Transmembrane adaptor proteins in the high-affinity IgE receptor signaling

. 2011 ; 2 () : 95. [epub] 20120111

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid22566884

Aggregation of the high-affinity IgE receptor (FcεRI) initiates a cascade of signaling events leading to release of preformed inflammatory and allergy mediators and de novo synthesis and secretion of cytokines and other compounds. The first biochemically well defined step of this signaling cascade is tyrosine phosphorylation of the FcεRI subunits by Src family kinase Lyn, followed by recruitment and activation of spleen tyrosine kinase (Syk). Activity of Syk is decisive for the formation of multicomponent signaling assemblies, the signalosomes, in the vicinity of the receptors. Formation of the signalosomes is dependent on the presence of transmembrane adaptor proteins (TRAPs). These proteins are characterized by a short extracellular domain, a single transmembrane domain, and a cytoplasmic tail with various motifs serving as anchors for cytoplasmic signaling molecules. In mast cells five TRAPs have been identified [linker for activation of T cells (LAT), non-T cell activation linker (NTAL), linker for activation of X cells (LAX), phosphoprotein associated with glycosphingolipid-enriched membrane microdomains (PAG), and growth factor receptor-bound protein 2 (Grb2)-binding adaptor protein, transmembrane (GAPT)]; engagement of four of them (LAT, NTAL, LAX, and PAG) in FcεRI signaling has been documented. Here we discuss recent progress in the understanding of how TRAPs affect FcεRI-mediated mast cell signaling. The combined data indicate that individual TRAPs have irreplaceable roles in important signaling events such as calcium response, degranulation, cytokines production, and chemotaxis.

Zobrazit více v PubMed

Alvarez-Errico D., Lessmann E., Rivera J. (2009). Adapters in the organization of mast cell signaling. Immunol. Rev. 232, 195–21710.1111/j.1600-065X.2009.00834.x PubMed DOI PMC

Balagopalan L., Ashwell B. A., Bernot K. M., Akpan I. O., Quasba N., Barr V. A., Samelson L. (2011). Enhanced T-cell signaling in cells bearing linker for activation of T-cell (LAT) molecules resistant to ubiquitylation. Proc. Natl. Acad. Sci. U.S.A. 108, 2885–289010.1073/pnas.1007098108 PubMed DOI PMC

Balagopalan L., Coussens N. P., Sherman E., Samelson L. E., Sommers C. L. (2010). The LAT story: a tale of cooperativity, coordination, and choreography. Cold Spring Harb. Perspect. Biol. 2, a005512.10.1101/cshperspect.a005512 PubMed DOI PMC

Bieber T., de la Salle H., Wollenberg A., Hakimi J., Chizzonite R., Ring J., Hanau D., de la Salle C. (1992). Human epidermal Langerhans cells express the high affinity receptor for immunoglobulin E (FcεRI). J. Exp. Med. 175, 1285–129010.1084/jem.175.5.1285 PubMed DOI PMC

Brdicka T., Imrich M., Angelisová P., Brdicková N., Horváth O., Špicka J., Hilgert I., Lusková P., Dráber P., Novák P., Engels N., Wienands J., Simeoni L., Österreicher J., Aguado E., Malissen M., Schraven B., Horejší V. (2002). Non-T cell activation linker (NTAL): a transmembrane adaptor protein involved in immunoreceptor signaling. J. Exp. Med. 196, 1617–162610.1084/jem.20021405 PubMed DOI PMC

Brdicka T., Pavlištová D., Leo A., Bruyns E., Korínek V., Angelisová P., Scherer J., Shevchenko A., Shevchenko A., Hilgert I., Cerný J., Drbal K., Kuramitsu Y., Kornacker B., Horejší V., Schraven B. (2000). Phosphoprotein associated with glycosphingolipid-enriched microdomains (PAG), a novel ubiquitously expressed transmembrane adaptor protein, binds the protein tyrosine kinase Csk and is involved in regulation of T cell activation. J. Exp. Med. 191, 1591–160410.1084/jem.191.9.1591 PubMed DOI PMC

Bubeck W. J., Fu C., Jackman J. K., Flotow H., Wilkinson S. E., Williams D. H., Johnson R., Kong G., Chan A. C., Findell P. R. (1996). Phosphorylation of SLP-76 by the ZAP-70 protein-tyrosine kinase is required for T-cell receptor function. J. Biol. Chem. 271, 19641–1964410.1074/jbc.271.33.19641 PubMed DOI

Buday L., Egan S. E., Rodriguez V. P., Cantrell D. A., Downward J. (1994). A complex of Grb2 adaptor protein, Sos exchange factor, and a 36-kDa membrane-bound tyrosine phosphoprotein is implicated in ras activation in T cells. J. Biol. Chem. 269, 9019–9023 PubMed

Bugajev V., Bambousková M., Dráberová L., Dráber P. (2010). What precedes the initial tyrosine phosphorylation of the high affinity IgE receptor in antigen-activated mast cell? FEBS Lett. 584, 4949–495510.1016/j.febslet.2010.08.045 PubMed DOI

Carroll-Portillo A., Spendier K., Pfeiffer J., Griffiths G., Li H., Lidke K. A., Oliver J. M., Lidke D. S., Thomas J. L., Wilson B. S., Timlin J. A. (2010). Formation of a mast cell synapse: FcεRI membrane dynamics upon binding mobile or immobilized ligands on surfaces. J. Immunol. 184, 1328–133810.4049/jimmunol.0903071 PubMed DOI PMC

Dráber P., Dráberová L. (2005). Lifting the fog in store-operated Ca2+ entry. Trends Immunol. 26, 621–62410.1016/j.it.2005.09.006 PubMed DOI

Draber P., Vonkova I., Stepanek O., Hrdinka M., Kucova M., Skopcova T., Otahal P., Angelisova P., Horejsi V., Yeung M., Weiss A., Brdicka T. (2011). SCIMP, a transmembrane adaptor protein involved in major histocompatibility complex class II signaling. Mol. Cell Biol. 31, 4550–456210.1128/MCB.05817-11 PubMed DOI PMC

Dráberová L., Lebduška P., Hálová I., Tolar P., Štokrová J., Tolarová H., Korb J., Dráber P. (2004). Signaling assemblies formed in mast cells activated via Fcε receptor I dimers. Eur. J. Immunol. 34, 2209–221910.1002/eji.200322663 PubMed DOI

Dráberová L., Shaik G. M., Volná P., Heneberg P., Tumová M., Lebduška P., Korb J., Dráber P. (2007). Regulation of Ca2+ signaling in mast cells by tyrosine-phosphorylated and unphosphorylated non-T cell activation linker. J. Immunol. 179, 5169–5180 PubMed

Eiseman E., Bolen J. B. (1992). Engagement of the high-affinity IgE receptor activates src protein-related tyrosine kinases. Nature 355, 78–8010.1038/355078a0 PubMed DOI

Facchetti F., Chan J. K., Zhang W., Tironi A., Chilosi M., Parolini S., Notarangelo L. D., Samelson L. E. (1999). Linker for activation of T cells (LAT), a novel immunohistochemical marker for T cells, NK cells, mast cells, and megakaryocytes: evaluation in normal and pathological conditions. Am. J. Pathol. 154, 1037–104610.1016/S0002-9440(10)65261-3 PubMed DOI PMC

Fernandez-Suarez M., Ting A. Y. (2008). Fluorescent probes for super-resolution imaging in living cells. Nat. Rev. Mol. Cell Biol. 9, 929–94310.1038/nrm2531 PubMed DOI

Field K. A., Holowka D., Baird B. (1995). FcεRI-mediated recruitment of p53/56lyn to detergent-resistant membrane domains accompanies cellular signaling. Proc. Natl. Acad. Sci. U.S.A. 92, 9201–920510.1073/pnas.92.20.9201 PubMed DOI PMC

Finco T. S., Kadlecek T., Zhang W., Samelson L. E., Weiss A. (1998). LAT is required for TCR-mediated activation of PLCγ1 and the Ras pathway. Immunity 9, 617–62610.1016/S1074-7613(00)80659-7 PubMed DOI

Fuller D. M., Zhang W. (2009). Regulation of lymphocyte development and activation by the LAT family of adapter proteins. Immunol. Rev. 232, 72–8310.1111/j.1600-065X.2009.00828.x PubMed DOI PMC

Fuller D. M., Zhu M., Ou-Yang C. W., Sullivan S. A., Zhang W. (2011). A tale of two TRAPs: LAT and LAB in the regulation of lymphocyte development, activation, and autoimmunity. Immunol. Res. 49, 97–10810.1007/s12026-010-8197-3 PubMed DOI PMC

Ganguly S., Grodzki C., Sugden D., Møller M., Odom S., Gaildrat P., Gery I., Siraganian R. P., Rivera J., Klein D. C. (2007). Neural adrenergic/cyclic AMP regulation of the immunoglobulin E receptor α-subunit expression in the mammalian pinealocyte: a neuroendocrine/immune response link? J. Biol. Chem. 282, 32758–3276410.1074/jbc.M705950200 PubMed DOI

Gilfillan A. M., Tkaczyk C. (2006). Integrated signalling pathways for mast-cell activation. Nat. Rev. Immunol. 6, 218–23010.1038/nri1782 PubMed DOI

Gilliland L. K., Schieven G. L., Norris N. A., Kanner S. B., Aruffo A., Ledbetter J. A. (1992). Lymphocyte lineage-restricted tyrosine-phosphorylated proteins that bind PLCγ1 SH2 domains. J. Biol. Chem. 267, 13610–13616 PubMed

Gounni A. S., Lamkhioued B., Ochiai K., Tanaka Y., Delaporte E., Capron A., Kinet J. P., Capron M. (1994). High-affinity IgE receptor on eosinophils is involved in defence against parasites. Nature 367, 183–18610.1038/367183a0 PubMed DOI

Hendricks-Taylor L. R., Motto D. G., Zhang J., Siraganian R. P., Koretzky G. A. (1997). SLP-76 is a substrate of the high affinity IgE receptor-stimulated protein tyrosine kinases in rat basophilic leukemia cells. J. Biol. Chem. 272, 1363–136710.1074/jbc.272.2.1363 PubMed DOI

Heneberg P., Dráberová L., Bambousková M., Pompach P., Dráber P. (2010). Down-regulation of protein tyrosine phosphatases activates an immune receptor in the absence of its translocation into lipid rafts. J. Biol. Chem. 285, 12787–1280210.1074/jbc.M109.052555 PubMed DOI PMC

Heneberg P., Lebduška P., Dráberová L., Korb J., Dráber P. (2006). Topography of plasma membrane microdomains and its consequences for mast cell signaling. Eur. J. Immunol. 36, 2795–280610.1002/eji.200636159 PubMed DOI

Horejší V., Zhang W., Schraven B. (2004). Transmembrane adaptor proteins: organizers of immunoreceptor signalling. Nat. Rev. Immunol. 4, 603–61610.1038/nri1414 PubMed DOI

Ishiai M., Kurosaki M., Inabe K., Chan A. C., Sugamura K., Kurosaki T. (2000). Involvement of LAT, Gads, and Grb2 in compartmentation of SLP-76 to the plasma membrane. J. Exp. Med. 192, 847–85610.1084/jem.192.6.847 PubMed DOI PMC

Ishmael S., MacGlashan D., Jr. (2009). Early signal protein expression profiles in basophils: a population study. J. Leukoc. Biol. 86, 313–32510.1189/jlb.1208724 PubMed DOI

Iwaki S., Spicka J., Tkaczyk C., Jensen B. M., Furumoto Y., Charles N., Kovarova M., Rivera J., Horejsi V., Metcalfe D. D., Gilfillan A. M. (2008). Kit- and FcεRI-induced differential phosphorylation of the transmembrane adaptor molecule NTAL/LAB/LAT2 allows flexibility in its scaffolding function in mast cells. Cell. Signal. 20, 195–20510.1016/j.cellsig.2007.10.013 PubMed DOI PMC

Janssen E., Zhu M., Zhang W., Koonpaew S., Zhang W. (2003). LAB: a new membrane-associated adaptor molecule in B cell activation. Nat. Immunol. 4, 117–12310.1038/nrm1018 PubMed DOI

Joseph M., Gounni A. S., Kusnierz J. P., Vorng H., Sarfati M., Kinet J. P., Tonnel A. B., Capron A., Capron M. (1997). Expression and functions of the high-affinity IgE receptor on human platelets and megakaryocyte precursors. Eur. J. Immunol. 27, 2212–221810.1002/eji.1830270914 PubMed DOI

June C. H., Fletcher M. C., Ledbetter J. A., Samelson L. E. (1990). Increase in tyrosine phosphorylation are detectable before phospholipase C activation after T cell receptor stimulation. J. Immunol. 144, 1591–1599 PubMed

Kambayashi T., Okumura M., Baker R. G., Hsu C. J., Baumgart T., Zhang W., Koretzky G. A. (2010). Independent and cooperative roles of adaptor molecules in proximal signaling during FcεRI-mediated mast cell activation. Mol. Cell Biol. 30, 4188–419610.1128/MCB.00305-10 PubMed DOI PMC

Kawabuchi M., Satomi Y., Takao T., Shimonishi Y., Nada S., Nagai K., Tarakhovsky A., Okada M. (2000). Transmembrane phosphoprotein Cbp regulates the activities of Src-family tyrosine kinases. Nature 404, 999–100310.1038/35010121 PubMed DOI

Kinet J. P. (1999). The high-affinity IgE receptor (FcεRI): from physiology to pathology. Annu. Rev. Immunol. 17, 931–97210.1146/annurev.immunol.17.1.931 PubMed DOI

Kitaura J., Kawakami Y., Maeda-Yamamoto M., Horejsi V., Kawakami T. (2007). Dysregulation of Src family kinases in mast cells from epilepsy-resistant ASK versus epilepsy-prone EL mice. J. Immunol. 178, 455–462 PubMed

Lebduška P., Korb J., Tumová M., Heneberg P., Dráber P. (2007). Topography of signaling molecules as detected by electron microscopy on plasma membrane sheets isolated from non-adherent mast cells. J. Immunol. Methods 328, 139–15110.1016/j.jim.2007.08.015 PubMed DOI

Liu S. K., Fang N., Koretzky G. A., McGlade C. J. (1999). The hematopoietic-specific adaptor protein gads functions in T-cell signaling via interactions with the SLP-76 and LAT adaptors. Curr. Biol. 9, 67–7510.1016/S0960-9822(00)80061-5 PubMed DOI

Liu Y., Zhang W. (2008). Identification of a new transmembrane adaptor protein that constitutively binds Grb2 in B cells. J. Leukoc. Biol. 84, 842–85110.1189/jlb.0208087 PubMed DOI PMC

Malbec O., Malissen M., Isnardi I., Lesourne R., Mura A.-M., Fridman W. H., Malissen B., Daëron M. (2004). Linker for activation of T cells integrates positive and negative signaling in mast cells. J. Immunol. 173, 5086–5094 PubMed

Maurer D., Fiebiger E., Reininger B., Wolff-Winiski B., Jouvin M. H., Kilgus O., Kinet J. P., Stingl G. (1994). Expression of functional high affinity immunoglobulin E receptors (FcεRI) on monocytes of atopic individuals. J. Exp. Med. 179, 745–75010.1084/jem.179.2.745 PubMed DOI PMC

Maurer D., Fiebiger S., Ebner C., Reininger B., Fischer G. F., Wichlas S., Jouvin M. H., Schmitt-Egenolf M., Kraft D., Kinet J. P., Stingl G. (1996). Peripheral blood dendritic cells express FcεRI as a complex composed of FcεRIα- and FcεRIγ-chains and can use this receptor for IgE-mediated allergen presentation. J. Immunol. 157, 607–616 PubMed

Ohtake H., Ichikawa N., Okada M., Yamashita T. (2002). Cutting edge: transmembrane phosphoprotein Csk-binding protein/phosphoprotein associated with glycosphingolipid-enriched microdomains as a negative feedback regulator of mast cell signaling through the FcεRI. J. Immunol. 168, 2087–2090 PubMed

Oliver J. M., Kepley C. L., Ortega E., Wilson B. S. (2000). Immunologically mediated signaling in basophils and mast cells: finding therapeutic targets for allergic diseases in the human FcεR1 signaling pathway. Immunopharmacology 48, 269–28110.1016/S0162-3109(00)00224-1 PubMed DOI

Oya K., Wang J., Watanabe Y., Koga R., Watanabe T. (2003). Appearance of the LAT protein at an early stage of B-cell development and its possible role. Immunology 109, 351–35910.1046/j.1365-2567.2003.01671.x PubMed DOI PMC

Paz P. E., Wang S., Clarke H., Lu X., Stokoe D., Abo A. (2001). Mapping the Zap-70 phosphorylation sites on LAT (linker for activation of T cells) required for recruitment and activation of signalling proteins in T cells. Biochem. J. 356, 461–47110.1042/0264-6021:3560461 PubMed DOI PMC

Pribluda V. S., Pribluda C., Metzger H. (1994). Transphosphorylation as the mechanism by which the high-affinity receptor for IgE is phosphorylated upon aggregation. Proc. Natl. Acad. Sci. U.S.A. 91, 11246–1125010.1073/pnas.91.23.11246 PubMed DOI PMC

Roget K., Malissen M., Malbec O., Malissen B., Daëron M. (2008). Non-T cell activation linker promotes mast cell survival by dampening the recruitment of SHIP1 by linker for activation of T Cells. J. Immunol. 180, 3689–3698 PubMed

Saitoh S., Arudchandran R., Manetz T. S., Zhang W., Sommers C. L., Love P. E., Rivera J., Samelson L. E. (2000). LAT is essential for FcεRI-mediated mast cell activation. Immunity 12, 525–53510.1016/S1074-7613(00)80204-6 PubMed DOI

Saitoh S. I., Odom S., Gomez G., Sommers C. L., Young H. A., Rivera J., Samelson L. E. (2003). The four distal tyrosines are required for LAT-dependent signaling in FcεRI-mediated mast cell activation. J. Exp. Med. 198, 831–84310.1084/jem.20030574 PubMed DOI PMC

Sauer B. (1998). Inducible gene targeting in mice using the Cre/lox system. Methods 14, 381–39210.1006/meth.1998.0593 PubMed DOI

Scharenberg A. M., El Hillal O., Fruman D. A., Beitz L. O., Li Z., Lin S., Gout I., Cantley L. C., Rawlings D. J., Kinet J. P. (1998). Phosphatidylinositol-3,4,5-trisphosphate (PtdIns-3,4,5-P3)/Tec kinase-dependent calcium signaling pathway: a target for SHIP-mediated inhibitory signals. EMBO J. 17, 1961–197210.1093/emboj/17.7.1961 PubMed DOI PMC

Shim E. K., Moon C. S., Lee G. Y., Ha Y. J., Chae S. K., Lee J. R. (2004). Association of the Src homology 2 domain-containing leukocyte phosphoprotein of 76 kD (SLP-76) with the p85 subunit of phosphoinositide 3-kinase. FEBS Lett. 575, 35–4010.1016/j.febslet.2004.07.090 PubMed DOI

Shim M. S., Kwon Y. J. (2010). Efficient and targeted delivery of siRNA in vivo. FEBS J. 277, 4814–482710.1111/j.1742-4658.2010.07904.x PubMed DOI

Sieh M., Batzer A., Schlessinger J., Weiss A. (1994). GRB2 and phospholipase Cγ1 associate with a 36- to 38-kilodalton phosphotyrosine protein after T-cell receptor stimulation. Mol. Cell Biol. 14, 4435–4442 PubMed PMC

Simeoni L., Lindquist J. A., Smida M., Witte V., Arndt B., Schraven B. (2008). Control of lymphocyte development and activation by negative regulatory transmembrane adapter proteins. Immunol. Rev. 224, 215–22810.1111/j.1600-065X.2008.00656.x PubMed DOI

Smith S. J., Ying S., Meng Q., Sullivan M. H., Barkans J., Kon O. M., Sihra B., Larché M., Levi-Schaffer F., Kay A. B. (2000). Blood eosinophils from atopic donors express messenger RNA for the α, β, and γ subunits of the high-affinity IgE receptor (Fcε-RI) and intracellular, but not cell surface, α subunit protein. J. Allergy Clin. Immunol. 105, 309–31710.1016/S0091-6749(00)90081-2 PubMed DOI

Tamir I., Stolpa J. C., Helgason C. D., Nakamura K., Bruhns P., Daeron M., Cambier J. C. (2000). The RasGAP-binding protein p62dok is a mediator of inhibitory FcγRIIB signals in B cells. Immunity 12, 347–35810.1016/S1074-7613(00)80187-9 PubMed DOI

Thastrup O., Dawson A. P., Scharff O., Foder B., Cullen P. J., Drobak B. K., Bjerrum P. J., Christensen S. B., Hanley M. R. (1989). Thapsigargin, a novel molecular probe for studying intracellular calcium release and storage. Agents Actions 27, 17–2310.1007/BF02222186 PubMed DOI

Tkaczyk C., Horejsi V., Shoko I., Draber P., Samelson L. E., Satterthwaite A. B., Nahm D. H., Metcalfe D. D., Gilfillan A. M. (2004). NTAL phosphorylation is a pivotal link between the signaling cascades leading to human mast cell degranulation following kit activation and FcεRI aggregation. Blood 104, 207–21410.1182/blood-2003-08-2769 PubMed DOI

Trub T., Frantz J. D., Miyazaki M., Band H., Shoelson S. E. (1997). The role of a lymphoid-restricted, Grb2-like SH3-SH2-SH3 protein in T cell receptor signaling. J. Biol. Chem. 272, 894–90210.1074/jbc.272.2.894 PubMed DOI

Tumová M., Koffer A., Šimícek M., Dráberová L., Dráber P. (2010). The transmembrane adaptor protein NTAL signals to mast cell cytoskeleton via the small GTPase Rho. Eur. J. Immunol. 40, 3235–324510.1002/eji.201040403 PubMed DOI

Volná P., Lebduška P., Dráberová L., Šímová S., Heneberg P., Boubelík M., Bugajev V., Malissen B., Wilson B. S., Horejší V., Malissen M., Dráber P. (2004). Negative regulation of mast cell signaling and function by the adaptor LAB/NTAL. J. Exp. Med. 200, 1001–101310.1084/jem.20041213 PubMed DOI PMC

Wang B., Rieger A., Kilgus O., Ochiai K., Maurer D., Fodinger D., Kinet J. P., Stingl G. (1992). Epidermal Langerhans cells from normal human skin bind monomeric IgE via FcεRI. J. Exp. Med. 175, 1353–136510.1084/jem.175.5.1353 PubMed DOI PMC

Weber J. R., Ørstavik S., Torgersen K. M., Danbolt N. C., Berg S. F., Ryan J. C., Taskén K., Imboden J. B., Vaage J. T. (1998). Molecular cloning of the cDNA encoding pp36, a tyrosine-phosphorylated adaptor protein selectively expressed by T cells and natural killer cells. J. Exp. Med. 187, 1157–116110.1084/jem.187.7.1157 PubMed DOI PMC

Wilson B. S., Pfeiffer J. R., Oliver J. M. (2002). FcεRI signaling observed from the inside of the mast cell membrane. Mol. Immunol. 38, 1259–126810.1016/S0161-5890(02)00073-1 PubMed DOI

Wilson B. S., Steinberg S. L., Liederman K., Pfeiffer J. R., Surviladze Z., Zhang J., Samelson L. E., Yang L. H., Kotula P. G., Oliver J. M. (2004). Markers for detergent-resistant lipid rafts occupy distinct and dynamic domains in native membranes. Mol. Biol. Cell 15, 2580–259210.1091/mbc.E03-08-0574 PubMed DOI PMC

Yablonski D., Kadlecek T., Weiss A. (2001). Identification of a phospholipase C-γ1 (PLC-γ1) SH3 domain-binding site in SLP-76 required for T-cell receptor-mediated activation of PLC-γ1 and NFAT. Mol. Cell Biol. 21, 4208–421810.1128/MCB.21.13.4208-4218.2001 PubMed DOI PMC

Yamasaki S., Ishikawa E., Sakuma M., Kanagawa O., Cheng A. M., Malissen B., Saito T. (2007). LAT and NTAL mediate immunoglobulin E-induced sustained extracellular signal-regulated kinase activation critical for mast cell survival. Mol. Cell Biol. 27, 4406–441510.1128/MCB.02109-06 PubMed DOI PMC

Yamashita T., Mao S.-Y., Metzger H. (1994). Aggregation of the high-affinity IgE receptor and enhanced activity of p53/p56lyn protein-tyrosine kinase. Proc. Natl. Acad. Sci. U.S.A. 91, 11251–1125510.1073/pnas.91.23.11251 PubMed DOI PMC

Zhang W., Sloan-Lancaster J., Kitchen J., Trible R. P., Samelson L. E. (1998a). LAT: the ZAP-70 tyrosine kinase substrate that links T cell receptor to cellular activation. Cell 92, 83–9210.1016/S0092-8674(00)80918-6 PubMed DOI

Zhang W., Trible R. P., Samelson L. E. (1998b). LAT palmitoylation: its essential role in membrane microdomain targeting and tyrosine phosphorylation during T cell activation. Immunity 9, 239–24610.1016/S1074-7613(00)80606-8 PubMed DOI

Zhang W., Sommers C. L., Burshtyn D. N., Stebbins C. C., DeJarnette J. B., Trible R. P., Grinberg A., Tsay H. C., Jacobs H. M., Kessler C. M., Long E. O., Love P. E., Samelson L. E. (1999). Essential role of LAT in T cell development. Immunity 10, 323–33210.1016/S1074-7613(00)80032-1 PubMed DOI

Zhu M., Janssen E., Leung K., Zhang W. (2002). Molecular cloning of a novel gene encoding a membrane-associated adaptor protein (LAX) in lymphocyte signaling. J. Biol. Chem. 277, 46151–4615810.1074/jbc.M201385200 PubMed DOI

Zhu M., Janssen E., Zhang W. (2003). Minimal requirement of tyrosine residues of linker for activation of T cells in TCR signaling and thymocyte development. J. Immunol. 170, 325–333 PubMed

Zhu M., Liu Y., Koonpaew S., Granillo O., Zhang W. (2004). Positive and negative regulation of FcεRI-mediated signaling by adaptor protein LAB/NTAL. J. Exp. Med. 200, 991–100010.1084/jem.20031816 PubMed DOI PMC

Zhu M., Rhee I., Liu Y., Zhang W. (2006). Negative regulation of FcεRI-mediated signaling and mast cell function by the adaptor protein LAX. J. Biol. Chem. 281, 18408–1841310.1074/jbc.M607191200 PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Enhanced Membrane Fluidization and Cholesterol Displacement by 1-Heptanol Inhibit Mast Cell Effector Functions

. 2023 Aug 15 ; 12 (16) : . [epub] 20230815

Pentacyclic triterpenoid ursolic acid interferes with mast cell activation via a lipid-centric mechanism affecting FcεRI signalosome functions

. 2022 Nov ; 298 (11) : 102497. [epub] 20220915

Molecular Mechanisms of Mast Cell Activation by Cholesterol-Dependent Cytolysins

. 2021 ; 12 () : 670205. [epub] 20210623

Cytoskeletal Protein 4.1R Is a Positive Regulator of the FcεRI Signaling and Chemotaxis in Mast Cells

. 2019 ; 10 () : 3068. [epub] 20200114

Positive and Negative Regulatory Roles of C-Terminal Src Kinase (CSK) in FcεRI-Mediated Mast Cell Activation, Independent of the Transmembrane Adaptor PAG/CSK-Binding Protein

. 2018 ; 9 () : 1771. [epub] 20180802

Tetraspanins and Transmembrane Adaptor Proteins As Plasma Membrane Organizers-Mast Cell Case

. 2016 ; 4 () : 43. [epub] 20160510

Signal transduction and chemotaxis in mast cells

. 2016 May 05 ; 778 () : 11-23. [epub] 20150502

Transmembrane adaptor protein PAG/CBP is involved in both positive and negative regulation of mast cell signaling

. 2014 Dec 01 ; 34 (23) : 4285-300. [epub] 20140922

Multiple regulatory roles of the mouse transmembrane adaptor protein NTAL in gene transcription and mast cell physiology

. 2014 ; 9 (8) : e105539. [epub] 20140825

Cross-talk between tetraspanin CD9 and transmembrane adaptor protein non-T cell activation linker (NTAL) in mast cell activation and chemotaxis

. 2013 Apr 05 ; 288 (14) : 9801-9814. [epub] 20130226

Cytoskeleton in mast cell signaling

. 2012 ; 3 () : 130. [epub] 20120525

Mast cell chemotaxis - chemoattractants and signaling pathways

. 2012 ; 3 () : 119. [epub] 20120525

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace