Cytoskeletal Protein 4.1R Is a Positive Regulator of the FcεRI Signaling and Chemotaxis in Mast Cells

. 2019 ; 10 () : 3068. [epub] 20200114

Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31993060

Protein 4.1R, a member of the 4.1 family, functions as a bridge between cytoskeletal and plasma membrane proteins. It is expressed in T cells, where it binds to a linker for activation of T cell (LAT) family member 1 and inhibits its phosphorylation and downstream signaling events after T cell receptor triggering. The role of the 4.1R protein in cell activation through other immunoreceptors is not known. In this study, we used 4.1R-deficient (4.1R-KO) and 4.1R wild-type (WT) mice and explored the role of the 4.1R protein in the high-affinity IgE receptor (FcεRI) signaling in mast cells. We found that bone marrow mast cells (BMMCs) derived from 4.1R-KO mice showed normal growth in vitro and expressed FcεRI and c-KIT at levels comparable to WT cells. However, 4.1R-KO cells exhibited reduced antigen-induced degranulation, calcium response, and secretion of tumor necrosis factor-α. Chemotaxis toward antigen and stem cell factor (SCF) and spreading on fibronectin were also reduced in 4.1R-KO BMMCs, whereas prostaglandin E2-mediated chemotaxis was not affected. Antibody-induced aggregation of tetraspanin CD9 inhibited chemotaxis toward antigen in WT but not 4.1R-KO BMMCs, implying a CD9-4.1R protein cross-talk. Further studies documented that in the absence of 4.1R, antigen-mediated phosphorylation of FcεRI β and γ subunits was not affected, but phosphorylation of SYK and subsequent signaling events such as phosphorylation of LAT1, phospholipase Cγ1, phosphatases (SHP1 and SHIP), MAP family kinases (p38, ERK, JNK), STAT5, CBL, and mTOR were reduced. Immunoprecipitation studies showed the presence of both LAT1 and LAT2 (LAT, family member 2) in 4.1R immunocomplexes. The positive regulatory role of 4.1R protein in FcεRI-triggered activation was supported by in vivo experiments in which 4.1R-KO mice showed the normal presence of mast cells in the ears and peritoneum, but exhibited impaired passive cutaneous anaphylaxis. The combined data indicate that the 4.1R protein functions as a positive regulator in the early activation events after FcεRI triggering in mast cells.

Zobrazit více v PubMed

Harvima IT, Levi-Schaffer F, Draber P, Friedman S, Polakovicova I, Gibbs BF, et al. . Molecular targets on mast cells and basophils for novel therapies. J Allergy Clin Immunol. (2014) 134:530–44. 10.1016/j.jaci.2014.03.007 PubMed DOI

Hundley TR, Gilfillan AM, Tkaczyk C, Andrade MV, Metcalfe DD, Beaven MA. Kit and FcεRI mediate unique and convergent signals for release of inflammatory mediators from human mast cells. Blood. (2004) 104:2410–7. 10.1182/blood-2004-02-0631 PubMed DOI

Iwaki S, Tkaczyk C, Satterthwaite AB, Halcomb K, Beaven MA, Metcalfe DD, et al. Btk plays a crucial role in the amplification of FcεRI-mediated mast cell activation by kit. J Biol Chem. (2005) 280:40261–70. 10.1074/jbc.M506063200 PubMed DOI

Halova I, Ronnberg E, Draberova L, Vliagoftis H, Nilsson GP, Draber P. Changing the threshold-Signals and mechanisms of mast cell priming. Immunol Rev. (2018) 282:73–86. 10.1111/imr.12625 PubMed DOI

Cassard L, Jonsson F, Arnaud S, Daëron M. Fcγ receptors inhibit mouse and human basophil activation. J Immunol. (2012) 189:2995–3006. 10.4049/jimmunol.1200968 PubMed DOI

Draberova L, Bugajev V, Potuckova L, Halova I, Bambouskova M, Polakovicova I, et al. . Transmembrane adaptor protein PAG/CBP is involved in both positive and negative regulation of mast cell signaling. Mol Cell Biol. (2014) 34:4285–300. 10.1128/MCB.00983-14 PubMed DOI PMC

Potuckova L, Draberova L, Halova I, Paulenda T, Draber P. Positive and negative regulatory roles of C-terminal Src kinase (CSK) in FcεRI-mediated mast cell activation, independent of the transmembrane adaptor PAG/CSK-binding protein. Front Immunol. (2018) 9:1771. 10.3389/fimmu.2018.01771 PubMed DOI PMC

Volná P, Lebduška P, Dráberová L, Šímová S, Heneberg P, Boubelík M, et al. . Negative regulation of mast cell signaling and function by the adaptor LAB/NTAL. J Exp Med. (2004) 200:1001–13. 10.1084/jem.20041213 PubMed DOI PMC

Draberova L, Shaik GM, Volna P, Heneberg P, Tumova M, Lebduska P, et al. . Regulation of Ca2+ signaling in mast cells by tyrosine-phosphorylated and unphosphorylated non-T cell activation linker. J Immunol. (2007) 179:5169–80. 10.4049/jimmunol.179.8.5169 PubMed DOI

Tumova M, Koffer A, Šimícek M, Dráberová L, Dráber P. The transmembrane adaptor protein NTAL signals to mast cell cytoskeleton via the small GTPase Rho. Eur J Immunol. (2010) 40:3235–45. 10.1002/eji.201040403 PubMed DOI

Hálová I, Dráberová L, Bambousková M, Machyna M, Stegurová L, SmrŽ D, et al. Crosstalk between tetraspanin CD9 and transmembrane adaptor protein non-T cell activation linker (NTAL) in mast cell activation and chemotaxis. J Biol Chem. (2013) 288:9801–14. 10.1074/jbc.M112.449231 PubMed DOI PMC

Polakovicova I, Draberova L, Simicek M, Draber P. Multiple regulatory roles of the mouse transmembrane adaptor protein NTAL in gene transcription and mast cell physiology. PLoS ONE. (2014) 9:e105539. 10.1371/journal.pone.0105539 PubMed DOI PMC

Brdicka T, Imrich M, Angelisova P, Brdickova N, Horvath O, Spicka J, et al. . Non-T cell activation linker (NTAL): a transmembrane adaptor protein involved in immunoreceptor signaling. J Exp Med. (2002) 196:1617–26. 10.1084/jem.20021405 PubMed DOI PMC

Zhu M, Liu Y, Koonpaew S, Granillo O, Zhang W. Positive and negative regulation of FcεRI-mediated signaling by adaptor protein LAB/NTAL. J Exp Med. (2004) 200:991–1000. 10.1084/jem.20041223 PubMed DOI PMC

Malbec O, Malissen M, Isnardi I, Lesourne R, Mura AM, Fridman WH, et al. . Linker for activation of T cells integrates positive and negative signaling in mast cells. J Immunol. (2004) 173:5086–94. 10.4049/jimmunol.173.8.5086 PubMed DOI

Yamashita Y, Charles N, Furumoto Y, Odom S, Yamashita T, Gilfillan AM, et al. Cutting edge: genetic variation influences FcεRI-induced mast cell activation and allergic responses. J Immunol. (2007) 179:740–3. 10.4049/jimmunol.179.2.740 PubMed DOI

Iwaki S, Spicka J, Tkaczyk C, Jensen BM, Furumoto Y, Charles N, et al. Kit- and FcεRI-induced differential phosphorylation of the transmembrane adaptor molecule NTAL/LAB/LAT2 allows flexibility in its scaffolding function in mast cells. Cell Signal. (2008) 20:195–205. 10.1016/j.cellsig.2007.10.013 PubMed DOI PMC

Roget K, Malissen M, Malbec O, Malissen B, Daëron M. Non-T cell activation linker promotes mast cell survival by dampening the recruitment of SHIP1 by linker for activation of T cells. J Immunol. (2008) 180:3689–98. 10.4049/jimmunol.180.6.3689 PubMed DOI

Frigeri L, Apgar JR. The role of actin microfilaments in the down-regulation of the degranulation response in RBL-2H3 cells. J Immunol. (1999) 162:2243–50. PubMed

Dráberová L, Dudková L, Boubelík M, Tolarová H, Šmíd F, Dráber P. Exogenous administration of gangliosides inhibits FcεRI-mediated mast cell degranulation by decreasing the activity of phospholipase Cγ. J Immunol. (2003) 171:3585–93. 10.4049/jimmunol.171.7.3585 PubMed DOI

Draberova L, Lebduska P, Halova I, Tolar P, Stokrova J, Tolarova H, et al. . Signaling assemblies formed in mast cells activated via Fcε receptor I dimers. Eur J Immunol. (2004) 34:2209–19. 10.1002/eji.200322663 PubMed DOI

Lesourne R, Fridman WH, Daëron M. Dynamic interactions of Fcγ receptor IIB with filamin-bound SHIP1 amplify filamentous actin-dependent negative regulation of Fcε receptor I signaling. J Immunol. (2005) 174:1365–73. 10.4049/jimmunol.174.3.1365 PubMed DOI

Foger N, Jenckel A, Orinska Z, Lee KH, Chan AC, Bulfone-Paus S. Differential regulation of mast cell degranulation versus cytokine secretion by the actin regulatory proteins Coronin1a and Coronin1b. J Exp Med. (2011) 208:1777–87. 10.1084/jem.20101757 PubMed DOI PMC

Smrz D, Cruse G, Beaven MA, Kirshenbaum A, Metcalfe DD, Gilfillan AM. Rictor negatively regulates high-affinity receptors for IgE-induced mast cell degranulation. J Immunol. (2014) 193:5924–32. 10.4049/jimmunol.1303495 PubMed DOI PMC

Law M, Lee Y, Morales JL, Ning G, Huang W, Pabon J, et al. . Cutting Edge: Drebrin-regulated actin dynamics regulate IgE-dependent mast cell activation and allergic responses. J Immunol. (2015) 195:426–30. 10.4049/jimmunol.1401442 PubMed DOI PMC

Bosanquet DC, Ye L, Harding KG, Jiang WG. FERM family proteins and their importance in cellular movements and wound healing (review). Int J Mol Med. (2014) 34:3–12. 10.3892/ijmm.2014.1775 PubMed DOI

Baines AJ, Lu HC, Bennett PM. The Protein 4.1 family: hub proteins in animals for organizing membrane proteins. Biochim Biophys Acta. (2014) 1838:605–19. 10.1016/j.bbamem.2013.05.030 PubMed DOI

Lux SE. Anatomy of the red cell membrane skeleton: unanswered questions. Blood. (2016) 127:187–99. 10.1182/blood-2014-12-512772 PubMed DOI

Krauss SW, Larabell CA, Lockett S, Gascard P, Penman S, Mohandas N, et al. . Structural protein 4.1 in the nucleus of human cells: dynamic rearrangements during cell division. J Cell Biol. (1997) 137:275–89. 10.1083/jcb.137.2.275 PubMed DOI PMC

Salomao M, Zhang X, Yang Y, Lee S, Hartwig JH, Chasis JA, et al. . Protein 4.1R-dependent multiprotein complex: new insights into the structural organization of the red blood cell membrane. Proc Natl Acad Sci USA. (2008) 105:8026–31. 10.1073/pnas.0803225105 PubMed DOI PMC

Ruiz-Saenz A, Kremer L, Alonso MA, Millan J, Correas I. Protein 4.1R regulates cell migration and IQGAP1 recruitment to the leading edge. J Cell Sci. (2011) 124:2529–38. 10.1242/jcs.083634 PubMed DOI

Liu C, Weng H, Chen L, Yang S, Wang H, Debnath G, et al. . Impaired intestinal calcium absorption in protein 4.1R-deficient mice due to altered expression of plasma membrane calcium ATPase 1b (PMCA1b). J Biol Chem. (2013) 288:11407–15. 10.1074/jbc.M112.436659 PubMed DOI PMC

Stagg MA, Carter E, Sohrabi N, Siedlecka U, Soppa GK, Mead F, et al. . Cytoskeletal protein 4.1R affects repolarization and regulates calcium handling in the heart. Circ Res. (2008) 103:855–63. 10.1161/CIRCRESAHA.108.176461 PubMed DOI

Chen L, Hughes RA, Baines AJ, Conboy J, Mohandas N, An X. Protein 4.1R regulates cell adhesion, spreading, migration and motility of mouse keratinocytes by modulating surface expression of β1 integrin. J Cell Sci. (2011) 124:2478–87. 10.1242/jcs.078170 PubMed DOI PMC

Kang Q, Yu Y, Pei X, Hughes R, Heck S, Zhang X, et al. . Cytoskeletal protein 4.1R negatively regulates T-cell activation by inhibiting the phosphorylation of LAT. Blood. (2009) 113:6128–37. 10.1182/blood-2008-10-182329 PubMed DOI PMC

Liu X, Zhou Q, Ji Z, Fu G, Li Y, Zhang X, et al. . Protein 4.1R attenuates autoreactivity in experimental autoimmune encephalomyelitis by suppressing CD4+ T cell activation. Cell Immunol. (2014) 292:19–24. 10.1016/j.cellimm.2014.08.005 PubMed DOI

Fan D, Li J, Li Y, Guo Y, Zhang X, Wang W, et al. . Protein 4.1R negatively regulates CD8+ T-cell activation by modulating phosphorylation of linker for activation of T cells. Immunology. (2019) 157:312–21. 10.1111/imm.13085 PubMed DOI PMC

Shi ZT, Afzal V, Coller B, Patel D, Chasis JA, Parra M, et al. . Protein 4.1R-deficient mice are viable but have erythroid membrane skeleton abnormalities. J Clin Invest. (1999) 103:331–40. 10.1172/JCI3858 PubMed DOI PMC

Rudolph AK, Burrows PD, Wabl MR. Thirteen hybridomas secreting hapten-specific immunoglobulin E from mice with Iga or Igb heavy chain haplotype. Eur J Immunol. (1981) 11:527–9. 10.1002/eji.1830110617 PubMed DOI

Rivera J, Kinet J-P, Kim J, Pucillo C, Metzger H. Studies with a monoclonal antibody to the β subunit of the receptor with high affinity for immunoglobulin E. Mol Immunol. (1988) 25:647–61. 10.1016/0161-5890(88)90100-9 PubMed DOI

Dráberová L, Amoui M, Dráber P. Thy-1-mediated activation of rat mast cells: the role of Thy-1 membrane microdomains. Immunology. (1996) 87:141–8. PubMed PMC

Tolar P, Dráberová L, Dráber P. Protein tyrosine kinase Syk is involved in Thy-1 signaling in rat basophilic leukemia cells. Eur J Immunol. (1997) 27:3389–97. 10.1002/eji.1830271238 PubMed DOI

Tolar P, Tumová M, Dráber P. New monoclonal antibodies recognizing the adaptor protein LAT. Folia Biol. (2001) 47:215–7. PubMed

Kovárová M, Tolar P, Arudchandran R, Dráberová L, Rivera J, Dráber P. Structure-function analysis of Lyn kinase association with lipid rafts and initiation of early signaling events after Fcε receptor I aggregation. Mol Cell Biol. (2001) 21:8318–28. 10.1128/MCB.21.24.8318-8328.2001 PubMed DOI PMC

Yang S, Guo X, Debnath G, Mohandas N, An X. Protein 4.1R links E-cadherin/β-catenin complex to the cytoskeleton through its direct interaction with β-catenin and modulates adherens junction integrity. Biochim Biophys Acta. (2009) 1788:1458–65. 10.1016/j.bbamem.2009.03.022 PubMed DOI PMC

Schmitt-Verhulst AM, Pettinelli CB, Henkart PA, Lunney JK, Shearer GM. H-2-restricted cytotoxic effectors generated in vitro by the addition of trinitrophenyl-conjugated soluble proteins. J Exp Med. (1978) 147:352–68. 10.1084/jem.147.2.352 PubMed DOI PMC

Draberova L, Paulenda T, Halova I, Potuckova L, Bugajev V, Bambouskova M, et al. . Ethanol inhibits high-affinity immunoglobulin E receptor (FcεRI) signaling in mast cells by suppressing the function of FcεRI-cholesterol signalosome. PLoS ONE. (2015) 10:e0144596. 10.1371/journal.pone.0144596 PubMed DOI PMC

Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, Friman O, et al. . CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. (2006) 7:R100. 10.1186/gb-2006-7-10-r100 PubMed DOI PMC

Thastrup O, Dawson AP, Scharff O, Foder B, Cullen PJ, Drobak BK, et al. . Thapsigargin, a novel molecular probe for studying intracellular calcium release and storage. Agents Actions. (1989) 27:17–23. 10.1007/BF02222186 PubMed DOI

Putney JW, Jr. Capacitative calcium entry: sensing the calcium stores. J Cell Biol. (2005) 169:381–2. 10.1083/jcb.200503161 PubMed DOI PMC

Ozawa K, Szallasi Z, Kazanietz MG, Blumberg PM, Mischak H, Mushinski JF, et al. . Ca2+-dependent and Ca2+-independent isozymes of protein kinase C mediate exocytosis in antigen-stimulated rat basophilic RBL-2H3 cells. Reconstitution of secretory responses with Ca2+ and purified isozymes in washed permeabilized cells. J Biol Chem. (1993) 268:1749–56. PubMed

Rivera J, Gilfillan AM. Molecular regulation of mast cell activation. J Allergy Clin Immunol. (2006) 117:1214–25. 10.1016/j.jaci.2006.04.015 PubMed DOI

Gilfillan AM, Beaven MA. Regulation of mast cell responses in health and disease. Crit Rev Immunol. (2011) 31:475–529. 10.1615/CritRevImmunol.v31.i6.30 PubMed DOI PMC

Halova I, Draberova L, Draber P. Mast cell chemotaxis - chemoattractants and signaling pathways. Front Immunol. (2012) 3:119. 10.3389/fimmu.2012.00119 PubMed DOI PMC

Muroi Y, Sakurai T, Hanashi A, Kubota K, Nagaoka K, Imakawa K. CD9 regulates transcription factor GCM1 and ERVWE1 expression through the cAMP/protein kinase A signaling pathway. Reproduction. (2009) 138:945–51. 10.1530/REP-09-0082 PubMed DOI

Kamisato S, Uemura Y, Takami N, Okamoto K. Involvement of intracellular cyclic GMP and cyclic GMP-dependent protein kinase in α-elastin-induced macrophage chemotaxis. J Biochem. (1997) 121:862–7. 10.1093/oxfordjournals.jbchem.a021666 PubMed DOI

Jones SL, Sharief Y. Asymmetrical protein kinase A activity establishes neutrophil cytoskeletal polarity and enables chemotaxis. J Leukoc Biol. (2005) 78:248–58. 10.1189/jlb.0804459 PubMed DOI

Essayan DM. Cyclic nucleotide phosphodiesterases. J Allergy Clin Immunol. (2001) 108:671–80. 10.1067/mai.2001.119555 PubMed DOI

Margadant C, Monsuur HN, Norman JC, Sonnenberg A. Mechanisms of integrin activation and trafficking. Curr Opin Cell Biol. (2011) 23:607–14. 10.1016/j.ceb.2011.08.005 PubMed DOI

Lenter M, Uhlig H, Hamann A, Jeno P, Imhof B, Vestweber D. A monoclonal antibody against an activation epitope on mouse integrin chain β1 blocks adhesion of lymphocytes to the endothelial integrin α6β1. Proc Natl Acad Sci USA. (1993) 90:9051–5. 10.1073/pnas.90.19.9051 PubMed DOI PMC

Bazzoni G, Shih DT, Buck CA, Hemler ME. Monoclonal antibody 9EG7 defines a novel β1 integrin epitope induced by soluble ligand and manganese, but inhibited by calcium. J Biol Chem. (1995) 270:25570–7. 10.1074/jbc.270.43.25570 PubMed DOI

Li W, Deanin GG, Margolis B, Schlessinger J, Oliver JM. FcεRI-mediated tyrosine phosphorylation of multiple proteins, including phospholipase Cγ1 and the receptor βγ2 complex, in RBL-2H3 rat basophilic leukemia cells. Mol Cell Biol. (1992) 12:3176–82. 10.1128/MCB.12.7.3176 PubMed DOI PMC

Nadler MJ, Kinet JP. Uncovering new complexities in mast cell signaling. Nat Immunol. (2002) 3:707–8. 10.1038/ni0802-707 PubMed DOI

Benhamou M, Ryba NJP, Kihara H, Nishikata H, Siraganian RP. Protein-tyrosine kinase p72syk in high affinity IgE receptor signaling. J Biol Chem. (1993) 268:23318–24. PubMed

Rivera VM, Brugge JS. Clustering of Syk is sufficient to induce tyrosine phosphorylation and release of allergic mediators from rat basophilic leukemia cells. Mol Cell Biol. (1995) 15:1582–90. 10.1128/MCB.15.3.1582 PubMed DOI PMC

Zhang J, Berenstein EH, Evans RL, Siraganian RP. Transfection of Syk protein tyrosine kinase reconstitutes high affinity IgE receptor-mediated degranulation in a Syk-negative variant of rat basophilic leukemia RBL-2H3 cells. J Exp Med. (1996) 184:71–9. 10.1084/jem.184.1.71 PubMed DOI PMC

Draber P, Halova I, Levi-Schaffer F, Draberova L. Transmembrane adaptor proteins in the high-affinity IgE receptor signaling. Front Immunol. (2012) 2:1–11. 10.3389/fimmu.2011.00095 PubMed DOI PMC

Mohapatra B, Ahmad G, Nadeau S, Zutshi N, An W, Scheffe S, et al. . Protein tyrosine kinase regulation by ubiquitination: critical roles of Cbl-family ubiquitin ligases. Biochim Biophys Acta. (2013) 1833:122–39. 10.1016/j.bbamcr.2012.10.010 PubMed DOI PMC

Irvin BJ, Williams BL, Nilson AE, Maynor HO, Abraham RT. Pleiotropic contributions of phospholipase C-γ1 (PLC-γ1) to T-cell antigen receptor-mediated signaling: reconstitution studies of a PLC-γ1-deficient Jurkat T-cell line. Mol Cell Biol. (2000) 20:9149–61. 10.1128/MCB.20.24.9149-9161.2000 PubMed DOI PMC

Rhee SG. Regulation of phosphoinositide-specific phospholipase C. Annu Rev Biochem. (2001) 70:281–312. 10.1146/annurev.biochem.70.1.281 PubMed DOI PMC

Heneberg P, Dráber P. Nonreceptor protein tyrosine and lipid phosphatases in type I Fcε receptor-mediated activation of mast cells and basophils. Int Arch Allergy Immunol. (2002) 128:253–63. 10.1159/000063864 PubMed DOI

Copp J, Manning G, Hunter T. TORC-specific phosphorylation of mammalian target of rapamycin (mTOR): phospho-Ser2481 is a marker for intact mTOR signaling complex 2. Cancer Res. (2009) 69:1821–7. 10.1158/0008-5472.CAN-08-3014 PubMed DOI PMC

Kim MS, Kuehn HS, Metcalfe DD, Gilfillan AM. Activation and function of the mTORC1 pathway in mast cells. J Immunol. (2008) 180:4586–95. 10.4049/jimmunol.180.7.4586 PubMed DOI PMC

Gilfillan AM, Tkaczyk C. Integrated signalling pathways for mast-cell activation. Nat Rev Immunol. (2006) 6:218–30. 10.1038/nri1782 PubMed DOI

Huber M, Hughes MR, Krystal G. Thapsigargin-induced degranulation of mast cells is dependent on transient activation of phosphatidylinositol-3 kinase. J Immunol. (2000) 165:124–33. 10.4049/jimmunol.165.1.124 PubMed DOI

Ha CT, Waterhouse R, Wessells J, Wu JA, Dveksler GS. Binding of pregnancy-specific glycoprotein 17 to CD9 on macrophages induces secretion of IL-10, IL-6, PGE2, and TGF-β1. J Leukoc Biol. (2005) 77:948–57. 10.1189/jlb.0804453 PubMed DOI

Zhang J, Billingsley ML, Kincaid RL, Siraganian RP. Phosphorylation of Syk activation loop tyrosines is essential for Syk function. An in vivo study using a specific anti-Syk activation loop phosphotyrosine antibody. J Biol Chem. (2000) 275:35442–7. 10.1074/jbc.M004549200 PubMed DOI

Law CL, Chandran KA, Sidorenko SP, Clark EA. Phospholipase C-γ1 interacts with conserved phosphotyrosyl residues in the linker region of Syk and is a substrate for Syk. Mol Cell Biol. (1996) 16:1305–15. 10.1128/MCB.16.4.1305 PubMed DOI PMC

Gilfillan AM, Rivera J. The tyrosine kinase network regulating mast cell activation. Immunol Rev. (2009) 228:149–69. 10.1111/j.1600-065X.2008.00742.x PubMed DOI PMC

Johnson GL, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science. (2002) 298:1911–2. 10.1126/science.1072682 PubMed DOI

Saitoh S, Arudchandran R, Manetz TS, Zhang W, Sommers CL, Love PE, et al. LAT is essential for FcεRI-mediated mast cell activation. Immunity. (2000) 12:525–35. 10.1016/S1074-7613(00)80204-6 PubMed DOI

Yablonski D. Bridging the gap: modulatory roles of the Grb2-family adaptor, Gads, in cellular and allergic immune responses. Front Immunol. (2019) 10:1704. 10.3389/fimmu.2019.01704 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...