Regulation of microtubule nucleation in mouse bone marrow-derived mast cells by ARF GTPase-activating protein GIT2

. 2024 ; 15 () : 1321321. [epub] 20240202

Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid38370406

Aggregation of high-affinity IgE receptors (FcϵRIs) on granulated mast cells triggers signaling pathways leading to a calcium response and release of inflammatory mediators from secretory granules. While microtubules play a role in the degranulation process, the complex molecular mechanisms regulating microtubule remodeling in activated mast cells are only partially understood. Here, we demonstrate that the activation of bone marrow mast cells induced by FcϵRI aggregation increases centrosomal microtubule nucleation, with G protein-coupled receptor kinase-interacting protein 2 (GIT2) playing a vital role in this process. Both endogenous and exogenous GIT2 were associated with centrosomes and γ-tubulin complex proteins. Depletion of GIT2 enhanced centrosomal microtubule nucleation, and phenotypic rescue experiments revealed that GIT2, unlike GIT1, acts as a negative regulator of microtubule nucleation in mast cells. GIT2 also participated in the regulation of antigen-induced degranulation and chemotaxis. Further experiments showed that phosphorylation affected the centrosomal localization of GIT2 and that during antigen-induced activation, GIT2 was phosphorylated by conventional protein kinase C, which promoted microtubule nucleation. We propose that GIT2 is a novel regulator of microtubule organization in activated mast cells by modulating centrosomal microtubule nucleation.

Zobrazit více v PubMed

Kalesnikoff J, Galli SJ. New developments in mast cell biology. Nat Immunol (2008) 9:1215–23. doi: 10.1038/ni.f.216 PubMed DOI PMC

Galli SJ, Gaudenzio N, Tsai M. Mast cells in inflammation and disease: recent progress and ongoing concerns. Annu Rev Immunol (2020) 38:49–77. doi: 10.1146/annurev-immunol-071719-094903 PubMed DOI

Rivera J, Fierro NA, Olivera A, Suzuki R. New insights on mast cell activation via the high affinity receptor for IgE. Adv Immunol (2008) 98:85–120. doi: 10.1016/S0065-2776(08)00403-3 PubMed DOI PMC

Metcalfe DD, Peavy RD, Gilfillan AM. Mechanisms of mast cell signaling in anaphylaxis. J Allergy Clin Immunol (2009) 124:639–46. doi: 10.1016/j.jaci.2009.08.035 PubMed DOI PMC

Dráber P, Sulimenko V, Dráberová E. Cytoskeleton in mast cell signaling. Front Immunol (2012) 3:130. doi: 10.3389/fimmu.2012.00130 PubMed DOI PMC

Ménasché G, Longé C, Bratti M, Blank U. Cytoskeletal transport, reorganization, and fusion regulation in mast cell-stimulus secretion coupling. Front Cell Dev Biol (2021) 9:652077. doi: 10.3389/fcell.2021.652077 PubMed DOI PMC

Martin-Verdeaux S, Pombo I, Iannascoli B, Roa M, Varin-Blank N, Rivera J, et al. . Evidence of a role for Munc18-2 and microtubules in mast cell granule exocytosis. J Cell Sci (2003) 116:325–34. doi: 10.1242/jcs.00216 PubMed DOI

Smith AJ, Pfeiffer JR, Zhang J, Martinez AM, Griffiths GM, Wilson BS. Microtubule-dependent transport of secretory vesicles in RBL-2H3 cells. Traffic (2003) 4:302–12. doi: 10.1034/j.1600-0854.2003.00084.x PubMed DOI

Nishida K, Yamasaki S, Ito Y, Kabu K, Hattori K, Tezuka T, et al. . FcεRI-mediated mast cell degranulation requires calcium-independent microtubule-dependent translocation of granules to the plasma membrane. J Cell Biol (2005) 170:115–26. doi: 10.1083/jcb.200501111 PubMed DOI PMC

Sulimenko V, Dráberová E, Sulimenko T, Macurek L, Richterová V, Dráber P, et al. . Regulation of microtubule formation in activated mast cells by complexes of γ-tubulin with Fyn and Syk kinases. J Immunol (2006) 176:7243–53. doi: 10.4049/jimmunol.176.12.7243 PubMed DOI

Ogawa K, Tanaka Y, Uruno T, Duan X, Harada Y, Sanematsu F, et al. . DOCK5 functions as a key signaling adaptor that links FcεRI signals to microtubule dynamics during mast cell degranulation. J Exp Med (2014) 211:1407–19. doi: 10.1084/jem.20131926 PubMed DOI PMC

Hájková Z, Bugajev V, Dráberová E, Vinopal S, Dráberová L, Janáček J, et al. . STIM1-directed reorganization of microtubules in activated cells. J Immunol (2011) 186:913–23. doi: 10.4049/jimmunol.1002074 PubMed DOI

Munoz I, Danelli L, Claver J, Goudin N, Kurowska M, Madera-Salcedo IK, et al. . Kinesin-1 controls mast cell degranulation and anaphylaxis through PI3K-dependent recruitment to the granular Slp3/Rab27b complex. J Cell Biol (2016) 215:203–16. doi: 10.1083/jcb.201605073 PubMed DOI PMC

Cruse G, Beaven MA, Ashmole I, Bradding P, Gilfillan AM, Metcalfe DD. A truncated splice-variant of the FcεRIβ receptor subunit is critical for microtubule formation and degranulation in mast cells. Immunity (2013) 38:906–17. doi: 10.1016/j.immuni.2013.04.007 PubMed DOI PMC

Ibanga J, Zhang EL, Eitzen G, Guo Y. Mast cell granule motility and exocytosis is driven by dynamic microtubule formation and kinesin-1 motor function. PloS One (2022) 17:e0265122. doi: 10.1371/journal.pone.0265122 PubMed DOI PMC

Longe C, Bratti M, Kurowska M, Vibhushan S, David P, Desmeure V, et al. . Rab44 regulates murine mast cell-driven anaphylaxis through kinesin-1-dependent secretory granule translocation. J Allergy Clin Immunol (2022) 150:676–89. doi: 10.1016/j.jaci.2022.04.009 PubMed DOI

Efergan A, Azouz NP, Klein O, Noguchi K, Rothenberg ME, Fukuda M, et al. . Rab12 regulates retrograde transport of mast cell secretory granules by interacting with the RILP-Dynein Complex. J Immunol (2016) 196:1091–101. doi: 10.4049/jimmunol.1500731 PubMed DOI

Oakley CE, Oakley BR. Identification of γ-tubulin, a new member of the tubulin superfamily encoded by mipA gene of Aspergillus nidulans . Nature (1989) 338:662–4. doi: 10.1038/338662a0 PubMed DOI

Oegema K, Wiese C, Martin OC, Milligan RA, Iwamatsu A, Mitchison TJ, et al. . Characterization of two related Drosophila γ-tubulin complexes that differ in their ability to nucleate microtubules. J Cell Biol (1999) 144:721–33. doi: 10.1083/jcb.144.4.721 PubMed DOI PMC

Zupa E, Liu P, Würtz M, Schiebel E, Pfeffer S. The structure of the γ-TuRC: a 25-years-old molecular puzzle. Curr Opin Struct Biol (2021) 66:15–21. doi: 10.1016/j.sbi.2020.08.008 PubMed DOI

Thawani A, Petry S. Molecular insight into how γ-TuRC makes microtubules. J Cell Sci (2021) 134:jcs245464. doi: 10.1242/jcs.245464 PubMed DOI PMC

Vineethakumari C, Lüders J. Microtubule anchoring: attaching dynamic polymers to cellular structures. Front Cell Dev Biol (2022) 10:867870. doi: 10.3389/fcell.2022.867870 PubMed DOI PMC

Sulimenko V, Hájková Z, Klebanovych A, Dráber P. Regulation of microtubule nucleation mediated by γ-tubulin complexes. Protoplasma (2017) 254:1187–99. doi: 10.1007/s00709-016-1070-z PubMed DOI

Sulimenko V, Dráberová E, Dráber P. γ-Tubulin in microtubule nucleation and beyond. Front Cell Dev Biol (2022) 10:880761. doi: 10.3389/fcell.2022.880761 PubMed DOI PMC

Sztul E, Chen PW, Casanova JE, Cherfils J, Dacks JB, Lambright DG, et al. . ARF GTPases and their GEFs and GAPs: concepts and challenges. Mol Biol Cell (2019) 30:1249–71. doi: 10.1091/mbc.E18-12-0820 PubMed DOI PMC

Premont RT, Claing A, Vitale N, Perry SJ, Lefkowitz RJ. The GIT family of ADP-ribosylation factor GTPase-activating proteins. Functional diversity of GIT2 through alternative splicing. J Biol Chem (2000) 275:22373–80. doi: 10.1074/jbc.275.29.22373 PubMed DOI

Zhou W, Li X, Premont RT. Expanding functions of GIT Arf GTPase-activating proteins, PIX Rho guanine nucleotide exchange factors and GIT-PIX complexes. J Cell Sci (2016) 129:1963–74. doi: 10.1242/jcs.179465 PubMed DOI PMC

Hoefen RJ, Berk BC. The multifunctional GIT family of proteins. J Cell Sci (2006) 119:1469–75. doi: 10.1242/jcs.02925 PubMed DOI

Zhao ZS, Lim JP, Ng YW, Lim L, Manser E. The GIT-associated kinase PAK targets to the centrosome and regulates Aurora-A. Mol Cell (2005) 20:237–49. doi: 10.1016/j.molcel.2005.08.035 PubMed DOI

Sulimenko V, Hájková Z, Černohorská M, Sulimenko T, Sládková V, Dráberová L, et al. . Microtubule nucleation in mouse bone marrow-derived mast cells is regulated by the concerted action of GIT1/βPIX proteins and calcium. J Immunol (2015) 194:4099–111. doi: 10.4049/jimmunol.1402459 PubMed DOI

Černohorská M, Sulimenko V, Hájková Z, Sulimenko T, Sládková V, Vinopal S, et al. . GIT1/βPIX signaling proteins and PAK1 kinase regulate microtubule nucleation. BBA Mol Cell Res (2016) 1863:1282–97. doi: 10.1016/j.bbamcr.2016.03.016 PubMed DOI

Nováková M, Dráberová E, Schürmann W, Czihak G, Viklický V, Dráber P. γ-Tubulin redistribution in taxol-treated mitotic cells probed by monoclonal antibodies. Cell Motil. Cytoskel. (1996) 33:38–51. doi: 10.1002/(SICI)1097-0169(1996)33:1<38::AID-CM5>3.0.CO;2-E PubMed DOI

Dráberová E, Sulimenko V, Vinopal S, Sulimenko T, Sládková V, D'Agostino L, et al. . Differential expression of human γ-tubulin isotypes during neuronal development and oxidative stress points to a γ-tubulin-2 prosurvival function. FASEB J (2017) 31:1828–46. doi: 10.1096/fj.201600846RR PubMed DOI

Dráberová E, D'Agostino L, Caracciolo V, Sládková V, Sulimenko T, Sulimenko V, et al. . Overexpression and nucleolar localization of γ-tubulin small complex proteins GCP2 and GCP3 in glioblastoma. J Neuropathol. Exp Neurol (2015) 74:723–42. doi: 10.1097/NEN.0000000000000212 PubMed DOI

Zíková M, Dráberová E, Sulimenko V, Dráber P. New monoclonal antibodies specific for microtubule-associated protein MAP2. Folia Biol (Praha) (2000) 46:87–8. PubMed

Macůrek L, Dráberová E, Richterová V, Sulimenko V, Sulimenko T, Dráberová L, et al. . Regulation of microtubule nucleation from membranes by complexes of membrane-bound γ-tubulin with Fyn kinase and phosphoinositide 3-kinase. Biochem J (2008) 416:421–30. doi: 10.1042/BJ20080909 PubMed DOI

Viklický V, Dráber P, Hašek J, Bártek J. Production and characterization of a monoclonal antitubulin antibody. Cell Biol Int Rep (1982) 6:725–31. doi: 10.1016/0309-1651(82)90164-3 PubMed DOI

Dráberová E, Dráber P, Havlíček F, Viklický V. A common antigenic determinant of vimentin and desmin defined by monoclonal antibody. Folia Biol (Praha) (1986) 32:295–303. PubMed

Hibbs ML, Tarlinton DM, Armes J, Grail D, Hodgson G, Maglitto R, et al. . Multiple defects in the immune-system of Lyn-deficient mice, culminating in autoimmune-disease. Cell (1995) 83:301–11. doi: 10.1016/0092-8674(95)90171-x PubMed DOI

Vinopal S, Černohorská M, Sulimenko V, Sulimenko T, Vosecká V, Flemr M, et al. . γ-Tubulin 2 nucleates microtubules and is downregulated in mouse early embryogenesis. PloS One (2012) 7:e29919. doi: 10.1371/journal.pone.0029919 PubMed DOI PMC

Vinopal S, Dupraz S, Alfadil E, Pietralla T, Bendre S, Stiess M, et al. . Centrosomal microtubule nucleation regulates radial migration of projection neurons independently of polarization in the developing brain. Neuron (2023) 111:1241–1263.e1216. doi: 10.1016/j.neuron.2023.01.020 PubMed DOI

Sander JD, Joung JK. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol (2014) 32:347–55. doi: 10.1038/nbt.2842 PubMed DOI PMC

Flemr M, Bühler M. Single-step generation of conditional knockout mouse embryonic stem cells. Cell Rep (2015) 12:709–16. doi: 10.1016/j.celrep.2015.06.051 PubMed DOI

Draberova L, Draberova H, Potuckova L, Halova I, Bambouskova M, Mohandas N, et al. . Cytoskeletal protein 4.1R is a positive regulator of the FcεRI signaling and chemotaxis in mast cells. Front Immunol (2019) 10:3068. doi: 10.3389/fimmu.2019.03068 PubMed DOI PMC

Kumari A, Panda D. Monitoring the disruptive effects of tubulin-binding agents on cellular microtubules. Methods Mol Biol (2022) 2430:431–48. doi: 10.1007/978-1-0716-1983-4_27 PubMed DOI

Mitchison TJ, Kirschner MW. Isolation of mammalian centrosomes. Methods Enzymol (1986) 134:261–8. doi: 10.1016/0076-6879(86)34094-1 PubMed DOI

Evans L, Mitchison T, Kirschner M. Influence of the centrosome on the structure of nucleated microtubules. J Cell Biol (1985) 100:1185–91. doi: 10.1083/jcb.100.4.1185 PubMed DOI PMC

Dráberová E, Sulimenko V, Sulimenko T, Böhm KJ, Dráber P. Recovery of tubulin functions after freeze-drying in the presence of trehalose. Anal Biochem (2010) 397:67–72. doi: 10.1016/j.ab.2009.10.016 PubMed DOI

Kukharskyy V, Sulimenko V, Macůrek L, Sulimenko T, Dráberová E, Dráber P. Complexes of γ-tubulin with non-receptor protein tyrosine kinases Src and Fyn in differentiating P19 embryonal carcinoma cells. Exp Cell Res (2004) 298:218–28. doi: 10.1016/j.yexcr.2004.04.016 PubMed DOI

Dráber P, Lagunowich LA, Dráberová E, Viklický V, Damjanov I. Heterogeneity of tubulin epitopes in mouse fetal tissues. Histochemistry (1988) 89:485–92. doi: 10.1007/BF00492606 PubMed DOI

Dráber P. Quantitation of proteins in sample buffer for sodium dodecyl sulfate-polyacrylamide gel electrophoresis using colloidal silver. Electrophoresis (1991) 12:453–6. doi: 10.1002/elps.1150120617 PubMed DOI

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. . Fiji: an open-source platform for biological-image analysis. Nat Methods (2012) 9:676–82. doi: 10.1038/nmeth.2019 PubMed DOI PMC

Dráberová E, Dráber P. A microtubule-interacting protein involved in coalignment of vimentin intermediate filaments with microtubules. J Cell Sci (1993) 106:1263–73. doi: 10.1242/jcs.106.4.1263 PubMed DOI

Wei J, Wei C, Wang M, Qiu X, Li Y, Yuan Y, et al. . The GTPase-activating protein GIT2 protects against colitis by negatively regulating Toll-like receptor signaling. Proc Natl Acad Sci USA (2014) 111:8883–8. doi: 10.1073/pnas.1309218111 PubMed DOI PMC

Frank SR, Hansen SH. The PIX-GIT complex: a G protein signaling cassette in control of cell shape. Semin Cell Dev Biol (2008) 19:234–44. doi: 10.1016/j.semcdb.2008.01.002 PubMed DOI PMC

Frank SR, Adelstein MR, Hansen SH. GIT2 represses Crk- and Rac1-regulated cell spreading and Cdc42-mediated focal adhesion turnover. EMBO J (2006) 25:1848–59. doi: 10.1038/sj.emboj.7601092 PubMed DOI PMC

Rubíková Z, Sulimenko V, Paulenda T, Dráber P. Mast cell activation and microtubule organization are modulated by miltefosine through protein kinase C inhibition. Front Immunol (2018) 9:e1563. doi: 10.3389/fimmu.2018.01563 PubMed DOI PMC

Faul MM, Gillig JR, Jirousek MR, Ballas LM, Schotten T, Kahl A, et al. . Acyclic N-(azacycloalkyl)bisindolylmaleimides: isozyme selective inhibitors of PKCβ. Bioorg. Med Chem Lett (2003) 13:1857–9. doi: 10.1016/s0960-894x(03)00286-5 PubMed DOI

Way KJ, Chou E, King GL. Identification of PKC-isoform-specific biological actions using pharmacological approaches. Trends Pharmacol Sci (2000) 21:181–7. doi: 10.1016/s0165-6147(00)01468-1 PubMed DOI

Redegeld FA, Yu Y, Kumari S, Charles N, Blank U. Non-IgE mediated mast cell activation. Immunol Rev (2018) 282:87–113. doi: 10.1111/imr.12629 PubMed DOI

Gaudenzio N, Sibilano R, Marichal T, Starkl P, Reber LL, Cenac N, et al. . Different activation signals induce distinct mast cell degranulation strategies. J Clin Invest. (2016) 126:3981–98. doi: 10.1172/JCI85538 PubMed DOI PMC

Martin B, Chadwick W, Janssens J, Premont RT, Schmalzigaug R, Becker KG, et al. . GIT2 acts as a systems-level coordinator of neurometabolic activity and pathophysiological aging. Front Endocrinol (Lausanne) (2015) 6:191. doi: 10.3389/fendo.2015.00191 PubMed DOI PMC

Turn RE, East MP, Prekeris R, Kahn RA. The ARF GAP ELMOD2 acts with different GTPases to regulate centrosomal microtubule nucleation and cytokinesis. Mol Biol Cell (2020) 31:2070–91. doi: 10.1091/mbc.E20-01-0012 PubMed DOI PMC

Turn RE, Linnert J, Gigante ED, Wolfrum U, Caspary T, Kahn RA. Roles for ELMOD2 and rootletin in ciliogenesis. Mol Biol Cell (2021) 32:800–22. doi: 10.1091/mbc.E20-10-0635 PubMed DOI PMC

Mazaki Y, Hashimoto S, Tsujimura T, Morishige M, Hashimoto A, Aritake K, et al. . Neutrophil direction sensing and superoxide production linked by the GTPase-activating protein GIT2. Nat Immunol (2006) 7:724–31. doi: 10.1038/ni1349 PubMed DOI

Phee H, Dzhagalov I, Mollenauer M, Wang Y, Irvine DJ, Robey E, et al. . Regulation of thymocyte positive selection and motility by GIT2. Nat Immunol (2010) 11:503–11. doi: 10.1038/ni.1868 PubMed DOI PMC

Gavina M, Za L, Molteni R, Pardi R, de Curtis I. The GIT-PIX complexes regulate the chemotactic response of rat basophilic leukaemia cells. Biol Cell (2010) 102:231–44. doi: 10.1042/BC20090074 PubMed DOI PMC

Tanna CE, Goss LB, Ludwig CG, Chen PW. Arf GAPs as regulators of the actin cytoskeleton-an update. Int J Mol Sci (2019) 20:442. doi: 10.3390/ijms20020442 PubMed DOI PMC

Dogterom M, Koenderink GH. Actin-microtubule crosstalk in cell biology. Nat Rev Mol Cell Biol (2019) 20:38–54. doi: 10.1038/s41580-018-0067-1 PubMed DOI

Ganguly A, Yang H, Sharma R, Patel KD, Cabral F. The role of microtubules and their dynamics in cell migration. J Biol Chem (2012) 287:43359–69. doi: 10.1074/jbc.M112.423905 PubMed DOI PMC

Bouchet BP, Akhmanova A. Microtubules in 3D cell motility. J Cell Sci (2017) 130:39–50. doi: 10.1242/jcs.189431 PubMed DOI

Klein O, Krier-Burris RA, Lazki-Hagenbach P, Gorzalczany Y, Mei Y, Ji P, et al. . Mammalian diaphanous-related formin 1 (mDia1) coordinates mast cell migration and secretion through its actin-nucleating activity. J Allergy Clin Immunol (2019) 144:1074–90. doi: 10.1016/j.jaci.2019.06.028 PubMed DOI PMC

Montesinos MS, Dong W, Goff K, Das B, Guerrero-Given D, Schmalzigaug R, et al. . Presynaptic deletion of GIT proteins results in increased synaptic strength at a mammalian central synapse. Neuron (2015) 88:918–25. doi: 10.1016/j.neuron.2015.10.042 PubMed DOI PMC

Webb DJ, Mayhew MW, Kovalenko M, Schroeder MJ, Jeffery ED, Whitmore L, et al. . Identification of phosphorylation sites in GIT1. J Cell Sci (2006) 119:2847–50. doi: 10.1242/jcs03044 PubMed DOI

Yanase Y, Hide I, Mihara S, Shirai Y, Saito N, Nakata Y, et al. . A critical role of conventional protein kinase C in morphological changes of rodent mast cells. Immunol Cell Biol (2011) 89:149–59. doi: 10.1038/icb.2010.67 PubMed DOI

Lim PS, Sutton CR, Rao S. Protein kinase C in the immune system: from signalling to chromatin regulation. Immunology (2015) 146:508–22. doi: 10.1111/imm.12510 PubMed DOI PMC

Chen D, Purohit A, Halilovic E, Doxsey SJ, Newton AC. Centrosomal anchoring of protein kinase C βII by pericentrin controls microtubule organization, spindle function, and cytokinesis. J Biol Chem (2004) 279:4829–39. doi: 10.1074/jbc.M311196200 PubMed DOI

Fanning A, Volkov Y, Freeley M, Kelleher D, Long A. CD44 cross-linking induces protein kinase C-regulated migration of human T lymphocytes. Int Immunol (2005) 17:449–58. doi: 10.1093/intimm/dxh225 PubMed DOI

Wei SY, Lin TE, Wang WL, Lee PL, Tsai MC, Chiu JJ. Protein kinase C-δ and -β coordinate flow-induced directionality and deformation of migratory human blood T-lymphocytes. J Mol Cell Biol (2014) 6:458–72. doi: 10.1093/jmcb/mju050 PubMed DOI

Brown MC, Cary LA, Jamieson JS, Cooper JA, Turner CE. Src and FAK kinases cooperate to phosphorylate paxillin kinase linker, stimulate its focal adhesion localization, and regulate cell spreading and protrusiveness. Mol Biol Cell (2005) 16:4316–28. doi: 10.1091/mbc.e05-02-0131 PubMed DOI PMC

Frese S, Schubert WD, Findeis AC, Marquardt T, Roske YS, Stradal TE, et al. . The phosphotyrosine peptide binding specificity of Nck1 and Nck2 Src homology 2 domains. J Biol Chem (2006) 281:18236–45. doi: 10.1074/jbc.M512917200 PubMed DOI

Segura I, Essmann CL, Weinges S, Acker-Palmer A. Grb4 and GIT1 transduce ephrinB reverse signals modulating spine morphogenesis and synapse formation. Nat Neurosci (2007) 10:301–10. doi: 10.1038/nn1858 PubMed DOI

Totaro A, Astro V, Tonoli D, de Curtis I. Identification of two tyrosine residues required for the intramolecular mechanism implicated in GIT1 activation. PloS One (2014) 9:e93199. doi: 10.1371/journal.pone.0093199 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace