Tetraspanins and Transmembrane Adaptor Proteins As Plasma Membrane Organizers-Mast Cell Case

. 2016 ; 4 () : 43. [epub] 20160510

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid27243007

The plasma membrane contains diverse and specialized membrane domains, which include tetraspanin-enriched domains (TEMs) and transmembrane adaptor protein (TRAP)-enriched domains. Recent biophysical, microscopic, and functional studies indicated that TEMs and TRAP-enriched domains are involved in compartmentalization of physicochemical events of such important processes as immunoreceptor signal transduction and chemotaxis. Moreover, there is evidence of a cross-talk between TEMs and TRAP-enriched domains. In this review we discuss the presence and function of such domains and their crosstalk using mast cells as a model. The combined data based on analysis of selected mast cell-expressed tetraspanins [cluster of differentiation (CD)9, CD53, CD63, CD81, CD151)] or TRAPs [linker for activation of T cells (LAT), non-T cell activation linker (NTAL), and phosphoprotein associated with glycosphingolipid-enriched membrane microdomains (PAG)] using knockout mice or specific antibodies point to a diversity within these two families and bring evidence of the important roles of these molecules in signaling events. An example of this diversity is physical separation of two TRAPs, LAT and NTAL, which are in many aspects similar but show plasma membrane location in different microdomains in both non-activated and activated cells. Although our understanding of TEMs and TRAP-enriched domains is far from complete, pharmaceutical applications of the knowledge about these domains are under way.

Zobrazit více v PubMed

Abdala-Valencia H., Bryce P. J., Schleimer R. P., Wechsler J. B., Loffredo L. F., Cook-Mills J. M., et al. . (2015). Tetraspanin CD151 is a negative regulator of FcεRI-mediated mast cell activation. J. Immunol. 195, 1377–1387. 10.4049/jimmunol.1302874 PubMed DOI PMC

Auksorius E., Boruah B. R., Dunsby C., Lanigan P. M., Kennedy G., Neil M. A., et al. . (2008). Stimulated emission depletion microscopy with a supercontinuum source and fluorescence lifetime imaging. Opt. Lett. 33, 113–115. 10.1364/OL.33.000113 PubMed DOI

Axelrod D., Koppel D. E., Schlessinger J., Elson E., Webb W. W. (1976). Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys. J. 16, 1055–1069. 10.1016/S0006-3495(76)85755-4 PubMed DOI PMC

Barreiro O., Zamai M., Yáñez-Mó M., Tejera E., López-Romero P., Monk P. N., et al. . (2008). Endothelial adhesion receptors are recruited to adherent leukocytes by inclusion in preformed tetraspanin nanoplatforms. J. Cell Biol. 183, 527–542. 10.1083/jcb.200805076 PubMed DOI PMC

Berditchevski F. (2001). Complexes of tetraspanins with integrins: more than meets the eye. J. Cell Sci. 114, 4143–4151. PubMed

Betzig E., Patterson G. H., Sougrat R., Lindwasser O. W., Olenych S., Bonifacino J. S., et al. (2006). Imaging intracellular fluorescent proteins at nanometer resolution. Science 295, 1642–1645. 10.1126/science.1127344 PubMed DOI

Boucheix C., Rubinstein E. (2001). Tetraspanins. Cell Mol. Life Sci. 58, 1189–1205. 10.1007/PL00000933 PubMed DOI PMC

Brdičková N., Brdička T., Anděra L., Špička J., Angelisová P., Milgram S. L, et al. . (2001). Interaction between two adapter proteins, PAG and EBP50: a possible link between membrane rafts and actin cytoskeleton. FEBS Lett. 507, 133–136. 10.1016/S0014-5793(01)02955-6 PubMed DOI

Charrin S., Jouannet S., Boucheix C., Rubinstein E. (2014). Tetraspanins at a glance. J. Cell Sci. 127, 3641–3648. 10.1242/jcs.154906 PubMed DOI

Charrin S., Le Naour F., Silvie O., Milhiet P. E., Boucheix C., Rubinstein E. (2009). Lateral organization of membrane proteins: tetraspanins spin their web. Biochem. J. 420, 133–154. 10.1042/BJ20082422 PubMed DOI

Charrin S., Manié S., Billard M., Ashman L., Gerlier D., Boucheix C., et al. . (2003a). Multiple levels of interactions within the tetraspanin web. Biochem. Biophys. Res. Commun. 304, 107–112. 10.1016/S0006-291X(03)00545-X PubMed DOI

Charrin S., Manié S., Oualid M., Billard M., Boucheix C., Rubinstein E. (2002). Differential stability of tetraspanin/tetraspanin interactions: role of palmitoylation. FEBS Lett. 516, 139–144. 10.1016/S0014-5793(02)02522-X PubMed DOI

Charrin S., Manié S., Thiele C., Billard M., Gerlier D., Boucheix C., et al. . (2003b). A physical and functional link between cholesterol and tetraspanins. Eur. J. Immunol. 33, 2479–2489. 10.1002/eji.200323884 PubMed DOI

Chum T., Glatzová D., Kvíčalová Z., Malínský J., Brdička T., Cebecauer M. (2016). The role of palmitoylation and transmembrane domain in sorting of transmembrane adaptor proteins. J. Cell Sci. 129, 95–107. 10.1242/jcs.175190 PubMed DOI

Claas C., Stipp C. S., Hemler M. E. (2001). Evaluation of prototype transmembrane 4 superfamily protein complexes and their relation to lipid rafts. J. Biol. Chem. 276, 7974–7984. 10.1074/jbc.M008650200 PubMed DOI

Coffey G. P., Rajapaksa R., Liu R., Sharpe O., Kuo C. C., Krauss S. W., et al. . (2009). Engagement of CD81 induces ezrin tyrosine phosphorylation and its cellular redistribution with filamentous actin. J. Cell Sci. 122, 3137–3144. 10.1242/jcs.045658 PubMed DOI PMC

Cornez I., Taskén K. (2010). Spatiotemporal control of cyclic AMP immunomodulation through the PKA-Csk inhibitory pathway is achieved by anchoring to an Ezrin-EBP50-PAG scaffold in effector T cells. FEBS Lett. 584, 2681–2688. 10.1016/j.febslet.2010.04.056 PubMed DOI

Deng J., Yeung V. P., Tsitoura D., Dekruyff R. H., Umetsu D. T., Levy S. (2000). Allergen-induced airway hyperreactivity is diminished in CD81-deficient mice. J. Immunol. 165, 5054–5061. 10.4049/jimmunol.165.9.5054 PubMed DOI

Draberova L., Bugajev V., Potuckova L., Halova I., Bambouskova M., Polakovicova I., et al. . (2014). Transmembrane adaptor protein PAG/CBP is involved in both positive and negative regulation of mast cell signaling. Mol. Cell Biol. 34, 4285–4300. 10.1128/MCB.00983-14 PubMed DOI PMC

Dráberová L., Lebduška P., Hálová I., Tolar P., Štokrová J., Tolarová H., et al. . (2004). Signaling assemblies formed in mast cells activated via Fcε receptor I dimers. Eur. J. Immunol. 34, 2209–2219. 10.1002/eji.200322663 PubMed DOI

Draber P., Halova I., Levi-Schaffer F., Draberova L. (2011a). Transmembrane adaptor proteins in the high-affinity IgE receptor signaling. Front. Immunol. 2:95. 10.3389/fimmu.2011.00095 PubMed DOI PMC

Draber P., Halova I., Polakovicova I., Kawakami T. (2016). Signal transduction and chemotaxis in mast cells. Eur. J. Pharmacol. 778, 11–23. 10.1016/j.ejphar.2015.02.057 PubMed DOI PMC

Draber P., Stepanek O., Hrdinka M., Drobek A., Chmatal L., Mala L., et al. . (2012). LST1/A is a myeloid leukocyte-specific transmembrane adaptor protein recruiting protein tyrosine phosphatases SHP-1 and SHP-2 to the plasma membrane. J. Biol. Chem. 287, 22812–22821. 10.1074/jbc.M112.339143 PubMed DOI PMC

Draber P., Vonkova I., Stepanek O., Hrdinka M., Kucova M., Skopcova T., et al. . (2011b). SCIMP, a transmembrane adaptor protein involved in major histocompatibility complex class II signaling. Mol. Cell Biol. 31, 4550–4562. 10.1128/MCB.05817-11 PubMed DOI PMC

Draberova L., Paulenda T., Halova I., Potuckova L., Bugajev V., Bambouskova M., et al. . (2015). Ethanol inhibits high-affinity immunoglobulin E receptor (FcεRI) signaling in mast cells by suppressing the function of FcεRI-cholesterol signalosome. PLoS ONE 10:e0144596. 10.1371/journal.pone.0144596 PubMed DOI PMC

Espenel C., Margeat E., Dosset P., Arduise C., Le G. C., Royer C. A., et al. . (2008). Single-molecule analysis of CD9 dynamics and partitioning reveals multiple modes of interaction in the tetraspanin web. J. Cell Biol. 182, 765–776. 10.1083/jcb.200803010 PubMed DOI PMC

Field K. A., Holowka D., Baird B. (1995). FcεRI-mediated recruitment of p53/56lyn to detergent-resistant membrane domains accompanies cellular signaling. Proc. Natl. Acad. Sci. U.S.A. 92, 9201–9205. 10.1073/pnas.92.20.9201 PubMed DOI PMC

Fleming T. J., Donnadieu E., Song C. H., Laethem F. V., Galli S. J., Kinet J. P. (1997). Negative regulation of FcεRI-mediated degranulation by CD81. J. Exp. Med. 186, 1307–1314. 10.1084/jem.186.8.1307 PubMed DOI PMC

Gagnoux-Palacios L., Dans M., van't Hof W., Mariotti A., Pepe A., Meneguzzi G., et al. . (2003). Compartmentalization of integrin α6β4 signaling in lipid rafts. J. Cell Biol. 162, 1189–1196. 10.1083/jcb.200305006 PubMed DOI PMC

Galli S. J. (2016). The mast cell-ige paradox: from homeostasis to anaphylaxis. Am. J. Pathol. 186, 212–224. 10.1016/j.ajpath.2015.07.025 PubMed DOI PMC

Galli S. J., Grimbaldeston M., Tsai M. (2008). Immunomodulatory mast cells: negative, as well as positive, regulators of immunity. Nat. Rev. Immunol. 8, 478–486. 10.1038/nri2327 PubMed DOI PMC

Galli S. J., Tsai M. (2012). IgE and mast cells in allergic disease. Nat. Med. 18, 693–704. 10.1038/nm.2755 PubMed DOI PMC

Geisert E. E., Jr., Williams R. W., Geisert G. R., Fan L., Asbury A. M., Maecker H. T., et al. . (2002). Increased brain size and glial cell number in CD81-null mice. J. Comp. Neurol. 453, 22–32. 10.1002/cne.10364 PubMed DOI

Gilfillan A. M., Rivera J. (2009). The tyrosine kinase network regulating mast cell activation. Immunol. Rev. 228, 149–169. 10.1111/j.1600-065X.2008.00742.x PubMed DOI PMC

Glebov O. O., Nichols B. J. (2004). Lipid raft proteins have a random distribution during localized activation of the T-cell receptor. Nat. Cell Biol. 6, 238–243. 10.1038/ncb1103 PubMed DOI

Hálová I., Dráberová L., Bambousková M., Machyna M., Stegurová L., Smrž D., et al. . (2013). Cross-talk between tetraspanin CD9 and transmembrane adaptor protein non-T cell activation linker (NTAL) in mast cell activation and chemotaxis. J. Biol. Chem. 288, 9801–9814. 10.1074/jbc.M112.449231 PubMed DOI PMC

Hemler M. E. (2005). Tetraspanin functions and associated microdomains. Nat. Rev. Mol. Cell Biol. 6, 801–811. 10.1038/nrm1736 PubMed DOI

Heneberg P., Dráberová L., Bambousková M., Pompach P., Dráber P. (2010). Down-regulation of protein tyrosine phosphatases activates an immune receptor in the absence of its translocation into lipid rafts. J. Biol. Chem. 285, 12787–12802. 10.1074/jbc.M109.052555 PubMed DOI PMC

Higginbottom A., Wilkinson I., McCullough B., Lanza F., Azorsa D. O., Partridge L. J., et al. . (2000). Antibody cross-linking of human CD9 and the high-affinity immunoglobulin E receptor stimulates secretion from transfected rat basophilic leukaemia cells. Immunology 99, 546–552. 10.1046/j.1365-2567.2000.00992.x PubMed DOI PMC

Hoffmann H. J., Santos A. F., Mayorga C., Nopp A., Eberlein B., Ferrer M., et al. . (2015). The clinical utility of basophil activation testing in diagnosis and monitoring of allergic disease. Allergy 70, 1393–1405. 10.1111/all.12698 PubMed DOI

Horejsi V., Hrdinka M. (2014). Membrane microdomains in immunoreceptor signaling. FEBS Lett. 588, 2392–2397. 10.1016/j.febslet.2014.05.047 PubMed DOI

Hundt M., Harada Y., De Giorgio L., Tanimura N., Zhang W., Altman A. (2009). Palmitoylation-dependent plasma membrane transport but lipid raft-independent signaling by linker for activation of T cells. J. Immunol. 183, 1685–1694. 10.4049/jimmunol.0803921 PubMed DOI PMC

Iwaki S., Spicka J., Tkaczyk C., Jensen B. M., Furumoto Y., Charles N., et al. (2008). Kit- and FcεRI-induced differential phosphorylation of the transmembrane adaptor molecule NTAL/LAB/LAT2 allows flexibility in its scaffolding function in mast cells. Cell Signal. 20, 195–205. 10.1016/j.cellsig.2007.10.013 PubMed DOI PMC

Kaji K., Oda S., Shikano T., Ohnuki T., Uematsu Y., Sakagami J., et al. . (2000). The gamete fusion process is defective in eggs of CD9-deficient mice. Nat. Genet. 24, 279–282. 10.1038/73502 PubMed DOI

Kajiwara K., Berson E. L., Dryja T. P. (1994). Digenic retinitis pigmentosa due to mutations at the unlinked peripherin/RDS and ROM1 loci. Science 264, 1604–1608. 10.1126/science.8202715 PubMed DOI

Kajiwara K., Sandberg M. A., Berson E. L., Dryja T. P. (1993). A null mutation in the human peripherin/RDS gene in a family with autosomal dominant retinitis punctata albescens. Nat. Genet. 3, 208–212. 10.1038/ng0393-208 PubMed DOI

Kalesnikoff J., Galli S. J. (2008). New developments in mast cell biology. Nat. Immunol. 9, 1215–1223. 10.1038/ni.f.216 PubMed DOI PMC

Karamatic C. V., Burton N., Kagan A., Green C. A., Levene C., Anstee D. J., et al. . (2004). CD151, the first member of the tetraspanin (TM4) superfamily detected on erythrocytes, is essential for the correct assembly of human basement membranes in kidney and skin. Blood 104, 2217–2223. 10.1182/blood-2004-04-1512 PubMed DOI

Kawakami Y., Kawakami K., Steelant W. F., Ono M., Baek R. C., Handa K., et al. (2002). Tetraspanin CD9 is a “proteolipid, ” and its interaction with α3 integrin in microdomain is promoted by GM3 ganglioside, leading to inhibition of laminin-5-dependent cell motility. J. Biol. Chem. 277, 34349–34358. 10.1074/jbc.M200771200 PubMed DOI

Kenworthy A. K., Nichols B. J., Remmert C. L., Hendrix G. M., Kumar M., Zimmerberg J., et al. . (2004). Dynamics of putative raft-associated proteins at the cell surface. J. Cell Biol. 165, 735–746. 10.1083/jcb.200312170 PubMed DOI PMC

Kenworthy A. K., Petranova N., Edidin M. (2000). High-resolution FRET microscopy of cholera toxin B-subunit and GPI-anchored proteins in cell plasma membranes. Mol. Biol. Cell 11, 1645–1655. 10.1091/mbc.11.5.1645 PubMed DOI PMC

Kitani S., Berenstein E., Mergenhagen S., Tempst P., Siraganian R. P. (1991). A cell surface glycoprotein of rat basophilic leukemia cells close to the high affinity IgE receptor (FcεRI). Similarity to human melanoma differentiation antigen ME491. J. Biol. Chem. 266, 1903–1909. PubMed

Knobeloch K. P., Wright M. D., Ochsenbein A. F., Liesenfeld O., Löhler J., Zinkernagel R. M., et al. . (2000). Targeted inactivation of the tetraspanin CD37 impairs T-cell-dependent B-cell response under suboptimal costimulatory conditions. Mol. Cell Biol. 20, 5363–5369. 10.1128/MCB.20.15.5363-5369.2000 PubMed DOI PMC

Knol E. F., Mul F. P., Jansen H., Calafat J., Roos D. (1991). Monitoring human basophil activation via CD63 monoclonal antibody 435. J. Allergy Clin. Immunol. 88, 328–338. 10.1016/0091-6749(91)90094-5 PubMed DOI

Köberle M., Kaesler S., Kempf W., Wölbing F., Biedermann T. (2012). Tetraspanins in mast cells. Front. Immunol. 3:106. 10.3389/fimmu.2012.00106 PubMed DOI PMC

Kovářová M., Tolar P., Arudchandran R., Dráberová L., Rivera J., Dráber P. (2001). Structure-function analysis of Lyn kinase association with lipid rafts and initiation of early signaling events after Fcε receptor I aggregation. Mol. Cell Biol. 21, 8318–8328. 10.1128/MCB.21.24.8318-8328.2001 PubMed DOI PMC

Kraft S., Fleming T., Billingsley J. M., Lin S. Y., Jouvin M. H., Storz P., et al. . (2005). Anti-CD63 antibodies suppress IgE-dependent allergic reactions in vitro and in vivo. J. Exp. Med. 201, 385–396. 10.1084/jem.20042085 PubMed DOI PMC

Kraft S., Jouvin M. H., Kulkarni N., Kissing S., Morgan E. S., Dvorak A. M., et al. . (2013). The tetraspanin CD63 is required for efficient IgE-mediated mast cell degranulation and anaphylaxis. J. Immunol. 191, 2871–2878. 10.4049/jimmunol.1202323 PubMed DOI PMC

Lebduška P., Korb J., Tumová M., Heneberg P., Dráber P. (2007). Topography of signaling molecules as detected by electron microscopy on plasma membrane sheets isolated from non-adherent mast cells. J. Immunol. Methods 328, 139–151. 10.1016/j.jim.2007.08.015 PubMed DOI

Lee H., Bae S., Jang J., Choi B. W., Park C. S., Park J. S., et al. . (2013). CD53, a suppressor of inflammatory cytokine production, is associated with population asthma risk via the functional promoter polymorphism -1560 C>T. Biochim. Biophys. Acta 1830, 3011–3018. 10.1016/j.bbagen.2012.12.030 PubMed DOI

Le Naour F., Rubinstein E., Jasmin C., Prenant M., Boucheix C. (2000). Severely reduced female fertility in CD9-deficient mice. Science 287, 319–321. 10.1126/science.287.5451.319 PubMed DOI

Levental I., Lingwood D., Grzybek M., Coskun U., Simons K. (2010). Palmitoylation regulates raft affinity for the majority of integral raft proteins. Proc. Natl. Acad. Sci. U.S.A. 107, 22050–22054. 10.1073/pnas.1016184107 PubMed DOI PMC

Ley K., Zhang H. (2008). Dances with leukocytes: how tetraspanin-enriched microdomains assemble to form endothelial adhesive platforms. J. Cell Biol. 183, 375–376. 10.1083/jcb.200809173 PubMed DOI PMC

Lillemeier B. F., Mörtelmaier M. A., Forstner M. B., Huppa J. B., Groves J. T., Davis M. M. (2016). TCR and Lat are expressed on separate protein islands on T cell membranes and concatenate during activation. Nat. Immunol. 11, 90–96. 10.1038/ni.1832 PubMed DOI PMC

Liu Y., Zhang W. (2008). Identification of a new transmembrane adaptor protein that constitutively binds Grb2 in B cells. J. Leukoc. Biol. 84, 842–851. 10.1189/jlb.0208087 PubMed DOI PMC

Maecker H. T., Do M. S., Levy S. (1998). CD81 on B cells promotes interleukin 4 secretion and antibody production during T helper type 2 immune responses. Proc. Natl. Acad. Sci. U.S.A. 95, 2458–2462. 10.1073/pnas.95.5.2458 PubMed DOI PMC

Maecker H. T., Levy S. (1997). Normal lymphocyte development but delayed humoral immune response in CD81-null mice. J. Exp. Med. 185, 1505–1510. 10.1084/jem.185.8.1505 PubMed DOI PMC

Marshall J. S. (2004). Mast-cell responses to pathogens. Nat. Rev. Immunol. 4, 787–799. 10.1038/nri1460 PubMed DOI

McClatchey A. I. (2014). ERM proteins at a glance. J. Cell Sci. 127, 3199–3204. 10.1242/jcs.098343 PubMed DOI PMC

McIntosh A. L., Senthivinayagam S., Moon K. C., Gupta S., Lwande J. S., Murphy C. C., et al. . (2012). Direct interaction of Plin2 with lipids on the surface of lipid droplets: a live cell FRET analysis. Am. J. Physiol Cell Physiol. 303, C728–C742. 10.1152/ajpcell.00448.2011 PubMed DOI PMC

Metz M., Piliponsky A. M., Chen C. C., Lammel V., Abrink M., Pejler G., et al. . (2006). Mast cells can enhance resistance to snake and honeybee venoms. Science 313, 526–530. 10.1126/science.1128877 PubMed DOI

Miyado K., Yamada G., Yamada S., Hasuwa H., Nakamura Y., Ryu F., et al. . (2000). Requirement of CD9 on the egg plasma membrane for fertilization. Science 287, 321–324. 10.1126/science.287.5451.321 PubMed DOI

Ohtake H., Ichikawa N., Okada M., Yamashita T. (2002). Cutting Edge: Transmembrane phosphoprotein Csk-binding protein/phosphoprotein associated with glycosphingolipid-enriched microdomains as a negative feedback regulator of mast cell signaling through the FcεRI. J. Immunol. 168, 2087–2090. 10.4049/jimmunol.168.5.2087 PubMed DOI

Otáhal P., Angelisová P., Hrdinka M., Brdička T., Novák P., Drbal K., et al. . (2010). A new type of membrane raft-like microdomains and their possible involvement in TCR signaling. J. Immunol. 184, 3689–3696. 10.4049/jimmunol.0902075 PubMed DOI

Owen D. M., Williamson D. J., Magenau A., Gaus K. (2012). Sub-resolution lipid domains exist in the plasma membrane and regulate protein diffusion and distribution. Nat. Commun. 10.1038/ncomms2273 PubMed DOI

Peng L., Li J. Z., Wu H. Z., Wang M. J. (1997). The activation of human platelets mediated by two monoclonal antibodies raised against CD9. Thromb. Res. 87, 65–73. 10.1016/S0049-3848(97)00105-9 PubMed DOI

Peng W. M., Yu C. F., Kolanus W., Mazzocca A., Bieber T., Kraft S., et al. (2011). Tetraspanins CD9 and CD81 are molecular partners of trimeric FcεRI on human antigen-presenting cells. Allergy 66, 605–611. 10.1111/j.1398-9995.2010.02524.x PubMed DOI

Qi J. C., Stevens R. L., Wadley R., Collins A., Cooley M., Naif H. M., et al. . (2002). IL-16 regulation of human mast cells/basophils and their susceptibility to HIV-1. J. Immunol. 168, 4127–4134. 10.4049/jimmunol.168.8.4127 PubMed DOI

Qi J. C., Wang J., Mandadi S., Tanaka K., Roufogalis B. D., Madigan M. C., et al. . (2006). Human and mouse mast cells use the tetraspanin CD9 as an alternate interleukin-16 receptor. Blood 107, 135–142. 10.1182/blood-2005-03-1312 PubMed DOI PMC

Resh M. D. (1999). Fatty acylation of proteins: new insights into membrane targeting of myristoylated and palmitoylated proteins. Biochim. Biophys. Acta. 1451, 1–16. 10.1016/S0167-4889(99)00075-0 PubMed DOI

Risinger J. I., Custer M., Feigenbaum L., Simpson R. M., Hoover S. B., Webster J. D., et al. . (2014). Normal viability of Kai1/CD82 deficient mice. Mol. Carcinog. 53, 610–624. 10.1002/mc.22009 PubMed DOI PMC

Rivera J. (2002). Molecular adapters in FcεRI signaling and the allergic response. Curr. Opin. Immunol. 14, 688–693. 10.1016/S0952-7915(02)00396-5 PubMed DOI

Rivera J. (2005). NTAL/LAB and LAT: a balancing act in mast-cell activation and function. Trends Immunol. 26, 119–122. 10.1016/j.it.2005.01.001 PubMed DOI

Rouquette-Jazdanian A. K., Kortum R. L., Li W., Merrill R. K., Nguyen P. H., Samelson L. E., et al. . (2015). miR-155 controls lymphoproliferation in LAT mutant mice by restraining T-cell apoptosis via SHIP-1/mTOR and PAK1/FOXO3/BIM pathways. PLoS ONE 10:e0131823. 10.1371/journal.pone.0131823 PubMed DOI PMC

Rubinstein E., Ziyyat A., Prenant M., Wrobel E., Wolf J. P., Levy S., et al. . (2006). Reduced fertility of female mice lacking CD81. Dev. Biol. 290, 351–358. 10.1016/j.ydbio.2005.11.031 PubMed DOI

Rust M. J., Bates M., Zhuang X. (2006). Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793–795. 10.1038/nmeth929 PubMed DOI PMC

Sachs N., Kreft M., van den Bergh Weerman M. A., Beynon A. J., Peters T. A., Weening J. J., et al. . (2006). Kidney failure in mice lacking the tetraspanin CD151. J. Cell Biol. 175, 33–39. 10.1083/jcb.200603073 PubMed DOI PMC

Saitoh S., Arudchandran R., Manetz T. S., Zhang W., Sommers C. L., Love P. E., et al. (2000). LAT is essential for FcεRI-mediated mast cell activation. Immunity. 12, 525–535. 10.1016/S1074-7613(00)80204-6 PubMed DOI

Sala-Valdés M., Ursa A., Charrin S., Rubinstein E., Hemler M. E., Sánchez-Madrid F., et al. . (2006). EWI-2 and EWI-F link the tetraspanin web to the actin cytoskeleton through their direct association with ezrin-radixin-moesin proteins. J. Biol. Chem. 281, 19665–19675. 10.1074/jbc.M602116200 PubMed DOI

Schäfer T., Starkl P., Allard C., Wolf R. M., Schweighoffer T. (2010). A granular variant of CD63 is a regulator of repeated human mast cell degranulation. Allergy 65, 1242–1255. 10.1111/j.1398-9995.2010.02350.x PubMed DOI

Schröder J., Lüllmann-Rauch R., Himmerkus N., Pleines I., Nieswandt B., Orinska Z., et al. . (2009). Deficiency of the tetraspanin CD63 associated with kidney pathology but normal lysosomal function. Mol. Cell Biol. 29, 1083–1094. 10.1128/MCB.01163-08 PubMed DOI PMC

Sheets E. D., Holowka D., Baird B. (1999). Critical role for cholesterol in Lyn-mediated tyrosine phosphorylation of FcεRI and their association with detergent-resistant membranes. J. Cell Biol. 145, 877–887. 10.1083/jcb.145.4.877 PubMed DOI PMC

Shelby S. A., Holowka D., Baird B., Veatch S. L. (2013). Distinct stages of stimulated FcεRI receptor clustering and immobilization are identified through superresolution imaging. Biophys. J. 105, 2343–2354. 10.1016/j.bpj.2013.09.049 PubMed DOI PMC

Sherman E., Barr V., Manley S., Patterson G., Balagopalan L., Akpan I., et al. . (2011). Functional nanoscale organization of signaling molecules downstream of the T cell antigen receptor. Immunity 35, 705–720. 10.1016/j.immuni.2011.10.004 PubMed DOI PMC

Simons K., Gerl M. J. (2010). Revitalizing membrane rafts: new tools and insights. Nat. Rev. Mol. Cell Biol. 11, 688–699. 10.1038/nrm2977 PubMed DOI

Simons K., Ikonen E. (1997). Functional rafts in cell membranes. Nature 387, 569–572. 10.1038/42408 PubMed DOI

Simons K., Sampaio J. L. (2011). Membrane organization and lipid rafts. Cold Spring Harb. Perspect. Biol. 3:a004697. 10.1101/cshperspect.a004697 PubMed DOI PMC

Singer S. J., Nicolson G. L. (1972). The fluid mosaic model of the structure of cell membranes. Science 175, 720–731. 10.1126/science.175.4023.720 PubMed DOI

Stepanek O., Draber P., Horejsi V. (2014). Palmitoylated transmembrane adaptor proteins in leukocyte signaling. Cell Signal. 26, 895–902. 10.1016/j.cellsig.2014.01.007 PubMed DOI

Surviladze Z., Dráberová L., Kovářová M., Boubelík M., Dráber P. (2001). Differential sensitivity to acute cholesterol lowering of activation mediated via the high-affinity IgE receptor and Thy-1 glycoprotein. Eur. J. Immunol. 31, 1–10. 10.1002/1521-4141(200101)31:1<1::AID-IMMU1>3.0.CO;2-W PubMed DOI

Takeda Y., Kazarov A. R., Butterfield C. E., Hopkins B. D., Benjamin L. E., Kaipainen A., et al. . (2007). Deletion of tetraspanin Cd151 results in decreased pathologic angiogenesis in vivo and in vitro. Blood 109, 1524–1532. 10.1182/blood-2006-08-041970 PubMed DOI PMC

Tarrant J. M., Robb L., van Spriel A. B., Wright M. D. (2003). Tetraspanins: molecular organisers of the leukocyte surface. Trends Immunol. 24, 610–617. 10.1016/j.it.2003.09.011 PubMed DOI

Todeschini A. R., Dos Santos J. N., Handa K., Hakomori S. I. (2007). Ganglioside GM2-tetraspanin CD82 complex inhibits met and its cross-talk with integrins, providing a basis for control of cell motility through glycosynapse. J. Biol. Chem. 282, 8123–8133. 10.1074/jbc.M611407200 PubMed DOI

Treanor B., Batista F. D. (2010). Organisation and dynamics of antigen receptors: implications for lymphocyte signalling. Curr. Opin. Immunol. 22, 299–307. 10.1016/j.coi.2010.03.009 PubMed DOI

Tumová M., Koffer A., Šimíček M., Dráberová L., Dráber P. (2010). The transmembrane adaptor protein NTAL signals to mast cell cytoskeleton via the small GTPase Rho. Eur. J. Immunol. 40, 3235–3245. 10.1002/eji.201040403 PubMed DOI

Valent P., Schernthaner G. H., Sperr W. R., Fritsch G., Agis H., Willheim M., et al. . (2001). Variable expression of activation-linked surface antigens on human mast cells in health and disease. Immunol. Rev. 179, 74–81. 10.1034/j.1600-065X.2001.790108.x PubMed DOI

van Meer G., Voelker D. R., Feigenson G. W. (2008). Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9, 112–124. 10.1038/nrm2330 PubMed DOI PMC

van Zelm M. C., Smet J., Adams B., Mascart F., Schandene L., Janssen F., et al. . (2010). CD81 gene defect in humans disrupts CD19 complex formation and leads to antibody deficiency. J. Clin. Invest 120, 1265–1274. 10.1172/JCI39748 PubMed DOI PMC

Veatch S. L., Chiang E. N., Sengupta P., Holowka D. A., Baird B. A. (2012). Quantitative nanoscale analysis of IgE-FcεRI clustering and coupling to early signaling proteins. J. Phys. Chem. B 116, 6923–6935. 10.1021/jp300197p PubMed DOI PMC

Volná P., Lebduška P., Dráberová L., Šímová S., Heneberg P., Boubelík M., et al. . (2004). Negative regulation of mast cell signaling and function by the adaptor LAB/NTAL. J. Exp. Med. 200, 1001–1013. 10.1084/jem.20041213 PubMed DOI PMC

Wang Y., Horvath O., Hamm-Baarke A., Richelme M., Gregoire C., Guinamard R., et al. . (2005). Single and combined deletions of the NTAL/LAB and LAT adaptors minimally affect B-cell development and function. Mol. Cell Biol. 25, 4455–4465. 10.1128/MCB.25.11.4455-4465.2005 PubMed DOI PMC

Williamson D. J., Owen D. M., Rossy J., Magenau A., Wehrmann M., Gooding J. J., et al. (2011). Pre-existing clusters of the adaptor Lat do not participate in early T cell signaling events. Nat. Immunol. 12, 655–662. 10.1038/ni.2049 PubMed DOI

Wilson B. S., Pfeiffer J. R., Oliver J. M. (2002). FcεRI signaling observed from the inside of the mast cell membrane. Mol. Immunol. 38, 1259–1268. 10.1016/S0161-5890(02)00073-1 PubMed DOI

Wilson B. S., Pfeiffer J. R., Surviladze Z., Gaudet E. A., Oliver J. M. (2001). High resolution mapping of mast cell membranes reveals primary and secondary domains of FcεRI and LAT. J. Cell Biol. 154, 645–658. 10.1083/jcb.200104049 PubMed DOI PMC

Wright M. D., Geary S. M., Fitter S., Moseley G. W., Lau L. M., Sheng K. C., et al. . (2004). Characterization of mice lacking the tetraspanin superfamily member CD151. Mol. Cell Biol. 24, 5978–5988. 10.1128/MCB.24.13.5978-5988.2004 PubMed DOI PMC

Xavier R., Brennan T., Li Q., McCormack C., Seed B. (1998). Membrane compartmentation is required for efficient T cell activation. Immunity 8, 723–732. 10.1016/S1074-7613(00)80577-4 PubMed DOI

Yang X., Claas C., Kraeft S. K., Chen L. B., Wang Z., Kreidberg J. A., et al. . (2002). Palmitoylation of tetraspanin proteins: modulation of CD151 lateral interactions, subcellular distribution, and integrin-dependent cell morphology. Mol. Biol. Cell 13, 767–781. 10.1091/mbc.01-05-0275 PubMed DOI PMC

Yang X., Kovalenko O. V., Tang W., Claas C., Stipp C. S., Hemler M. E. (2004). Palmitoylation supports assembly and function of integrin-tetraspanin complexes. J. Cell Biol. 167, 1231–1240. 10.1083/jcb.200404100 PubMed DOI PMC

Zemni R., Bienvenu T., Vinet M. C., Sefiani A., Carrié A., Billuart P., et al. . (2000). A new gene involved in X-linked mental retardation identified by analysis of an X;2 balanced translocation. Nat. Genet. 24, 167–170. 10.1038/72829 PubMed DOI

Zhang J., Fei B., Wang Q., Song M., Yin Y., Zhang B., et al. . (2014). MicroRNA-638 inhibits cell proliferation, invasion and regulates cell cycle by targeting tetraspanin 1 in human colorectal carcinoma. Oncotarget 5, 12083–12096. 10.18632/oncotarget.2499 PubMed DOI PMC

Zhang W., Sommers C. L., Burshtyn D. N., Stebbins C. C., DeJarnette J. B., Trible R. P., et al. . (1999). Essential role of LAT in T cell development. Immunity 10, 323–332. 10.1016/S1074-7613(00)80032-1 PubMed DOI

Zhang W., Trible R. P., Samelson L. E. (1998). LAT palmitoylation: its essential role in membrane microdomain targeting and tyrosine phosphorylation during T cell activation. Immunity 9, 239–246. 10.1016/S1074-7613(00)80606-8 PubMed DOI

Zhu M., Granillo O., Wen R., Yang K., Dai X., Wang D., et al. . (2005a). Negative regulation of lymphocyte activation by the adaptor protein LAX. J. Immunol. 174, 5612–5619. 10.4049/jimmunol.174.9.5612 PubMed DOI

Zhu M., Janssen E., Leung K., Zhang W. (2002). Molecular cloning of a novel gene encoding a membrane-associated adaptor protein (LAX) in lymphocyte signaling. J. Biol. Chem. 277, 46151–46158. 10.1074/jbc.M208946200 PubMed DOI

Zhu M., Liu Y., Koonpaew S., Granillo O., Zhang W. (2004). Positive and negative regulation of FcεRI-mediated signaling by the adaptor protein LAB/NTAL. J. Exp. Med. 200, 991–1000. 10.1084/jem.20041223 PubMed DOI PMC

Zhu M., Rhee I., Liu Y., Zhang W. (2006). Negative regulation of FcεRI-mediated signaling and mast cell function by the adaptor protein LAX. J. Biol. Chem. 281, 18408–18413. 10.1074/jbc.M601535200 PubMed DOI

Zhu M., Shen S., Liu Y., Granillo O., Zhang W. (2005b). Cutting edge: localization of linker for activation of T cells to lipid rafts is not essential in T cell activation and development. J. Immunol. 174, 31–35. 10.4049/jimmunol.174.1.31 PubMed DOI

Zöller M. (2009). Tetraspanins: push and pull in suppressing and promoting metastasis. Nat. Rev. Cancer 9, 40–55. 10.1038/nrc2543 PubMed DOI

Zuidscherwoude M., Göttfert F., Dunlock V. M., Figdor C. G., van den Bogaart G., van Spriel A. B. (2015). The tetraspanin web revisited by super-resolution microscopy. Sci. Rep. 5, 12201. 10.1038/srep12201 PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Tetraspanins in the regulation of mast cell function

. 2020 Aug ; 209 (4) : 531-543. [epub] 20200607

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...