Plasmafiltration as an effective method in the removal of circulating pegylated liposomal doxorubicin (PLD) and the reduction of mucocutaneous toxicity during the treatment of advanced platinum-resistant ovarian cancer
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31728628
DOI
10.1007/s00280-019-03976-2
PII: 10.1007/s00280-019-03976-2
Knihovny.cz E-zdroje
- Klíčová slova
- Cancer therapy, EPR effect, Hand–foot syndrome, Mucocutaneous toxicity, Ovarian cancer, Pegylated liposomal doxorubicin (PLD), Plasmapheresis, Population kinetics,
- MeSH
- dospělí MeSH
- doxorubicin škodlivé účinky analogy a deriváty MeSH
- lidé středního věku MeSH
- lidé MeSH
- nádory vaječníků farmakoterapie MeSH
- nežádoucí účinky léčiv farmakoterapie MeSH
- organoplatinové sloučeniny terapeutické užití MeSH
- polyethylenglykoly škodlivé účinky MeSH
- prospektivní studie MeSH
- protinádorová antibiotika škodlivé účinky MeSH
- senioři MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- doxorubicin MeSH
- liposomal doxorubicin MeSH Prohlížeč
- organoplatinové sloučeniny MeSH
- polyethylenglykoly MeSH
- protinádorová antibiotika MeSH
PURPOSE: The present study evaluates the safety and efficacy of double-plasma filtration (PF) to remove the exceeding pegylated liposomal doxorubicin (PLD) in circulation, thus reducing mucocutaneous toxicity. METHODS: A total of 16 patients with platinum-resistant ovarian cancer were treated with 50 mg/m2 PLD applied in 1-h IV infusion every 28 days. PF was scheduled at 44-46 h post-infusion. The concentration of plasma PLD and non-liposomal doxorubicin (NLD) was monitored with high-performance liquid chromatography at 116 h post-infusion. A non-linear method for mixed-effects was used in the population pharmacokinetic model. The dose fraction of PLD eliminated by the patient prior to PF was compared with the fraction removed by PF. PLD-related toxicity was recorded according to CTCAE v4.0 criteria and compared to historical data. Anticancer effects were evaluated according to RECIST 1.1 criteria. RESULTS: The patients received a median of 3 (2-6) chemotherapy cycles. A total of 53 cycles with PF were evaluated, which removed 31% (10) of the dose; on the other hand, the fraction eliminated prior to PF was of 34% (7). Exposure to NLD reached only 10% of exposure to the parent PLD. PLD-related toxicity was low, finding only one case of grade 3 hand-foot syndrome (6.7%) and grade 1 mucositis (6.7%). Other adverse effects were also mild (grade 1-2). PF-related adverse effects were low (7%). Median progression-free survival (PFS) and overall survival (OS) was of 3.6 (1.5-8.1) and 7.5 (1.7-26.7) months, respectively. Furthermore, 33% of the patients achieved stable disease (SD), whereas that 67% progressed. CONCLUSION: PF can be considered as safe and effective for the extracorporeal removal of PLD, resulting in a lower incidence of mucocutaneous toxicity.
Zobrazit více v PubMed
EMA (2014) Summary of product characteristics Caelyx (EPAR). http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/000089/WC500020180.pdf . Accessed 27 Dec 2015
Gabizon AA, Patil Y, La-Beck NM (2016) New insights and evolving role of pegylated liposomal doxorubicin in cancer therapy. Drug Resist Update 29:90–106. https://doi.org/10.1016/j.drup.2016.10.003 DOI
Gabizon AA (2001) Pegylated liposomal doxorubicin: metamorphosis of an old drug into a new form of chemotherapy. Cancer Investig 19(4):424–436 DOI
Gabizon A, Shmeeda H, Barenholz Y (2003) Pharmacokinetics of pegylated liposomal doxorubicin: review of animal and human studies. Clin Pharmacokinet 42(5):419–436. https://doi.org/10.2165/00003088-200342050-00002 PubMed DOI
Maeda H, Wu J, Sawa T, Matsumura Y, Hori K (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65(1–2):271–284 DOI
Fang J, Nakamura H, Maeda H (2011) The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev 63(3):136–151. https://doi.org/10.1016/j.addr.2010.04.009 PubMed DOI
Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC (2014) Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev 66:2–25. https://doi.org/10.1016/j.addr.2013.11.009 PubMed DOI
Safra T, Muggia F, Jeffers S, Tsao-Wei DD, Groshen S, Lyass O, Henderson R, Berry G, Gabizon A (2000) Pegylated liposomal doxorubicin (Doxil): reduced clinical cardiotoxicity in patients reaching or exceeding cumulative doses of 500 mg/m DOI
Lyass O, Uziely B, Ben-Yosef R, Tzemach D, Heshing NI, Lotem M, Brufman G, Gabizon A (2000) Correlation of toxicity with pharmacokinetics of pegylated liposomal doxorubicin (Doxil) in metastatic breast carcinoma. Cancer 89(5):1037–1047 DOI
Boers-Sonderen MJ, van Herpen CM, van der Graaf WT, Desar IM, van der Logt MG, de Beer YM, Ottevanger PB, van Erp NP (2014) Correlation of toxicity and efficacy with pharmacokinetics (PK) of pegylated liposomal doxorubicin (PLD) (Caelyx(R)). Cancer Chemother Pharmacol 74(3):457–463. https://doi.org/10.1007/s00280-014-2514-9 PubMed DOI
Mayer LD, Tai LC, Ko DS, Masin D, Ginsberg RS, Cullis PR, Bally MB (1989) Influence of vesicle size, lipid composition, and drug-to-lipid ratio on the biological activity of liposomal doxorubicin in mice. Cancer Res 49(21):5922–5930 PubMed
Gabizon A, Goren D, Horowitz AT, Tzemach D, Lossos A, Siegal T (1997) Long-circulating liposomes for drug delivery in cancer therapy: a review of biodistribution studies in tumor-bearing animals. Adv Drug Deliv Rev 24(2):337–344. https://doi.org/10.1016/S0169-409X(96)00476-0 DOI
Northfelt DW, Dezube BJ, Thommes JA, Miller BJ, Fischl MA, Friedman-Kien A, Kaplan LD, Du Mond C, Mamelok RD, Henry DH (1998) Pegylated-liposomal doxorubicin versus doxorubicin, bleomycin, and vincristine in the treatment of AIDS-related Kaposi’s sarcoma: results of a randomized phase III clinical trial. J Clin Oncol 16(7):2445–2451 DOI
Lorusso D, Di Stefano A, Carone V, Fagotti A, Pisconti S, Scambia G (2007) Pegylated liposomal doxorubicin-related palmar-plantar erythrodysesthesia (‘hand-foot’ syndrome). Ann Oncol 18(7):1159–1164. https://doi.org/10.1093/annonc/mdl477 PubMed DOI
Eckes J, Schmah O, Siebers JW, Groh U, Zschiedrich S, Rautenberg B, Hasenburg A, Jansen M, Hug MJ, Winkler K, Putz G (2011) Kinetic targeting of pegylated liposomal doxorubicin: a new approach to reduce toxicity during chemotherapy (CARL-trial). BMC Cancer 11:337. https://doi.org/10.1186/1471-2407-11-337 PubMed DOI PMC
Ngoune R, Contini C, Hoffmann MM, von Elverfeldt D, Winkler K, Putz G (2018) Optimizing antitumor efficacy and adverse effects of pegylated liposomal doxorubicin by scheduled plasmapheresis: impact of timing and dosing. Curr Drug Deliv 15(9):1261–1270. https://doi.org/10.2174/1567201815666180518125839 PubMed DOI PMC
Martinkova J, Blaha M, Kubecek O, Malakova J, Spacek J, Bezouska J, Krulichova IS, Filip S (2015) Plasmafiltration as a possible contributor to kinetic targeting of pegylated liposomal doxorubicin (PLD) in order to prevent organ toxicity and immunosuppression. Cancer Chemother Pharmacol. https://doi.org/10.1007/s00280-015-2936-z PubMed DOI
Blaha M, Martinkova J, Lanska M, Filip S, Malakova J, Kubecek O, Bezouska J, Spacek J (2017) Plasma filtration for the controlled removal of liposomal therapeutics—From the apheretic site of view. Atheroscler Suppl 30:286–293. https://doi.org/10.1016/j.atherosclerosissup.2017.05.022 PubMed DOI
Robert J (1980) Extraction of anthracyclines from biological fluids for HPLC evaluation. J Liq Chromatogr 3(10):1561–1572. https://doi.org/10.1080/01483918008062796 DOI
Bellott R, Pouna P, Robert J (2001) Separation and determination of liposomal and non-liposomal daunorubicin from the plasma of patients treated with Daunoxome. J Chromatogr B Biomed Sci Appl 757(2):257–267 DOI
Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, Verweij J, Van Glabbeke M, van Oosterom AT, Christian MC, Gwyther SG, European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada (2000) New guidelines to evaluate the response to treatment in solid tumors. J Natl Cancer Inst 92(3):205–216 DOI
Harrington KJ, Mohammadtaghi S, Uster PS, Glass D, Peters AM, Vile RG, Stewart JS (2001) Effective targeting of solid tumors in patients with locally advanced cancers by radiolabeled pegylated liposomes. Clin Cancer Res 7(2):243–254 PubMed
Gabizon A, Catane R, Uziely B, Kaufman B, Safra T, Cohen R, Martin F, Huang A, Barenholz Y (1994) Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene–glycol coated liposomes. Cancer Res 54(4):987–992 PubMed
Hong R-L, Tseng Y-L (2001) Phase I and pharmacokinetic study of a stable, polyethylene-glycolated liposomal doxorubicin in patients with solid tumors. Cancer 91(9):1826–1833. https://doi.org/10.1002/1097-0142(20010501)91:9%3c1826:AID-CNCR24%3e3.0.CO;2-J PubMed DOI
La-Beck NM, Zamboni BA, Gabizon A, Schmeeda H, Amantea M, Gehrig PA, Zamboni WC (2012) Factors affecting the pharmacokinetics of pegylated liposomal doxorubicin in patients. Cancer Chemother Pharmacol 69(1):43–50. https://doi.org/10.1007/s00280-011-1664-2 PubMed DOI
Bally MB, Masin D, Nayar R, Cullis PR, Mayer LD (1994) Transfer of liposomal drug carriers from the blood to the peritoneal cavity of normal and ascitic tumor-bearing mice. Cancer Chemother Pharmacol 34(2):137–146 DOI
Norda R, Stegmayr BG (2003) Therapeutic apheresis in Sweden: update of epidemiology and adverse events. Transfus Apher Sci 29(2):159–166. https://doi.org/10.1016/s1473-0502(03)00121-6 PubMed DOI
Blaha M, Cermanova M, Blaha V, Blazek M, Maly J, Siroky O, Solichova D, Filip S, Rehacek V (2007) Safety and tolerability of long lasting LDL-apheresis in familial hyperlipoproteinemia. Ther Apher Dial 11(1):9–15. https://doi.org/10.1111/j.1744-9987.2007.00450.x PubMed DOI
Blaha M, Ptak J, Cap J, Ceeova V, Masin V, Filip S, Blazek M (2009) WAA apheresis registry in the Czech Republic: two centers experience. Transfus Apher Sci 41(1):27–31. https://doi.org/10.1016/j.transci.2009.05.005 PubMed DOI
Lánská M (2018) Rheopheresis. Clinical importance of rheological, technical and further hemapheretic indicators of effectivity, side-effects and economy. Doctoral thesis
Klingel R, Fassbender C, Heibges A, Koch F, Nasemann J, Engelmann K, Carl T, Meinke M, Erdtracht B (2010) RheoNet registry analysis of rheopheresis for microcirculatory disorders with a focus on age-related macular degeneration. Ther Apher Dial 14(3):276–286. https://doi.org/10.1111/j.1744-9987.2010.00807.x PubMed DOI
Schwartz J, Padmanabhan A, Aqui N, Balogun RA, Connelly-Smith L, Delaney M, Dunbar NM, Witt V, Wu Y, Shaz BH (2016) Guidelines on the use of therapeutic apheresis in clinical practice-evidence-based approach from the Writing Committee of the American Society for Apheresis: the seventh special issue. J Clin Apher 31(3):149–162. https://doi.org/10.1002/jca.21470 PubMed DOI PMC
Allen TM, Newman MS, Woodle MC, Mayhew E, Uster PS (1995) Pharmacokinetics and anti-tumor activity of vincristine encapsulated in sterically stabilized liposomes. Int J Cancer 62(2):199–204 DOI
Amantea MA, Forrest A, Northfelt DW, Mamelok R (1997) Population pharmacokinetics and pharmacodynamics of pegylated-liposomal doxorubicin in patients with AIDS-related Kaposi’s sarcoma. Clin Pharmacol Ther 61(3):301–311. https://doi.org/10.1016/s0009-9236(97)90162-4 PubMed DOI
Muggia FM, Hainsworth JD, Jeffers S, Miller P, Groshen S, Tan M, Roman L, Uziely B, Muderspach L, Garcia A, Burnett A, Greco FA, Morrow CP, Paradiso LJ, Liang LJ (1997) Phase II study of liposomal doxorubicin in refractory ovarian cancer: antitumor activity and toxicity modification by liposomal encapsulation. J Clin Oncol 15(3):987–993. https://doi.org/10.1200/jco.1997.15.3.987 PubMed DOI
Gordon AN, Granai CO, Rose PG, Hainsworth J, Lopez A, Weissman C, Rosales R, Sharpington T (2000) Phase II study of liposomal doxorubicin in platinum- and paclitaxel-refractory epithelial ovarian cancer. J Clin Oncol 18(17):3093–3100. https://doi.org/10.1200/jco.2000.18.17.3093 PubMed DOI
Gordon AN, Fleagle JT, Guthrie D, Parkin DE, Gore ME, Lacave AJ (2001) Recurrent epithelial ovarian carcinoma: a randomized phase III study of pegylated liposomal doxorubicin versus topotecan. J Clin Oncol 19(14):3312–3322 DOI
Rose PG, Maxson JH, Fusco N, Mossbruger K, Rodriguez M (2001) Liposomal doxorubicin in ovarian, peritoneal, and tubal carcinoma: a retrospective comparative study of single-agent dosages. Gynecol Oncol 82(2):323–328. https://doi.org/10.1006/gyno.2001.6272 PubMed DOI
Lorusso D, Naldini A, Testa A, D’Agostino G, Scambia G, Ferrandina G (2004) Phase II study of pegylated liposomal doxorubicin in heavily pretreated epithelial ovarian cancer patients. May a new treatment schedule improve toxicity profile? Oncology 67(3–4):243–249. https://doi.org/10.1159/000081324 PubMed DOI
Wilailak S, Linasmita V (2004) A study of pegylated liposomal doxorubicin in platinum-refractory epithelial ovarian cancer. Oncology 67(3–4):183–186. https://doi.org/10.1159/000081315 PubMed DOI
Chou HH, Wang KL, Chen CA, Wei LH, Lai CH, Hsieh CY, Yang YC, Twu NF, Chang TC, Yen MS (2006) Pegylated liposomal doxorubicin (Lipo-Dox) for platinum-resistant or refractory epithelial ovarian carcinoma: a Taiwanese gynecologic oncology group study with long-term follow-up. Gynecol Oncol 101(3):423–428. https://doi.org/10.1016/j.ygyno.2005.10.027 PubMed DOI
Mutch DG, Orlando M, Goss T, Teneriello MG, Gordon AN, McMeekin SD, Wang Y, Scribner DR Jr, Marciniack M, Naumann RW, Secord AA (2007) Randomized phase III trial of gemcitabine compared with pegylated liposomal doxorubicin in patients with platinum-resistant ovarian cancer. J Clin Oncol 25(19):2811–2818. https://doi.org/10.1200/jco.2006.09.6735 PubMed DOI
Ferrandina G, Ludovisi M, Lorusso D, Pignata S, Breda E, Savarese A, Del Medico P, Scaltriti L, Katsaros D, Priolo D, Scambia G (2008) Phase III trial of gemcitabine compared with pegylated liposomal doxorubicin in progressive or recurrent ovarian cancer. J Clin Oncol 26(6):890–896. https://doi.org/10.1200/jco.2007.13.6606 PubMed DOI
Colombo N, Kutarska E, Dimopoulos M, Bae DS, Rzepka-Gorska I, Bidzinski M, Scambia G, Engelholm SA, Joly F, Weber D, El-Hashimy M, Li J, Souami F, Wing P, Engelholm S, Bamias A, Schwartz P (2012) Randomized, open-label, phase III study comparing patupilone (EPO906) with pegylated liposomal doxorubicin in platinum-refractory or -resistant patients with recurrent epithelial ovarian, primary fallopian tube, or primary peritoneal cancer. J Clin Oncol 30(31):3841–3847. https://doi.org/10.1200/jco.2011.38.8082 PubMed DOI
Blank N, Laskov I, Kessous R, Kogan L, Lau S, Sebag IA, Gotlieb WH, Rudski L (2017) Absence of cardiotoxicity with prolonged treatment and large accumulating doses of pegylated liposomal doxorubicin. Cancer Chemother Pharmacol 80(4):737–743. https://doi.org/10.1007/s00280-017-3412-8 PubMed DOI
Bollinger A, Pfister G, Hoffmann U, Franzeck UK (1989) Fluorescence microlymphography in chronic venous incompetence. Int Angiol 8(4 Suppl):23–26 PubMed