1160. doi: 10.1039/C6BM00088F. PubMed DOI
Johannes L., Jacob R., Leffler H. Galectins at a glance. J. Cell Sci. 2018;131:jcs208884. doi: 10.1242/jcs.208884. PubMed DOI
Liu F.T., Wan L. Galectin-3 and inflammation. Glycobiol. Insights. 2016;6:1–9. doi: 10.4137/GBI.S13921. DOI
Fashanu O.E., Heckbert S.R., Aguilar D., Jensen P.N., Ballantyne C.M., Basu S., Hoogeveen R.C., deFilippi C., Cushman M., Folsom A.R. Galectin-3 and venous thromboembolism incidence: The atherosclerosis risk in communities (ARIC) study. Res. Pract. Thromb. Haemost. 2017;1:223–230. doi: 10.1002/rth2.12038. PubMed DOI PMC
Bojarová P., Tavares M.R., Laaf D., Bumba L., Petrásková L., Konefal R., Bláhová M., Pelantová H., Elling L., Etrych T., et al. Biocompatible glyconanomaterials based on HPMA-copolymer for specific targeting of galectin-3. J. Nanobiotechnol. 2018;16:73. doi: 10.1186/s12951-018-0399-1. PubMed DOI PMC
Laaf D., Bojarová P., Pelantová H., Křen V., Elling L. Tailored multivalent neo-glycoproteins: Synthesis, evaluation, and application of a library of galectin-3-binding glycan ligands. Bioconjug. Chem. 2017;28:2832–2840. doi: 10.1021/acs.bioconjchem.7b00520. PubMed DOI
Laaf D., Bojarová P., Elling L., Křen V. Galectin-carbohydrate interactions in biomedicine and biotechnology. Trends Biotechnol. 2019;37:402–415. doi: 10.1016/j.tibtech.2018.10.001. PubMed DOI
Panjwani N. Role of galectins in re-epithelialization of wounds. Ann. Transl. Med. 2014;2:89. doi: 10.3978/j.issn.2305-5839.2014.09.09. PubMed DOI PMC
Iacobini C., Menini S., Ricci C., Scipioni A., Sansoni V., Cordone S., Taurino M., Serino M., Marano G., Federici M., et al. Accelerated lipid-induced atherogenesis in galectin-3-deficient mice: Role of lipoxidation via receptor-mediated mechanisms. Arterioscler. Thromb. Vasc. Biol. 2009;29:831–836. doi: 10.1161/ATVBAHA.109.186791. PubMed DOI
Nangia-Makker P., Honjo Y., Sarvis R., Akahani S., Hogan V., Pienta K.J., Raz A. Galectin-3 induces endothelial cell morphogenesis and angiogenesis. Am. J. Pathol. 2000;156:899–909. doi: 10.1016/S0002-9440(10)64959-0. PubMed DOI PMC
Laaf D., Bojarová P., Mikulová B., Pelantová H., Křen V., Elling L. Two-step enzymatic synthesis of ß-d-N-acetylgalactosamine-(1→4)-d-N-acetylglucosamine (LacdiNAc) chitooligomers for deciphering galectin binding behavior. Adv. Synth. Catal. 2017;359:2101–2108. doi: 10.1002/adsc.201700331. DOI
Tavares M.R., Bláhová M., Sedláková L., Elling L., Pelantová H., Konefal R., Etrych T., Křen V., Bojarová P., Chytil P. High-affinity N-(2-hydroxypropyl) methacrylamide copolymers with tailored N-acetyllactosamine presentation discriminate between galectins. Biomacromolecules. 2020;21:641–652. doi: 10.1021/acs.biomac.9b01370. PubMed DOI
Bratteby K., Torkelsson E., L’Estrade E.T., Peterson K., Shalgunov V., Xiong M.F., Leffler H., Zetterberg F.R., Olsson T.G., Gillings N., et al. In Vivo veritas: F-18-radiolabeled glycomimetics allow insights into the pharmacological fate of galectin-3 inhibitors. J. Med. Chem. 2020;63:747–755. doi: 10.1021/acs.jmedchem.9b01692. PubMed DOI
Vašíček T., Spiwok V., Červený J., Petrásková L., Bumba L., Vrbata D., Pelantová H., Křen V., Bojarová P. Regioselective 3-O-substitution of unprotected thiodigalactosides: Direct route to galectin inhibitors. Chem. Eur. J. 2020;26:9620–9631. doi: 10.1002/chem.202002084. PubMed DOI
Bumba L., Laaf D., Spiwok V., Elling L., Křen V., Bojarová P. Poly-N-acetyllactosamine neo-glycoproteins as nanomolar ligands of human galectin-3: Binding kinetics and modeling. Int. J. Mol. Sci. 2018;19:372. doi: 10.3390/ijms19020372. PubMed DOI PMC
Furuhata S., Ando K., Oki M., Aoki K., Ohnishi S., Aoyagi K., Sasaki H., Sakamoto H., Yoshida T., Ohnami S. Gene expression profiles of endothelial progenitor cells by oligonucleotide microarray analysis. Mol. Cell. Biochem. 2007;298:125–138. doi: 10.1007/s11010-006-9359-4. PubMed DOI
Chen W.T., Zhang F., Zhao X.Q., Yu B., Wang B.W. Galectin-3 and TRIM16 coregulate osteogenic differentiation of human bone marrow-derived mesenchymal stem cells at least partly via enhancing autophagy. Bone. 2020;131 doi: 10.1016/j.bone.2019.115059. PubMed DOI
Li Y.J., Xu X., Wang L.H., Liu G.J., Li Y.Q., Wu X.B., Jing Y.G., Li H.Y., Wang G.H. Senescent mesenchymal stem cells promote colorectal cancer cells growth via galectin-3 expression. Cell. Biosci. 2015;5:21. doi: 10.1186/s13578-015-0012-3. PubMed DOI PMC
Šimonová A., Kupper C.E., Böcker S., Müller A., Hofbauerová K., Pelantová H., Elling L., Křen V., Bojarová P. Chemo-enzymatic synthesis of LacdiNAc dimers of varying length as novel galectin ligands. J. Mol. Catal. B Enzym. 2014;101:47–55. doi: 10.1016/j.molcatb.2013.12.018. DOI
Hutchings H., Ortega N., Plouet J. Extracellular matrix-bound vascular endothelial growth factor promotes endothelial cell adhesion, migration, and survival through integrin ligation. FASEB J. 2003;17:1520–1522. doi: 10.1096/fj.02-0691fje. PubMed DOI
Lee M.H., Brass D.A., Morris R., Composto R.J., Ducheyne P. The effect of non-specific interactions on cellular adhesion using model surfaces. Biomaterials. 2005;26:1721–1730. doi: 10.1016/j.biomaterials.2004.05.026. PubMed DOI
da Silva R.G., Tavora B., Robinson S.D., Reynolds L.E., Szekeres C., Lamar J., Batista S., Kostourou V., Germain M.A., Reynolds A.R., et al. Endothelial alpha3beta1-integrin represses pathological angiogenesis and sustains endothelial-VEGF. Am. J. Pathol. 2010;177:1534–1548. doi: 10.2353/ajpath.2010.100043. PubMed DOI PMC
Hynes R.O. Integrins: Bidirectional, allosteric signaling machines. Cell. 2002;110:673–687. doi: 10.1016/S0092-8674(02)00971-6. PubMed DOI
Goessler U.R., Bugert P., Bieback K., Stern-Straeter J., Bran G., Hormann K., Riedel F. Integrin expression in stem cells from bone marrow and adipose tissue during chondrogenic differentiation. Int. J. Mol. Med. 2008;21:271–279. doi: 10.3892/ijmm.21.3.271. PubMed DOI
Reed N.I., Jo H., Chen C., Tsujino K., Arnold T.D., DeGrado W.F., Sheppard D. The αvβ1 integrin plays a critical in vivo role in tissue fibrosis. Sci. Transl. Med. 2015;7:288ra79. doi: 10.1126/scitranslmed.aaa5094. PubMed DOI PMC
Wilkinson A.L., Barrett J.W., Slack R.J. Pharmacological characterisation of a tool αvβ1 integrin small molecule RGD-mimetic inhibitor. Eur. J. Pharmacol. 2019;842:239–247. doi: 10.1016/j.ejphar.2018.10.045. PubMed DOI
Ahrens I., Domeij H., Topcic D., Haviv I., Merivirta R.M., Agrotis A., Leitner E., Jowett J.B., Bode C., Lappas M., et al. Successful in vitro expansion and differentiation of cord blood derived CD34+ cells into early endothelial progenitor cells reveals highly differential gene expression. PLoS ONE. 2011;6:e23210. doi: 10.1371/journal.pone.0023210. PubMed DOI PMC
Fukumori T., Takenaka Y., Yoshii T., Kim H.R.C., Hogan V., Inohara H., Kagawa S., Raz A. CD29 and CD7 mediate galectin-3-induced type II T-cell apoptosis. Cancer Res. 2003;63:8302–8311. PubMed
Suzuki O., Abe M. Cell surface N-glycosylation and sialylation regulate galectin-3-induced apoptosis in human diffuse large B cell lymphoma. Oncol. Rep. 2008;19:743–748. doi: 10.3892/or.19.3.743. PubMed DOI
Tadokoro T., Ikekita M., Toda T., Ito H., Sato T., Nakatani R., Hamaguchi Y., Furukawa K. Involvement of galectin-3 with vascular cell adhesion molecule-1 in growth regulation of mouse BALB/3T3 cells. J. Biol. Chem. 2009;284:35556–35563. doi: 10.1074/jbc.M109.063339. PubMed DOI PMC
Zhuo Y., Chammas R., Bellis S.L. Sialylation of β1 Integrins blocks cell adhesion to galectin-3 and protects cells against galectin-3-induced apoptosis. J. Biol. Chem. 2008;283:22177–22185. doi: 10.1074/jbc.M800015200. PubMed DOI PMC
Lepur A., Carlsson M.C., Novak R., Dumic J., Nilsson U.J., Leffler H. Galectin-3 endocytosis by carbohydrate independent and dependent pathways in different macrophage like cell types. Biochim. Biophys. Acta Gen. Subj. 2012;1820:804–818. doi: 10.1016/j.bbagen.2012.02.018. PubMed DOI
Gao X.G., Liu D., Fan Y.Y., Li X.Z., Xue H.T., Ma Y.Y., Zhou Y.F., Tai G.H. The two endocytic pathways mediated by the carbohydrate recognition domain and regulated by the collagen-like domain of galectin-3 in vascular endothelial cells. PLoS ONE. 2012;7:e52430. doi: 10.1371/journal.pone.0052430. PubMed DOI PMC
Gao X.G., Zhi Y., Sun L., Peng X.X., Zhang T., Xue H.T., Tai G.H., Zhou Y.F. The inhibitory effects of a rhamnogalacturonan I (RG-I) domain from ginseng pectin on galectin-3 and its structure-activity relationship. J. Biol. Chem. 2013;288:33953–33965. doi: 10.1074/jbc.M113.482315. PubMed DOI PMC
John C.M., Leffler H., Kahl-Knutsson B., Svensson I., Jarvis G.A. Truncated galectin-3 inhibits tumor growth and metastasis in orthotopic nude mouse model of human breast cancer. Clin. Cancer Res. 2003;9:2374–2383. PubMed
Filipová M., Bojarová P., Tavares M.R., Bumba L., Elling L., Chytil P., Gunár K., Křen V., Etrych T., Janoušková O. Glycopolymers for efficient inhibition of galectin-3: In Vitro proof of efficacy using suppression of T lymphocyte apoptosis and tumor cell migration. Biomacromolecules. 2020;21:3122–3133. doi: 10.1021/acs.biomac.0c00515. PubMed DOI
MacKinnon A.C., Gibbons M.A., Farnworth S.L., Leffler H., Nilsson U.J., Delaine T., Simpson A.J., Forbes S.J., Hirani N., Gauldie J., et al. Regulation of transforming growth factor-β1-driven lung fibrosis by galectin-3. J. Respir. Crit. Care Med. 2012;185:537–546. doi: 10.1164/rccm.201106-0965OC. PubMed DOI PMC
Ludwig A.K., Michalak M., Xiao Q., Gilles U., Medrano F.J., Ma H., FitzGerald F.G., Hasley W.D., Melendez-Davila A., Liu M., et al. Design-functionality relationships for adhesion/growth-regulatory galectins. Proc. Natl. Acad. Sci. USA. 2019;116:2837–2842. doi: 10.1073/pnas.1813515116. PubMed DOI PMC
Thijssen V.L., HuIsmans S., Griffioen A.W. The galectin profile of the endothelium—Altered expression and localization in activated and tumor endothelial cells. Am. J. Pathol. 2008;172:545–553. doi: 10.2353/ajpath.2008.070938. PubMed DOI PMC
Gieseke F., Bohringer J., Bussolari R., Dominici M., Handgretinger R., Muller I. Human multipotent mesenchymal stromal cells use galectin-1 to inhibit immune effector cells. Blood. 2010;116:3770–3779. doi: 10.1182/blood-2010-02-270777. PubMed DOI
Gonen T., Donaldson P., Kistler J. Galectin-3 is associated with the plasma membrane of lens fiber cells. Investig. Ophthal. Vis. Sci. 2000;41:199–203. PubMed PMC
Miller M.C., Ippel H., Suylen D., Klyosov A.A., Traber P.G., Hackeng T., Mayo K.H. Binding of polysaccharides to human galectin-3 at a noncanonical site in its carbohydrate recognition domain. Glycobiology. 2016;26:88–99. doi: 10.1093/glycob/cwv073. PubMed DOI PMC
Stegmayr J., Lepur A., Kahl-Knutson B., Aguilar-Moncayo M., Klyosov A.A., Field R.A., Oredsson S., Nilsson U.J., Leffler H. Low or no inhibitory potency of the canonical galectin carbohydrate-binding site by pectins and galactomannans. J. Biol. Chem. 2016;291:13318–13334. doi: 10.1074/jbc.M116.721464. PubMed DOI PMC
Zhang Z.Y., Miller M.C., Xu X.J., Song C.C., Zhang F., Zheng Y., Zhou Y.F., Tai G.H., Mayo K.H. NMR-based insight into galectin-3 binding to endothelial cell adhesion molecule CD146: Evidence for noncanonical interactions with the lectin’s CRD beta-sandwich F-face. Glycobiology. 2019;29:608–618. doi: 10.1093/glycob/cwz036. PubMed DOI
LeMarer N., Hughes R.C. Effects of the carbohydrate-binding protein galectin-3 on the invasiveness of human breast carcinoma cells. Cell. Physiol. 1996;168:51–58. doi: 10.1002/(SICI)1097-4652(199607)168:1<51::AID-JCP7>3.0.CO;2-7. PubMed DOI
Birdsall B., Feeney J., Burdett I.D.J., Bawumia S., Barboni E.A.M., Hughes R.C. NMR solution studies of hamster galectin-3 and electron microscopic visualization of surface-adsorbed complexes: Evidence for interactions between the N- and C-terminal domains. Biochemistry. 2001;40:4859–4866. doi: 10.1021/bi002907f. PubMed DOI
Benitez P.L., Mascharak S., Proctor A.C., Heilshorn S.C. Use of protein-engineered fabrics to identify design rules for integrin ligand clustering in biomaterials. Integr. Biol. 2016;8:50–61. doi: 10.1039/C5IB00258C. PubMed DOI PMC
Morandi E.M., Verstappen R., Zwierzina M.E., Geley S., Pierer G., Ploner C. ITGAV and ITGA5 diversely regulate proliferation and adipogenic differentiation of human adipose derived stem cells. Sci. Rep. 2016;6:28889. doi: 10.1038/srep28889. PubMed DOI PMC
Fang J., Wei Y.D., Lv C.R., Peng S., Zhao S.T., Hua J.L. CD61 promotes the differentiation of canine ADMSCs into PGC-like cells through modulation of TGF-beta signaling. Sci. Rep. 2017;7:43851. doi: 10.1038/srep43851. PubMed DOI PMC
Rico P., Rodrigo-Navarro A., de la Pena M., Moulisova V., Costell M., Salmeron-Sanchez M. Simultaneous boron ion-channel/growth factor receptor activation for enhanced vascularization. Adv. Biosyst. 2019;3:e1800220. doi: 10.1002/adbi.201800220. PubMed DOI
Foubert P., Varner J.A. Integrins in tumor angiogenesis and lymphangiogenesis. Methods Mol. Biol. 2011;757:471–486. doi: 10.1007/978-1-61779-166-6_27. PubMed DOI PMC
Suzuki O., Abe M., Hashimoto Y. Sialylation and glycosylation modulate cell adhesion and invasion to extracellular matrix in human malignant lymphoma: Dependency on integrin and the Rho GTPase family. Int. J. Oncol. 2015;47:2091–2099. doi: 10.3892/ijo.2015.3211. PubMed DOI PMC
Horton M.A. The αvβ3 integrin “vitronectin receptor”. Int. J. Biochem. Cell B. 1997;29:721–725. doi: 10.1016/S1357-2725(96)00155-0. PubMed DOI
Saravanan C., Liu F.T., Gipson I.K., Panjwani N. Galectin-3 promotes lamellipodia formation in epithelial cells by interacting with complex N-glycans on alpha3beta1 integrin. J. Cell Sci. 2009;122:3684–3693. doi: 10.1242/jcs.045674. PubMed DOI PMC
Sivkova R., Taborska J., Reparaz A., de Los Santos Pereira A., Kotelnikov I., Proks V., Kucka J., Svoboda J., Riedel T., Pop-Georgievski O. Surface design of antifouling vascular constructs bearing biofunctional peptides for tissue regeneration applications. Int. J. Mol. Sci. 2020;21:6800. doi: 10.3390/ijms21186800. PubMed DOI PMC
Tang D., Chen S., Hou D., Gao J., Jiang L., Shi J., Liang Q., Kong D., Wang S. Regulation of macrophage polarization and promotion of endothelialization by NO generating and PEG-YIGSR modified vascular graft. Mater. Sci. Eng. C Mater. Biol. Appl. 2018;84:1–11. doi: 10.1016/j.msec.2017.11.005. PubMed DOI
Devalliere J., Chen Y., Dooley K., Yarmush M.L., Uygun B.E. Improving functional re-endothelialization of acellular liver scaffold using REDV cell-binding domain. Acta Biomater. 2018;78:151–164. doi: 10.1016/j.actbio.2018.07.046. PubMed DOI PMC
Estes B.T., Diekman B.O., Gimble J.M., Guilak F. Isolation of adipose-derived stem cells and their induction to a chondrogenic phenotype. Nat. Protoc. 2010;5:1294–1311. doi: 10.1038/nprot.2010.81. PubMed DOI PMC
Bačáková L., Zárubová J., Trávníčková M., Musílková J., Pajorová J., Slepička P., Kasálková N.S., Švorčík V., Kolská Z., Motarjemi H., et al. Stem cells: Their source, potency and use in regenerative therapies with focus on adipose-derived stem cells—A review. Biotechnol. Adv. 2018;36:1111–1126. doi: 10.1016/j.biotechadv.2018.03.011. PubMed DOI
Trávníčková M., Pajorová J., Zárubová J., Kročilová N., Molitor M., Bačáková L. The influence of negative pressure and of the harvesting site on the characteristics of human adipose tissue-derived stromal cells from lipoaspirates. Stem Cells Int. 2020;2020:1016231. doi: 10.1155/2020/1016231. PubMed DOI PMC
Ratnikov B.I., Rozanov D.V., Postnova T.I., Baciu P.G., Zhang H., DiScipio R.G., Chestukhina G.G., Smith J.W., Deryugina E.I., Strongin A.Y. An alternative processing of integrin alpha(v) subunit in tumor cells by membrane type-1 matrix metalloproteinase. J. Biol. Chem. 2002;277:7377–7385. doi: 10.1074/jbc.M109580200. PubMed DOI
Benoit Y.D., Lussier C., Ducharme P.A., Sivret S., Schnapp L.M., Basora N., Beaulieu J.F. Integrin alpha 8 beta 1 regulates adhesion, migration and proliferation of human intestinal crypt cells via a predominant RhoA/ROCK-dependent mechanism. Biol. Cell. 2009;101:695–708. doi: 10.1042/BC20090060. PubMed DOI PMC
Wayner E.A., Carter W.G. Identification of multiple cell-adhesion receptors for collagen and fibronectin in human fibrosarcoma cells possessing unique alpha-subunits and common beta-subunits. J. Cell Biol. 1987;105:1873–1884. doi: 10.1083/jcb.105.4.1873. PubMed DOI PMC
Wilkins J.A., Li A.L., Ni H.Y., Stupack D.G., Shen C.X. Control of beta(1) integrin function—Localization of stimulatory epitopes. J. Biol. Chem. 1996;271:3046–3051. doi: 10.1074/jbc.271.6.3046. PubMed DOI
Nguyen T.T.B., Ward J.P.T., Hirst S.J. Beta 1-integrins mediate enhancement of airway smooth muscle proliferation by collagen and fibronectin. Am. J. Respir. Crit. Care. 2005;171:217–223. doi: 10.1164/rccm.200408-1046OC. PubMed DOI
Maeshima Y., Yerramalla U.L., Dhanabal M., Holthaus K.A., Barbashov S., Kharbanda S., Reimer C., Manfredi M., Dickerson W.M., Kalluri R. Extracellular matrix-derived peptide binds to alpha(v)beta(3) integrin and inhibits angiogenesis. J. Biol. Chem. 2001;276:31959–31968. doi: 10.1074/jbc.M103024200. PubMed DOI
Irigoyen M., Pajares M.J., Agorreta J., Ponz-Sarvise M., Salvo E., Lozano M.D., Pio R., Gil-Bazo I., Rouzaut A. TGFBI expression is associated with a better response to chemotherapy in NSCLC. Mol. Cancer. 2010;9:130. doi: 10.1186/1476-4598-9-130. PubMed DOI PMC
Cheresh D.A., Spiro R.C. Biosynthetic and functional-properties of an Arg-Gly-Asp-directed receptor involved in human-melanoma cell attachment to vitronectin, fibrinogen, and vonwillebrand-factor. J. Biol. Chem. 1987;262:17703–17711. doi: 10.1016/S0021-9258(18)45436-1. PubMed DOI
Mould A.P., Garratt A.N., Puzon-McLaughlin W., Takada Y., Humphries M.J. Regulation of integrin function: Evidence that bivalent-cation-induced conformational changes lead to the unmasking of ligand-binding sites within integrin alpha 5 beta 1. Biochem. J. 1998;331:821–828. doi: 10.1042/bj3310821. PubMed DOI PMC
Imoto E., Kakuta S., Hori M., Yagami K., Nagumo M. Adhesion of a chondrocytic cell line (USAC) to fibronectin and its regulation by proteoglycan. J. Oral Pathol. Med. 2002;31:35–44. doi: 10.1046/j.0904-2512.2001.00202.x. PubMed DOI
Hangan D., Uniyal S., Morris V.L., MacDonald I.C., vonBallestrem C., Chau T., Schmidt E.E., Chambers A.F., Groom A.C., Chan B.M.C. Integrin VLA-2 (alpha(2)beta(1)) function in postextravasation movement of human rhabdomyosarcoma RD cells in the liver. Cancer Res. 1996;56:3142–3149. PubMed