Therapeutic Apheresis, Circulating PLD, and Mucocutaneous Toxicity: Our Clinical Experience through Four Years
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article, Review
Grant support
16-30366A
Ministerstvo Zdravotnictví Ceské Republiky - International
PROGRES Q40/06
Univerzita Karlova v Praze - International
PubMed
33008072
PubMed Central
PMC7600532
DOI
10.3390/pharmaceutics12100940
PII: pharmaceutics12100940
Knihovny.cz E-resources
- Keywords
- chemotherapy, chemotoxicity, palmar-plantar erythrodysesthesia, pegylated liposomal doxorubicin, therapeutic apheresis,
- Publication type
- Journal Article MeSH
- Review MeSH
Cancer treatment has been greatly improved by the combined use of targeted therapies and novel biotechnological methods. Regarding the former, pegylated liposomal doxorubicin (PLD) has a preferential accumulation within cancer tumors, thus having lower toxicity on healthy cells. PLD has been implemented in the targeted treatment of sarcoma, ovarian, breast, and lung cancer. In comparison with conventional doxorubicin, PLD has lower cardiotoxicity and hematotoxicity; however, PLD can induce mucositis and palmo-plantar erythrodysesthesia (PPE, hand-foot syndrome), which limits its use. Therapeutical apheresis is a clinically proven solution against early PLD toxicity without hindering the efficacy of the treatment. The present review summarizes the pharmacokinetics and pharmacodynamics of PLD and the beneficial effects of extracorporeal apheresis on the incidence of PPE during chemoradiotherapy in cancer patients.
See more in PubMed
Pütz G., Schmah O., Eckes J., Hug M.J., Winkler K. Controlled application and scheduled removal of nanoparticle based chemotherapeutics (CARL) will reduce dose limiting adverse events in anticancer chemotherapy. Med. Hypotheses. 2009;72:393–397. doi: 10.1016/j.mehy.2008.11.027. PubMed DOI
Waite C.L., Roth C.M. Nanoscale drug delivery systems for enhanced drug penetration into solid tumors: Current progress and opportunities. Crit. Rev. Biomed. Eng. 2012;40:21–41. doi: 10.1615/CritRevBiomedEng.v40.i1.20. PubMed DOI PMC
Zhang R.X., Ahmed T., Li L.Y., Li J., Abbasi A.Z., Wu X.Y. Design of nanocarriers for nanoscale drug delivery to enhance cancer treatment using hybrid polymer and lipid building blocks. Nanoscale. 2017;9:1334–1355. doi: 10.1039/C6NR08486A. PubMed DOI
Allen T.M., Cullis P.R. Drug Delivery Systems: Entering the Mainstream. Science. 2004;303:1818–1822. doi: 10.1126/science.1095833. PubMed DOI
Samad A., Sultana Y., Aqil M. Liposomal drug delivery systems: An update review. Curr. Drug Deliv. 2007;4:297–305. doi: 10.2174/156720107782151269. PubMed DOI
Fang J., Nakamura H., Maeda H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Deliv. Rev. 2011;63:136–151. doi: 10.1016/j.addr.2010.04.009. PubMed DOI
Millard M., Yakavets I., Zorin V., Kulmukhamedova A., Marchal S., Bezdetnaya L. Drug delivery to solid tumors: The predictive value of the multicellular tumor spheroid model for nanomedicine screening. Int. J. Nanomed. 2017;12:7993–8007. doi: 10.2147/IJN.S146927. PubMed DOI PMC
Gabizon A., Shmeeda H., Barenholz Y. Pharmacokinetics of Pegylated Liposomal Doxorubicin. Clin. Pharmacokinet. 2003;42:419–436. doi: 10.2165/00003088-200342050-00002. PubMed DOI
Matsumura Y., Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986;46:6387–6392. PubMed
Maeda H., Wu J., Sawa T., Matsumura Y., Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review. J. Control. Release. 2000;65:271–284. doi: 10.1016/S0168-3659(99)00248-5. PubMed DOI
Maeda H. Polymer therapeutics and the EPR effect. J. Drug Target. 2017;25:781–785. doi: 10.1080/1061186X.2017.1365878. PubMed DOI
Natfji A.A., Ravishankar D., Osborn H.M.I., Greco F. Parameters Affecting the Enhanced Permeability and Retention Effect: The Need for Patient Selection. J. Pharm. Sci. 2017;106:3179–3187. doi: 10.1016/j.xphs.2017.06.019. PubMed DOI
Ye H., Shen Z., Li Y., Wei M., Li Y. Manipulating nanoparticle transport within blood flow through external forces: An exemplar of mechanics in nanomedicine. Proc. Math. Phys. Eng. Sci. 2018;474:20170845. doi: 10.1098/rspa.2017.0845. PubMed DOI PMC
Pütz G., Schmah O., Eckes J., Hug M.J., Winkler K. Controlled application and removal of liposomal therapeutics: Effective elimination of pegylated liposomal doxorubicin by double-filtration plasmapheresis in vitro. J. Clin. Apher. 2010;25:54–62. doi: 10.1002/jca.20229. PubMed DOI
Kubecek O., Martínková J., Chladek J., Bláha M., Maláková J., Hodek M., Špaček J., Filip S. Plasmafiltration as an effective method in the removal of circulating pegylated liposomal doxorubicin (PLD) and the reduction of mucocutaneous toxicity during the treatment of advanced platinum-resistant ovarian cancer. Cancer Chemother. Pharmacol. 2019;85:353–365. doi: 10.1007/s00280-019-03976-2. PubMed DOI
Regev R., Yeheskely-Hayon D., Katzir H., Eytan G.D. Transport of anthracyclines and mitoxantrone across membranes by a flip-flop mechanism. Biochem. Pharmacol. 2005;70:161–169. doi: 10.1016/j.bcp.2005.03.032. PubMed DOI
Ngoune R., Peters A., Von Elverfeldt D., Winkler K., Pütz G. Accumulating nanoparticles by EPR: A route of no return. J. Control Release. 2016;238:58–70. doi: 10.1016/j.jconrel.2016.07.028. PubMed DOI
Yang F., Kemp C.J., Henikoff S. Anthracyclines induce double-strand DNA breaks at active gene promoters. Mutat. Res. Mol. Mech. Mutagen. 2015;773:9–15. doi: 10.1016/j.mrfmmm.2015.01.007. PubMed DOI PMC
Kotamraju S., Kalivendi S.V., Konorev E., Chitambar C.R., Joseph J., Kalyanaraman B. Enzyme Engineering and Evolution: General Methods. Volume 378. Elsevier; Amsterdam, The Netherlands: 2004. Oxidant-Induced Iron Signaling in Doxorubicin-Mediated Apoptosis; pp. 362–382. PubMed
Minotti G., Menna P., Salvatorelli E., Cairo G., Gianni L. Anthracyclines: Molecular Advances and Pharmacologic Developments in Antitumor Activity and Cardiotoxicity. Pharmacol. Rev. 2004;56:185–229. doi: 10.1124/pr.56.2.6. PubMed DOI
Gabizon A.A. Pegylated Liposomal Doxorubicin: Metamorphosis of an Old Drug into a New Form of Chemotherapy. Cancer Investig. 2001;19:424–436. doi: 10.1081/CNV-100103136. PubMed DOI
Eckes J., Schmah O., Siebers J.W., Groh U., Zschiedrich S., Rautenberg B., Hasenburg A., Jansen M., Hug M.J., Winkler K., et al. Kinetic Targeting of pegylated liposomal Doxorubicin: A new Approach to Reduce Toxicity during Chemotherapy (CARL-trial) BMC Cancer. 2011;11:337. doi: 10.1186/1471-2407-11-337. PubMed DOI PMC
Ngoune R., Contini C., Hoffmann M.M., Von Elverfeldt D., Winkler K., Putz G. Optimizing Antitumor Efficacy and Adverse Effects of Pegylated Liposomal Doxorubicin by Scheduled Plasmapheresis: Impact of Timing and Dosing. Curr. Drug Deliv. 2018;15:1261–1270. doi: 10.2174/1567201815666180518125839. PubMed DOI PMC
Gabizon A.A., Patil Y., La-Beck N.M. New insights and evolving role of pegylated liposomal doxorubicin in cancer therapy. Drug Resist. Updates. 2016;29:90–106. doi: 10.1016/j.drup.2016.10.003. PubMed DOI
Tahover E., Patil Y.P., Gabizon A.A. Emerging delivery systems to reduce doxorubicin cardiotoxicity and improve therapeutic index. Anti-Cancer Drugs. 2015;26:241–258. doi: 10.1097/CAD.0000000000000182. PubMed DOI
Ichihara M., Shimizu T., Imoto A., Hashiguchi Y., Uehara Y., Ishida T., Kiwada H. Anti-PEG IgM Response against PEGylated Liposomes in Mice and Rats. Pharmaceutics. 2010;3:1–11. doi: 10.3390/pharmaceutics3010001. PubMed DOI PMC
Sousa I., Rodrigues F., Prazeres H., Lima R.T., Soares P. Liposomal therapies in oncology: Does one size fit all? Cancer Chemother. Pharmacol. 2018;82:741–755. doi: 10.1007/s00280-018-3668-7. PubMed DOI
O’Brien M.E.R., Wigler N., Inbar M., Rosso R., Grischke E., Santoro A., Catane R., Kieback D.G., Tomczak P., Ackland S.P., et al. Reduced cardiotoxicity and comparable efficacy in a phase IIItrial of pegylated liposomal doxorubicin HCl(CAELYX™/Doxil®) versus conventional doxorubicin forfirst-line treatment of metastatic breast cancer. Ann. Oncol. 2004;15:440–449. doi: 10.1093/annonc/mdh097. PubMed DOI
Gandy J., How C., Harrold K. Palmar–plantar erythrodysesthesia (PPE): A literature review with commentary on experience in a cancer centre. Eur. J. Oncol. Nurs. 2007;11:238–246. doi: 10.1016/j.ejon.2006.10.004. PubMed DOI
Boers-Sonderen M.J., Van Herpen C.M.L., Van Der Graaf W.T.A., Desar I.M.E., Van Der Logt M.G.W.A., De Beer Y.M., Ottevanger P.B., Van Erp N.P. Correlation of toxicity and efficacy with pharmacokinetics (PK) of pegylated liposomal doxorubicin (PLD) (Caelyx®) Cancer Chemother. Pharmacol. 2014;74:457–463. doi: 10.1007/s00280-014-2514-9. PubMed DOI
Bun S., Yunokawa M., Tamaki Y., Shimomura A., Shimoi T., Kodaira M., Shimizu C., Yonemori K., Fujiwara Y., Makino Y., et al. Symptom management: The utility of regional cooling for hand-foot syndrome induced by pegylated liposomal doxorubicin in ovarian cancer. Support. Care Cancer. 2018;26:2161–2166. doi: 10.1007/s00520-018-4054-z. PubMed DOI
Solomon R., Gabizon A.A. Clinical Pharmacology of Liposomal Anthracyclines: Focus on Pegylated Liposomal Doxorubicin. Clin. Lymphoma Myeloma. 2008;8:21–32. doi: 10.3816/CLM.2008.n.001. PubMed DOI
Lyass O., Uziely B., Ben-Yosef R., Tzemach D., Heshing N.I., Lotem M., Brufman G., Gabizon A. Correlation of toxicity with pharmacokinetics of pegylated liposomal doxorubicin (Doxil) in metastatic breast carcinoma. Cancer. 2000;89:1037–1047. doi: 10.1002/1097-0142(20000901)89:5<1037::AID-CNCR13>3.0.CO;2-Z. PubMed DOI
Minisini A.M., Andreetta C., Fasola G., Puglisi F. Pegylated liposomal doxorubicin in elderly patients with metastatic breast cancer. Expert Rev. Anticancer. Ther. 2008;8:331–342. doi: 10.1586/14737140.8.3.331. PubMed DOI
Gordon A.N., Granai C., Rose P.G., Hainsworth J., Lopez A., Weissman C., Rosales R., Sharpington T. Phase II Study of Liposomal Doxorubicin in Platinum- and Paclitaxel-Refractory Epithelial Ovarian Cancer. J. Clin. Oncol. 2000;18:3093–3100. doi: 10.1200/JCO.2000.18.17.3093. PubMed DOI
Gordon A.N., Fleagle J.T., Guthrie D., Parkin D.E., Gore M.E., Lacave A.J. Recurrent Epithelial Ovarian Carcinoma: A Randomized Phase III Study of Pegylated Liposomal Doxorubicin Versus Topotecan. J. Clin. Oncol. 2001;19:3312–3322. doi: 10.1200/JCO.2001.19.14.3312. PubMed DOI
Colombo N., Kutarska E., Dimopoulos M., Bae D.-S., Rzepka-Gorska I., Bidzinski M., Scambia G., Engelholm S.A., Joly F., Weber D., et al. Randomized, Open-Label, Phase III Study Comparing Patupilone (EPO906) With Pegylated Liposomal Doxorubicin in Platinum-Refractory or -Resistant Patients With Recurrent Epithelial Ovarian, Primary Fallopian Tube, or Primary Peritoneal Cancer. J. Clin. Oncol. 2012;30:3841–3847. doi: 10.1200/JCO.2011.38.8082. PubMed DOI
Mayer L.D., Tai L.C., Ko D.S., Masin D., Ginsberg R.S., Cullis P.R., Bally M.B. Influence of vesicle size, lipid composition, and drug-to-lipid ratio on the biological activity of liposomal doxorubicin in mice. Cancer Res. 1989;49:5922–5930. PubMed
Blaha M., Martinkova J., Lanska M., Filip S., Malakova J., Kubecek O., Bezouška J., Spacek J. Plasma filtration for the controlled removal of liposomal therapeutics—From the apheretic site of view. Atheroscler. Suppl. 2017;30:286–293. doi: 10.1016/j.atherosclerosissup.2017.05.022. PubMed DOI
Martinkova J., Bláha M., Kubecek O., Malakova J., Spacek J., Bezouška J., Krulichová I.S., Filip S. Plasmafiltration as a possible contributor to kinetic targeting of pegylated liposomal doxorubicin (PLD) in order to prevent organ toxicity and immunosuppression. Cancer Chemother. Pharmacol. 2015;77:429–437. doi: 10.1007/s00280-015-2936-z. PubMed DOI
Moss D.M., Siccardi M. Optimizing nanomedicine pharmacokinetics using physiologically based pharmacokinetics modelling. Br. J. Pharmacol. 2014;171:3963–3979. doi: 10.1111/bph.12604. PubMed DOI PMC
Schultink A.H.M.D.V., Suleiman A.A., Schellens J.H.M., Beijnen J.H., Huitema A.D.R. Pharmacodynamic modeling of adverse effects of anti-cancer drug treatment. Eur. J. Clin. Pharmacol. 2016;72:645–653. doi: 10.1007/s00228-016-2030-4. PubMed DOI PMC
Ribba B., Holford N., Magni P., Trocóniz I.F., Gueorguieva I., Girard P., Sarr C., Elishmereni M., Kloft C., Friberg L.E. A Review of Mixed-Effects Models of Tumor Growth and Effects of Anticancer Drug Treatment Used in Population Analysis. CPT: Pharmacometrics Syst. Pharmacol. 2014;3:e113. doi: 10.1038/psp.2014.12. PubMed DOI PMC
Jagetia G.C., Nayak V. Effect of doxorubicin on cell survival and micronuclei formation in HeLa cells exposed to different doses of gamma-radiation. Strahlenther. Onkol. 2000;176:422–428. doi: 10.1007/PL00002351. PubMed DOI
Wu S., Chou H., Yuh C., Mekuria S.L., Kao Y., Tsai H.-C. Radiation-Sensitive Dendrimer-Based Drug Delivery System. Adv. Sci. 2017;5:1700339. doi: 10.1002/advs.201700339. PubMed DOI PMC
Fiets W., Van Helvoirt R., Nortier J., Van Der Tweel I., Struikmans H. Acute toxicity of concurrent adjuvant radiotherapy and chemotherapy (CMF or AC) in breast cancer patients. Eur. J. Cancer. 2003;39:1081–1088. doi: 10.1016/S0959-8049(03)00178-3. PubMed DOI
Bahaj W., Ya’Qoub L., Toor M., Masood A. Radiation Recall in a Patient with Intrahepatic Cholangiocarcinoma: Case Report and a Literature Review. Cureus. 2019;11:e5020. doi: 10.7759/cureus.5020. PubMed DOI PMC
Burris H.A., Hurtig J. Radiation Recall with Anticancer Agents. Oncologist. 2010;15:1227–1237. doi: 10.1634/theoncologist.2009-0090. PubMed DOI PMC
Camidge R., Price A. Characterizing the phenomenon of radiation recall dermatitis. Radiother. Oncol. 2001;59:237–245. doi: 10.1016/S0167-8140(01)00328-0. PubMed DOI
Wei Q., Xu W.-H., Han M., Dong Q., Fu Z.-X., Diao Y.-Y., Liu H., Xu J., Jiang H.-L., Zheng S., et al. Doxorubicin-mediated radiosensitivity in multicellular spheroids from a lung cancer cell line is enhanced by composite micelle encapsulation. Int. J. Nanomed. 2012;7:2661–2671. doi: 10.2147/IJN.S30445. PubMed DOI PMC
Dicheva B.M., Koning G.A. Targeted thermosensitive liposomes: An attractive novel approach for increased drug delivery to solid tumors. Expert Opin. Drug Deliv. 2013;11:83–100. doi: 10.1517/17425247.2014.866650. PubMed DOI
Lokerse W.J., Bolkestein M., Hagen T.L.T., De Jong M., Eggermont A.M., Grüll H., Koning G.A. Investigation of Particle Accumulation, Chemosensitivity and Thermosensitivity for Effective Solid Tumor Therapy Using Thermosensitive Liposomes and Hyperthermia. Theranostics. 2016;6:1717–1731. doi: 10.7150/thno.14960. PubMed DOI PMC
Huang S.K., Stauffer P.R., Hong K., Guo J.W., Phillips T.L., Huang A., Papahadjopoulos D. Liposomes and hyperthermia in mice: Increased tumor uptake and therapeutic efficacy of doxorubicin in sterically stabilized liposomes. Cancer Res. 1994;54:2186–2191. PubMed
Willerding L., Limmer S., Hossann M., Zengerle A., Wachholz K., Hagen T.L.T., Koning G.A., Sroka R., Lindner L.H., Peller M. Method of hyperthermia and tumor size influence effectiveness of doxorubicin release from thermosensitive liposomes in experimental tumors. J. Control. Release. 2016;222:47–55. doi: 10.1016/j.jconrel.2015.12.004. PubMed DOI
Mi Y., Shao Z., Vang J., Kaidar-Person O., Wang A.Z. Application of nanotechnology to cancer radiotherapy. Cancer Nanotechnol. 2016;7:511. doi: 10.1186/s12645-016-0024-7. PubMed DOI PMC
DuRoss A.N., Neufeld M.J., Rana S., Thomas C.R., Sun C. Integrating nanomedicine into clinical radiotherapy regimens. Adv. Drug Deliv. Rev. 2019;144:35–56. doi: 10.1016/j.addr.2019.07.002. PubMed DOI PMC