Cytoskeleton in mast cell signaling
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
22654883
PubMed Central
PMC3360219
DOI
10.3389/fimmu.2012.00130
Knihovny.cz E-resources
- Keywords
- actins, intermediate filaments, mast cell activation, microfilaments, microtubules, signal transduction, tubulins, vimentin,
- Publication type
- Journal Article MeSH
Mast cell activation mediated by the high affinity receptor for IgE (FcεRI) is a key event in allergic response and inflammation. Other receptors on mast cells, as c-Kit for stem cell factor and G protein-coupled receptors (GPCRs) synergistically enhance the FcεRI-mediated release of inflammatory mediators. Activation of various signaling pathways in mast cells results in changes in cell morphology, adhesion to substrate, exocytosis, and migration. Reorganization of cytoskeleton is pivotal in all these processes. Cytoskeletal proteins also play an important role in initial stages of FcεRI and other surface receptors induced triggering. Highly dynamic microtubules formed by αβ-tubulin dimers as well as microfilaments build up from polymerized actin are affected in activated cells by kinases/phosphatases, Rho GTPases and changes in concentration of cytosolic Ca(2+). Also important are nucleation proteins; the γ-tubulin complexes in case of microtubules or Arp 2/3 complex with its nucleation promoting factors and formins in case of microfilaments. The dynamic nature of microtubules and microfilaments in activated cells depends on many associated/regulatory proteins. Changes in rigidity of activated mast cells reflect changes in intermediate filaments build up from vimentin. This review offers a critical appraisal of current knowledge on the role of cytoskeleton in mast cells signaling.
See more in PubMed
Akhmanova A., Steinmetz M. O. (2008). Tracking the ends: a dynamic protein network controls the fate of microtubule tips. Nat. Rev. Mol. Cell Biol. 9, 309–32210.1038/nrm2369 PubMed DOI
Allen J. D., Jaffer Z. M., Park S. J., Burgin S., Hofmann C., Sells M. A., Chen S., Derr-Yellin E., Michels E. G., McDaniel A., Bessler W. K., Ingram D. A., Atkinson S. J., Travers J. B., Chernoff J., Clapp D. W. (2009). p21-Activated kinase regulates mast cell degranulation via effects on calcium mobilization and cytoskeletal dynamics. Blood 113, 2695–270510.1182/blood-2008-06-160861 PubMed DOI PMC
Alvarado-Kristensson M., Rodriguez M. J., Silio V., Valpuesta J. M., Carrera A. C. (2009). SADB phosphorylation of gamma-tubulin regulates centrosome duplication. Nat. Cell Biol. 11, 1081–109210.1038/ncb1921 PubMed DOI
Amos L. A., Schlieper D. (2005). Microtubules and maps. Adv. Protein Chem. 71, 257–29810.1016/S0065-3233(04)71007-4 PubMed DOI
Andrews N. L., Lidke K. A., Pfeiffer J. R., Burns A. R., Wilson B. S., Oliver J. M., Lidke D. S. (2008). Actin restricts FcεRI diffusion and facilitates antigen-induced receptor immobilization. Nat. Cell Biol. 10, 955–96310.1038/ncb1755 PubMed DOI PMC
Apgar J. R. (1994). Polymerization of actin in RBL-2H3 cells can be triggered through either the IgE receptor or the adenosine receptor but different signaling pathways are used. Mol. Biol. Cell 5, 313–322 PubMed PMC
Arthur W. T., Petch L. A., Burridge K. (2000). Integrin engagement suppresses RhoA activity via a c-Src-dependent mechanism. Curr. Biol. 10, 719–72210.1016/S0960-9822(00)00537-6 PubMed DOI
Baba Y., Hayashi K., Fujii Y., Mizushima A., Watarai H., Wakamori M., Numaga T., Mori Y., Iino M., Hikida M., Kurosaki T. (2006). Coupling of STIM1 to store-operated Ca2+ entry through its constitutive and inducible movement in the endoplasmic reticulum. Proc. Natl. Acad. Sci. U.S.A. 103, 16704–1670910.1073/pnas.0603781103 PubMed DOI PMC
Bakowski D., Glitsch M. D., Parekh A. B. (2001). An examination of the secretion-like coupling model for the activation of the Ca2+ release-activated Ca2+ current I(CRAC) in RBL-1 cells. J. Physiol. Paris 532, 55–71 PubMed PMC
Bartolini F., Moseley J. B., Schmoranzer J., Cassimeris L., Goode B. L., Gundersen G. G. (2008). The formin mDia2 stabilizes microtubules independently of its actin nucleation activity. J. Cell Biol. 181, 523–53610.1083/jcb.200709029 PubMed DOI PMC
Bement W. M., Miller A. L., von Dassow G. (2006). Rho GTPase activity zones and transient contractile arrays. Bioessays 28, 983–99310.1002/bies.20477 PubMed DOI PMC
Bishop A. L., Hall A. (2000). Rho GTPases and their effector proteins. Biochem. J. 348, 241–25510.1042/0264-6021:3480241 PubMed DOI PMC
Blank U., Rivera J. (2004). The ins and outs of IgE-dependent mast-cell exocytosis. Trends Immunol. 25, 266–27310.1016/j.it.2004.03.005 PubMed DOI
Borovikov Y. S., Norman J. C., Price L. S., Weeds A., Koffer A. (1995). Secretion from permeabilised mast cells is enhanced by addition of gelsolin: contrasting effects of endogenous gelsolin. J. Cell Sci. 108, 657–666 PubMed
Brown A. M., O’Sullivan A. J., Gomperts B. D. (1998). Induction of exocytosis from permeabilized mast cells by the guanosine triphosphatases Rac and Cdc42. Mol. Biol. Cell 9, 1053–1063 PubMed PMC
Brown M. J., Hallam J. A., Colucci-Guyon E., Shaw S. (2001). Rigidity of circulating lymphocytes is primarily conferred by vimentin intermediate filaments. J. Immunol. 166, 6640–6646 PubMed
Buccione R., Orth J. D., McNiven M. A. (2004). Foot and mouth: podosomes, invadopodia and circular dorsal ruffles. Nat. Rev. Mol. Cell Biol. 5, 647–65710.1038/nrm1436 PubMed DOI
Bueb J. L., Da S. A., Mousli M., Landry Y. (1992). Natural polyamines stimulate G-proteins. Biochem. J. 282, 545–550 PubMed PMC
Bugajev V., Bambousková M., Dráberová L., Dráber P. (2010). What precedes the initial tyrosine phosphorylation of the high affinity IgE receptor in antigen-activated mast cell? FEBS Lett. 584, 4949–495510.1016/j.febslet.2010.08.045 PubMed DOI
Cahalan M. D. (2009). STIMulating store-operated Ca2+ entry. Nat. Cell Biol. 11, 669–67710.1038/ncb0609-669 PubMed DOI PMC
Cai L., Marshall T. W., Uetrecht A. C., Schafer D. A., Bear J. E. (2007). Coronin 1B coordinates Arp2/3 complex and cofilin activities at the leading edge. Cell 128, 915–92910.1016/j.cell.2007.01.031 PubMed DOI PMC
Calloway N., Vig M., Kinet J. P., Holowka D., Baird B. (2009). Molecular clustering of STIM1 with Orai1/CRACM1 at the plasma membrane depends dynamically on depletion of Ca2+ stores and on electrostatic interactions. Mol. Biol. Cell 20, 389–39910.1091/mbc.E07-11-1132 PubMed DOI PMC
Carlier M. F. (1991). Nucleotide hydrolysis in cytoskeletal assembly. Curr. Opin. Cell Biol. 3, 12–1710.1016/0955-0674(91)90160-Z PubMed DOI
Carlier M. F., Nioche P., Broutin-L’Hermite I., Boujemaa R., Le C. C., Egile C., Garbay C., Ducruix A., Sansonetti P., Pantaloni D. (2000). GRB2 links signaling to actin assembly by enhancing interaction of neural Wiskott-Aldrich syndrome protein (N-WASp) with actin-related protein (ARP2/3) complex. J. Biol. Chem. 275, 21946–2195210.1074/jbc.M000687200 PubMed DOI
Chabin-Brion K., Marceiller J., Perez F., Settegrana C., Drechou A., Durand G., Pous C. (2001). The Golgi complex is a microtubule-organizing organelle. Mol. Biol. Cell 12, 2047–2060 PubMed PMC
Chan C., Beltzner C. C., Pollard T. D. (2009). Cofilin dissociates Arp2/3 complex and branches from actin filaments. Curr. Biol. 19, 537–54510.1016/j.cub.2009.02.060 PubMed DOI PMC
Chou Y. H., Flitney F. W., Chang L., Mendez M., Grin B., Goldman R. D. (2007). The motility and dynamic properties of intermediate filaments and their constituent proteins. Exp. Cell Res. 313, 2236–224310.1016/j.yexcr.2007.04.008 PubMed DOI
Colello D., Reverte C. G., Ward R., Jones C. W., Magidson V., Khodjakov A., LaFlamme S. E. (2010). Androgen and Src signaling regulate centrosome activity. J. Cell Sci. 123, 2094–210210.1242/jcs.057505 PubMed DOI PMC
Coulombe P. A., Wong P. (2004). Cytoplasmic intermediate filaments revealed as dynamic and multipurpose scaffolds. Nat. Cell Biol. 6, 699–70610.1038/ncb0804-699 PubMed DOI
Deng Z., Zink T., Chen H. Y., Walters D., Liu F. T., Liu G. Y. (2009). Impact of actin rearrangement and degranulation on the membrane structure of primary mast cells: a combined atomic force and laser scanning confocal microscopy investigation. Biophys. J. 96, 1629–163910.1016/j.bpj.2008.12.1272 PubMed DOI PMC
Desai A., Mitchison T. J. (1997). Microtubule polymerization dynamics. Annu. Rev. Cell Dev. Biol. 13, 83–11710.1146/annurev.cellbio.13.1.83 PubMed DOI
dos Remedios C. G., Chhabra D., Kekic M., Dedova I. V., Tsubakihara M., Berry D. A., Nosworthy N. J. (2003). Actin binding proteins: regulation of cytoskeletal microfilaments. Physiol. Rev. 83, 433–473 PubMed
Dráber P., Dráberová E. (2012). “Microtubules,” in Cytoskeleton and Human Disease, ed. Kavallaris M. (New York, NY: Humana Press; ), 29–54
Dráber P., Hálová I., Levi-Schaffer F., Dráberová L. (2012). Transmembrane adaptor proteins in the high-affinity IgE receptor signaling. Front. Immunol. 2:95.10.3389/fimmu.2011.00095 PubMed DOI PMC
Dráberová E., Dráber P. (1993). A microtubule-interacting protein involved in coalignment of vimentin intermediate filaments with microtubules. J. Cell Sci. 106, 1263–1273 PubMed
Dráberová L., Dráberová E., Surviladze Z., Dráber Pe., Dráber P. (1999). Protein tyrosine kinase p53/p56lyn form complexes with γ-tubulin in rat basophilic leukemia cells. Int. Immunol. 11, 1829–183910.1093/intimm/11.11.1829 PubMed DOI
Dryková D., Sulimenko V., Cenklová V., Volc J., Dráber P., Binarová P. (2003). Plant γ-tubulin interacts with αβ-tubulin dimers and forms membrane-associated complexes. Plant Cell 15, 465–48010.1105/tpc.007005 PubMed DOI PMC
Dziadek M. A., Johnstone L. S. (2007). Biochemical properties and cellular localisation of STIM proteins. Cell Calcium 42, 123–13210.1016/j.ceca.2007.02.006 PubMed DOI
Eiseman E., Bolen J. B. (1992). Engagement of the high-affinity IgE receptor activates Src protein-related tyrosine kinases. Nature 355, 78–8010.1038/355078a0 PubMed DOI
Faruki S., Geahlen R. L., Asai D. J. (2000). Syk-dependent phosphorylation of microtubules in activated B-lymphocytes. J. Cell Sci. 113, 2557–2565 PubMed
Fernandez J. A., Keshvara L. M., Peters J. D., Furlong M. T., Harrison M. L., Geahlen R. L. (1999). Phosphorylation- and activation-independent association of the tyrosine kinase Syk and the tyrosine kinase substrates Cbl and Vav with tubulin in B-cells. J. Biol. Chem. 274, 1401–140610.1074/jbc.274.3.1401 PubMed DOI
Fifadara N. H., Beer F., Ono S., Ono S. J. (2010). Interaction between activated chemokine receptor 1 and FcepsilonRI at membrane rafts promotes communication and F-actin-rich cytoneme extensions between mast cells. Int. Immunol. 22, 113–12810.1093/intimm/dxp118 PubMed DOI PMC
Firat-Karalar E. N., Welch M. D. (2011). New mechanisms and functions of actin nucleation. Curr. Opin. Cell Biol. 23, 4–1310.1016/j.ceb.2010.10.007 PubMed DOI PMC
Foger N., Jenckel A., Orinska Z., Lee K. H., Chan A. C., Bulfone-Paus S. (2011). Differential regulation of mast cell degranulation versus cytokine secretion by the actin regulatory proteins Coronin1a and Coronin1b. J. Exp. Med. 208, 1777–178710.1084/jem.20101757 PubMed DOI PMC
Foster K. G., Fingar D. C. (2010). Mammalian target of rapamycin (mTOR): conducting the cellular signaling symphony. J. Biol. Chem. 285, 14071–1407710.1074/jbc.M109.029637 PubMed DOI PMC
Frigeri L., Apgar J. R. (1999). The role of actin microfilaments in the down-regulation of the degranulation response in RBL-2H3 mast cells. J. Immunol. 162, 2243–2250 PubMed
Galan C., Dionisio N., Smani T., Salido G. M., Rosado J. A. (2011). The cytoskeleton plays a modulatory role in the association between STIM1 and the Ca2+ channel subunits Orai1 and TRPC1. Biochem. Pharmacol. 82, 400–41010.1016/j.bcp.2011.05.017 PubMed DOI
Galjart N. (2010). Plus-end-tracking proteins and their interactions at microtubule ends. Curr. Biol. 20, R528–R53710.1016/j.cub.2010.05.022 PubMed DOI
Galli S. J., Tsai M., Piliponsky A. M. (2008). The development of allergic inflammation. Nature 454, 445–45410.1038/nature07204 PubMed DOI PMC
Gilfillan A. M., Rivera J. (2009). The tyrosine kinase network regulating mast cell activation. Immunol. Rev. 228, 149–16910.1111/j.1600-065X.2008.00742.x PubMed DOI PMC
Goley E. D., Welch M. D. (2006). The ARP2/3 complex: an actin nucleator comes of age. Nat. Rev. Mol. Cell Biol. 7, 713–72610.1038/nrm2026 PubMed DOI
Green K. J., Bohringer M., Gocken T., Jones J. C. (2005). Intermediate filament associated proteins. Adv. Protein Chem. 70, 143–20210.1016/S0065-3233(05)70006-1 PubMed DOI
Grigoriev I., Gouveia S. M., van der Vaart B., Demmers J., Smyth J. T., Honnappa S., Splinter D., Steinmetz M. O., Putney J. W., Jr., Hoogenraad C. C., Akhmanova A. (2008). STIM1 is a MT-plus-end-tracking protein involved in remodeling of the ER. Curr. Biol. 18, 177–18210.1016/j.cub.2007.12.050 PubMed DOI PMC
Guillemot J. C., Montcourrier P., Vivier E., Davoust J., Chavrier P. (1997). Selective control of membrane ruffling and actin plaque assembly by the Rho GTPases Rac1 and CDC42 in FcεRI-activated rat basophilic leukemia (RBL-2H3) cells. J. Cell Sci. 110, 2215–2225 PubMed
Guzman R. E., Bolanos P., Delgado A., Rojas H., DiPolo R., Caputo C., Jaffe E. H. (2007). Depolymerisation and rearrangement of actin filaments during exocytosis in rat peritoneal mast cells: involvement of ryanodine-sensitive calcium stores. Pflugers Arch. 454, 131–14110.1007/s00424-006-0177-z PubMed DOI
Hájková Z., Bugajev V., Dráberová E., Vinopal S., Dráberová L., Janáček J., Dráber Pe., Dráber P. (2011). STIM1-directed reorganization of microtubules in activated cells. J. Immunol. 186, 913–92310.4049/jimmunol.1002074 PubMed DOI
Hamawy M. M., Mergenhagen S. E., Siraganian R. P. (1994). Adhesion molecules as regulators of mast-cell and basophil function. Immunol. Today 15, 62–6610.1016/0167-5699(94)90135-X PubMed DOI
Hamawy M. M., Oliver C., Mergenhagen S. E., Siraganian R. P. (1992). Adherence of rat basophilic leukemia (RBL-2H3) cells to fibronectin-coated surfaces enhances secretion. J. Immunol. 149, 615–621 PubMed
Heasman S. J., Ridley A. J. (2008). Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat. Rev. Mol. Cell Biol. 9, 690–70110.1038/nrm2476 PubMed DOI
Heneberg P., Dráberová L., Bambousková M., Pompach P., Draber P. (2010). Down-regulation of protein-tyrosine phosphatases activates an immune receptor in the absence of its translocation into lipid rafts. J. Biol. Chem. 285, 12787–1280210.1074/jbc.M109.052555 PubMed DOI PMC
Holowka D., Sheets E. D., Baird B. (2000). Interactions between FcεRI and lipid raft components are regulated by the actin cytoskeleton. J. Cell Sci. 113, 1009–1019 PubMed
Honnappa S., Gouveia S. M., Weisbrich A., Damberger F. F., Bhavesh N. S., Jawhari H., Grigoriev I., van Rijssel F. J., Buey R. M., Lawera A., Jelesarov I., Winkler F. K., Wuthrich K., Akhmanova A., Steinmetz M. O. (2009). An EB1-binding motif acts as a microtubule tip localization signal. Cell 138, 366–37610.1016/j.cell.2009.04.065 PubMed DOI
Horny H. P., Reimann O., Kaiserling E. (1988). Immunoreactivity of normal and neoplastic human tissue mast cells. Am. J. Clin. Pathol. 89, 335–340 PubMed
Inukai K., Funaki M., Nawano M., Katagiri H., Ogihara T., Anai M., Onishi Y., Sakoda H., Ono H., Fukushima Y., Kikuchi M., Oka Y., Asano T. (2000). The N-terminal 34 residues of the 55 kDa regulatory subunits of phosphoinositide 3-kinase interact with tubulin. Biochem. J. 346, 483–48910.1042/0264-6021:3460483 PubMed DOI PMC
Ishizuka T., Okajima F., Ishiwara M., Iizuka K., Ichimonji I., Kawata T., Tsukagoshi H., Dobashi K., Nakazawa T., Mori M. (2001). Sensitized mast cells migrate toward the antigen: a response regulated by p38 mitogen-activated protein kinase and Rho-associated coiled-coil-forming protein kinase. J. Immunol. 167, 2298–2304 PubMed
Izushi K., Fujiwara Y., Tasaka K. (1992). Identification of vimentin in rat peritoneal mast cells and its phosphorylation in association with histamine release. Immunopharmacology 23, 153–16110.1016/0162-3109(92)90021-4 PubMed DOI
Janke C., Bulinski J. C. (2011). Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions. Nat. Rev. Mol. Cell Biol. 12, 773–78610.1038/nrm3227 PubMed DOI
Jordan M. A., Kamath K. (2007). How do microtubule-targeted drugs work? An overview. Curr. Cancer Drug Targets 7, 730–74210.2174/156800907783220417 PubMed DOI
Jouvin M. H. E., Adamczewski M., Numerof R., Letourneur O., Valle A., Kinet J. P. (1994). Differential control of the tyrosine kinases Lyn and Syk by the 2 signaling chains of the high-affinity immunoglobulin-e receptor. J. Biol. Chem. 269, 5918–5925 PubMed
Julian M., Tollon Y., Lajoie-Mazenc I., Moisand A., Mazarguil H., Puget A., Wright M. (1993). γ-Tubulin participates in the formation of midbody during cytokinesis in mammalian cells. J. Cell Sci. 105, 145–156 PubMed
Kalesnikoff J., Galli S. J. (2008). New developments in mast cell biology. Nat. Immunol. 9, 1215–122310.1038/ni.f.216 PubMed DOI PMC
Kapeller R., Toker A., Cantley L. C., Carpenter C. L. (1995). Phosphoinositide 3-kinase binds constitutively to α/β-tubulin and binds to γ-tubulin in response to insulin. J. Biol. Chem. 270, 25985–2599110.1074/jbc.270.43.25985 PubMed DOI
Katagiri K., Katagiri T., Kajiyama K., Yamamoto T., Yoshida T. (1993). Tyrosine-phosphorylation of tubulin during monocytic differentiation of HL-60 cells. J. Immunol. 150, 585–593 PubMed
Katsetos C. D., Dráber P. (2012). Tubulins as therapeutic targets in cancer: from bench to bedside. Curr. Pharm. Des. 18, 2778–2792 PubMed
Kettner A., Kumar L., Anton I. M., Sasahara Y., de la F. M., Pivniouk V. I., Falet H., Hartwig J. H., Geha R. S. (2004). WIP regulates signaling via the high affinity receptor for immunoglobulin E in mast cells. J. Exp. Med. 199, 357–36810.1084/jem.20030652 PubMed DOI PMC
Kim S., Coulombe P. A. (2007). Intermediate filament scaffolds fulfill mechanical, organizational, and signaling functions in the cytoplasm. Genes Dev. 21, 1581–159710.1101/gad.1552107 PubMed DOI
Kodaki T., Woscholski R., Hallberg B., Rodriguez-Viciana P., Downward J., Parker P. J. (1994). The activation of phosphatidylinositol 3-kinase by Ras. Curr. Biol. 4, 798–80610.1016/S0960-9822(00)00177-9 PubMed DOI
Koffer A., Tatham P. E., Gomperts B. D. (1990). Changes in the state of actin during the exocytotic reaction of permeabilized rat mast cells. J. Cell Biol. 111, 919–92710.1083/jcb.111.3.919 PubMed DOI PMC
Kreis T., Vale R. (1999). Guidebook to the Cytoskeletal and Motor Proteins. Oxford: Oxford University Press
Kuehn H. S., Jung M. Y., Beaven M. A., Metcalfe D. D., Gilfillan A. M. (2011). Prostaglandin E2 activates and utilizes mTORC2 as a central signaling locus for the regulation of mast cell chemotaxis and mediator release. J. Biol. Chem. 286, 391–40210.1074/jbc.M110.164772 PubMed DOI PMC
Kuehn H. S., Radinger M., Brown J. M., Ali K., Vanhaesebroeck B., Beaven M. A., Metcalfe D. D., Gilfillan A. M. (2010). Btk-dependent Rac activation and actin rearrangement following FcεRI aggregation promotes enhanced chemotactic responses of mast cells. J. Cell Sci. 123, 2576–258510.1242/jcs.071043 PubMed DOI PMC
Kukharskyy V., Sulimenko V., Macurek L., Sulimenko T., Dráberová E., Dráber P. (2004). Complexes of γ-tubulin with non-receptor protein tyrosine kinases Src and Fyn in differentiating P19 embryonal carcinoma cells. Exp. Cell Res. 298, 218–22810.1016/j.yexcr.2004.04.016 PubMed DOI
Kustermans G., Piette J., Legrand-Poels S. (2008). Actin-targeting natural compounds as tools to study the role of actin cytoskeleton in signal transduction. Biochem. Pharmacol. 76, 1310–132210.1016/j.bcp.2008.08.017 PubMed DOI
Lagunoff D., Martin T. W., Read G. (1983). Agents that release histamine from mast cells. Annu. Rev. Pharmacol. Toxicol. 23, 331–35110.1146/annurev.pa.23.040183.001555 PubMed DOI
Lam V., Kalesnikoff J., Lee C. W., Hernandez-Hansen V., Wilson B. S., Oliver J. M., Krystal G. (2003). IgE alone stimulates mast cell adhesion to fibronectin via pathways similar to those used by IgE+ antigen but distinct from those used by Steel factor. Blood 102, 1405–141310.1182/blood-2002-10-3176 PubMed DOI
Lesourne R., Fridman W. H., Daeron M. (2005). Dynamic interactions of Fcγ receptor IIB with filamin-bound SHIP1 amplify filamentous actin-dependent negative regulation of Fcε receptor I signaling. J. Immunol. 174, 1365–1373 PubMed
Ley S. C., Marsh M., Bebbington C. R., Proudfoot K., Jordan P. (1994). Distinct intracellular-localization of Lck and Fyn protein-tyrosine kinases in human T-lymphocytes. J. Cell Biol. 125, 639–64910.1083/jcb.125.3.639 PubMed DOI PMC
Lin T. C., Gombos L., Neuner A., Sebastian D., Olsen J. V., Hrle A., Benda C., Schiebel E. (2011). Phosphorylation of the yeast γ-tubulin Tub4 regulates microtubule function. PLoS ONE 6, e19700.10.1371/journal.pone.0014557 PubMed DOI PMC
Linhartová I., Dráber P., Dráberová E., Viklický V. (1992). Immunological discrimination of β-tubulin isoforms in developing mouse brain. Posttranslational modification of non-class III β-tubulins. Biochem. J. 288, 919–924 PubMed PMC
Liou J., Fivaz M., Inoue T., Meyer T. (2007). Live-cell imaging reveals sequential oligomerization and local plasma membrane targeting of stromal interaction molecule 1 after Ca2+ store depletion. Proc. Natl. Acad. Sci. U.S.A. 104, 9301–930610.1073/pnas.0607300104 PubMed DOI PMC
Liou J., Kim M. L., Heo W. D., Jones J. T., Myers J. W., Ferrell J. E., Jr., Meyer T. (2005). STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr. Biol. 15, 1235–124110.1016/j.cub.2005.05.055 PubMed DOI PMC
Liu Y., Zhu M., Nishida K., Hirano T., Zhang W. (2007). An essential role for RasGRP1 in mast cell function and IgE-mediated allergic response. J. Exp. Med. 204, 93–10310.1084/jem.20061440 PubMed DOI PMC
Logue J. S., Whiting J. L., Tunquist B., Sacks D. B., Langeberg L. K., Wordeman L., Scott J. D. (2011). AKAP220 protein organizes signaling elements that impact cell migration. J. Biol. Chem. 286, 39269–3928110.1074/jbc.M111.277756 PubMed DOI PMC
Lüders J., Patel U. K., Stearns T. (2006). GCP-WD is a γ-tubulin targeting factor required for centrosomal and chromatin mediated microtubule nucleation. Nat. Cell Biol. 8, 137–14710.1038/ncb1349 PubMed DOI
Ludowyke R. I., Elgundi Z., Kranenburg T., Stehn J. R., Schmitz-Peiffer C., Hughes W. E., Biden T. J. (2006). Phosphorylation of nonmuscle myosin heavy chain IIA on Ser1917 is mediated by protein kinase C βII and coincides with the onset of stimulated degranulation of RBL-2H3 mast cells. J. Immunol. 177, 1492–1499 PubMed
Luduena R. F., Banerjee A. (2008). “The isotypes of tubulin: distribution and functional significance,” in The Role of Microtubules in Cell Biology, Neurobiology and Oncology, ed. Fojo T. (Totowa, NJ: Humana Press; ), 123–175
Lyle K., Kumar P., Wittmann T. (2009a). SnapShot: microtubule regulators I. Cell 136, 380.10.1016/j.cell.2009.01.010 PubMed DOI PMC
Lyle K., Kumar P., Wittmann T. (2009b). SnapShot: microtubule regulators II. Cell 136, 566.10.1016/j.cell.2009.01.010 PubMed DOI PMC
Ma H.-T., Beaven A. (2011). “Regulators of Ca2+ signalling in mast cells: potential targets for treatment of mast cell-related disease,” in Mast Cell Biology: Contemporary and Emerging Topics, eds Gilfillan A. M., Metcalfe D. D. (Heidelberg: Landes Bioscience and Springer Science+Business Media; ), 62–90 PubMed
Ma H. T., Beaven M. A. (2009). Regulation of Ca2+ signaling with particular focus on mast cells. Crit. Rev. Immunol. 29, 155–186 PubMed PMC
Macurek L., Dráberová E., Richterová V., Sulimenko V., Sulimenko T., Dráberová L., Marková V., Dráber P. (2008). Regulation of microtubule nucleation in differentiating embryonal carcinoma cells by complexes of membrane-bound γ-tubulin with Fyn kinase and phosphoinositide 3-kinase. Biochem. J. 416, 421–43010.1042/BJ20080909 PubMed DOI
Malacombe M., Bader M. F., Gasman S. (2006). Exocytosis in neuroendocrine cells: new tasks for actin. Biochim. Biophys. Acta 1763, 1175–118310.1016/j.bbamcr.2006.09.004 PubMed DOI
Marie-Cardine A., Kirchgessner H., Eckerskorn C., Mener S. C., Schraven B. (1995). Human T lymphocyte activation induces tyrosine phosphorylation of α-tubulin and its association with the SH2 domain of the p59fyn protein tyrosine kinase. Eur. J. Immunol. 25, 3290–329710.1002/eji.1830251214 PubMed DOI
Martin-Verdeaux S., Pombo I., Iannascoli B., Roa M., Varin-Blank N., Rivera J., Blank U. (2003). Evidence of a role for Munc18-2 and microtubules in mast cell granule exocytosis. J. Cell Sci. 116, 325–33410.1242/jcs.00216 PubMed DOI
Meininger C. J., Yano H., Rottapel R., Bernstein A., Zsebo K. M., Zetter B. R. (1992). The c-kit receptor ligand functions as a mast cell chemoattractant. Blood 79, 958–963 PubMed
Mercer J. C., Dehaven W. I., Smyth J. T., Wedel B., Boyles R. R., Bird G. S., Putney J. W., Jr. (2006). Large store-operated calcium selective currents due to co-expression of Orai1 or Orai2 with the intracellular calcium sensor, Stim1. J. Biol. Chem. 281, 24979–2499010.1074/jbc.M604589200 PubMed DOI PMC
Mitchison T., Kirschner M. (1984). Dynamic instability of microtubule growth. Nature 312, 237–24210.1038/312232a0 PubMed DOI
Mullins F. M., Park C. Y., Dolmetsch R. E., Lewis R. S. (2009). STIM1 and calmodulin interact with Orai1 to induce Ca2+-dependent inactivation of CRAC channels. Proc. Natl. Acad. Sci. U.S.A. 106, 15495–1550010.1073/pnas.0906781106 PubMed DOI PMC
Murphy S. M., Preble A. M., Patel U. K., O’Connell K. L., Dias D. P., Moritz M., Agard D., Stults J. T., Stearns T. (2001). GCP5 and GCP6: two new members of the human γ-tubulin complex. Mol. Biol. Cell 12, 3340–3352 PubMed PMC
Nahm D. H., Tkaczyk C., Fukuishi N., Colucci-Guyon E., Gilfillan A. M., Metcalfe D. D. (2003). Identification of Fyn-binding proteins in MC/9 mast cells using mass spectrometry. Biochem. Biophys. Res. Commun. 310, 202–20810.1016/j.bbrc.2003.08.132 PubMed DOI
Narasimhan V., Holowka D., Baird B. (1990). Microfilaments regulate the rate of exocytosis in rat basophilic leukemia cells. Biochem. Biophys. Res. Commun. 171, 222–22910.1016/0006-291X(90)91380-B PubMed DOI
Naumanen P., Lappalainen P., Hotulainen P. (2008). Mechanisms of actin stress fibre assembly. J. Microsc. 231, 446–45410.1111/j.1365-2818.2008.02057.x PubMed DOI
Navara C. S., Vassilev A. O., Tibbles H. E., Marks B., Uckun F. M. (1999). The spleen tyrosine kinase (Syk) is present at the centrosome in cultured B-cells. Blood 94, 9A. PubMed
Neisch A. L., Fehon R. G. (2011). Ezrin, Radixin and Moesin: key regulators of membrane-cortex interactions and signaling. Curr. Opin. Cell Biol. 23, 377–38210.1016/j.ceb.2011.04.011 PubMed DOI PMC
Nielsen E. H., Braun K., Johansen T. (1989). Reorganization of the subplasmalemmal cytoskeleton in association with exocytosis in rat mast cells. Histol. Histopathol. 4, 473–477 PubMed
Nishida K., Yamasaki S., Ito Y., Kabu K., Hattori K., Tezuka T., Nishizumi H., Kitamura D., Goitsuka R., Geha R. S., Yamamoto T., Yagi T., Hirano T. (2005). FcεRI-mediated mast cell degranulation requires calcium-independent microtubule-dependent translocation of granules to the plasma membrane. J. Cell Biol. 170, 115–12610.1083/jcb.200501111 PubMed DOI PMC
Nobes C. D., Hall A. (1995). Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81, 53–6210.1016/0092-8674(95)90370-4 PubMed DOI
Nogales E., Wang H. W. (2006). Structural mechanisms underlying nucleotide-dependent self-assembly of tubulin and its relatives. Curr. Opin. Struct. Biol. 16, 221–22910.1016/j.sbi.2006.03.005 PubMed DOI
Nogales E., Wolf S. G., Downing K. H. (1998). Structure of the αβ tubulin dimer by electron crystallography. Nature 391, 199–20310.1038/34465 PubMed DOI
Norman J. C., Price L. S., Ridley A. J., Hall A., Koffer A. (1994). Actin filament organization in activated mast cells is regulated by heterotrimeric and small GTP-binding proteins. J. Cell Biol. 126, 1005–101510.1083/jcb.126.4.1005 PubMed DOI PMC
Norman J. C., Price L. S., Ridley A. J., Koffer A. (1996). The small GTP-binding proteins, Rac and Rho, regulate cytoskeletal organization and exocytosis in mast cells by parallel pathways. Mol. Biol. Cell 7, 1429–1442 PubMed PMC
Nováková M., Dráberová E., Schürmann W., Czihak G., Viklický V., Dráber P. (1996). γ-Tubulin redistribution in taxol-treated mitotic cells probed by monoclonal antibodies. Cell Motil. Cytoskeleton 33, 38–5110.1002/(SICI)1097-0169(1996)33:1<38::AID-CM5>3.0.CO;2-E PubMed DOI
Oakley C. E., Oakley B. R. (1989). Identification of γ-tubulin, a new member of the tubulin superfamily encoded by mipA gene of Aspergillus nidulans. Nature 338, 662–66410.1038/338662a0 PubMed DOI
Oka T., Hori M., Ozaki H. (2005). Microtubule disruption suppresses allergic response through the inhibition of calcium influx in the mast cell degranulation pathway. J. Immunol. 174, 4584–4589 PubMed
Oka T., Hori M., Tanaka A., Matsuda H., Karaki H., Ozaki H. (2004). IgE alone-induced actin assembly modifies calcium signaling and degranulation in RBL-2H3 mast cells. Am. J. Physiol. Cell Physiol. 286, C256–C26310.1152/ajpcell.00197.2003 PubMed DOI
Oka T., Sato K., Hori M., Ozaki H., Karaki H. (2002). FcεRI cross-linking-induced actin assembly mediates calcium signalling in RBL-2H3 mast cells. Br. J. Pharmacol. 136, 837–84610.1038/sj.bjp.0704788 PubMed DOI PMC
Palazzo A. F., Cook T. A., Alberts A. S., Gundersen G. G. (2001). mDia mediates Rho-regulated formation and orientation of stable microtubules. Nat. Cell Biol. 3, 723–72910.1038/35087035 PubMed DOI
Parekh A. B., Putney J. W., Jr. (2005). Store-operated calcium channels. Physiol. Rev. 85, 757–81010.1152/physrev.00057.2003 PubMed DOI
Parravicini V., Gadina M., Kovarova M., Odom S., Gonzalez-Espinosa C., Furumoto Y., Saitoh S., Samelson L. E., O’Shea J. J., Rivera J. (2002). Fyn kinase initiates complementary signals required for IgE-dependent mast cell degranulation. Nat. Immunol. 3, 741–748 PubMed
Parsons J. T., Horwitz A. R., Schwartz M. A. (2010). Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nat. Rev. Mol. Cell Biol. 11, 633–64310.1038/nrm2957 PubMed DOI PMC
Pendleton A., Koffer A. (2001). Effects of latrunculin reveal requirements for the actin cytoskeleton during secretion from mast cells. Cell Motil. Cytoskeleton 48, 37–5110.1002/1097-0169(200101)48:1<37::AID-CM4>3.0.CO;2-0 PubMed DOI
Perrin B. J., Ervasti J. M. (2010). The actin gene family: function follows isoform. Cytoskeleton 67, 630–63410.1002/cm.20475 PubMed DOI PMC
Peters J. D., Furlong M. T., Asai D. J., Harrison M. L., Geahlen R. L. (1996). Syk, activated by cross-linking the B-cell antigen receptor, localizes to the cytosol where it interacts with and phosphorylates α-tubulin on tyrosine. J. Biol. Chem. 271, 4755–476210.1074/jbc.271.44.27241 PubMed DOI
Pfeiffer J. R., Seagrave J. C., Davis B. H., Deanin G. G., Oliver J. M. (1985). Membrane and cytoskeletal changes associated with IgE-mediated serotonin release from rat basophilic leukemia cells. J. Cell Biol. 101, 2145–215510.1083/jcb.101.6.2145 PubMed DOI PMC
Pivniouk V. I., Snapper S. B., Kettner A., Alenius H., Laouini D., Falet H., Hartwig J., Alt F. W., Geha R. S. (2003). Impaired signaling via the high-affinity IgE receptor in Wiskott-Aldrich syndrome protein-deficient mast cells. Int. Immunol. 15, 1431–144010.1093/intimm/dxg148 PubMed DOI
Prakriya M., Feske S., Gwack Y., Srikanth S., Rao A., Hogan P. G. (2006). Orai1 is an essential pore subunit of the CRAC channel. Nature 443, 230–23310.1038/nature05122 PubMed DOI
Price L. S., Langeslag M., ten Klooster J. P., Hordijk P. L., Jalink K., Collard J. G. (2003). Calcium signaling regulates translocation and activation of Rac. J. Biol. Chem. 278, 39413–3942110.1074/jbc.M304519200 PubMed DOI
Price L. S., Norman J. C., Ridley A. J., Koffer A. (1995). The small GTPases Rac and Rho as regulators of secretion in mast cells. Curr. Biol. 5, 68–7310.1016/S0960-9822(95)00046-7 PubMed DOI
Psatha M., Koffer A., Erent M., Moss S. E., Bolsover S. (2004). Calmodulin spatial dynamics in RBL-2H3 mast cells. Cell Calcium 36, 51–5910.1016/j.ceca.2003.11.009 PubMed DOI
Psatha M. I., Razi M., Koffer A., Moss S. E., Sacks D. B., Bolsover S. R. (2007). Targeting of calcium:calmodulin signals to the cytoskeleton by IQGAP1. Cell Calcium 41, 593–60510.1016/j.ceca.2006.10.009 PubMed DOI
Ramesh N., Geha R. (2009). Recent advances in the biology of WASP and WIP. Immunol. Res. 44, 99–11110.1007/s12026-008-8086-1 PubMed DOI
Ridley A. J., Hall A. (1992). The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70, 389–39910.1016/0092-8674(92)90164-8 PubMed DOI
Ridley A. J., Paterson H. F., Johnston C. L., Diekmann D., Hall A. (1992). The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70, 401–41010.1016/0092-8674(92)90164-8 PubMed DOI
Rivera J., Fierro N. A., Olivera A., Suzuki R. (2008). New insights on mast cell activation via the high affinity receptor for IgE. Adv. Immunol. 98, 85–12010.1016/S0065-2776(08)00403-3 PubMed DOI PMC
Robbens J., Louahed J., De Pestel K., Van Colen I., Ampe C., Vandekerckhove J., Renauld J. C. (1998). Murine adseverin (D5), a novel member of the gelsolin family, and murine adseverin are induced by interleukin-9 in T-helper lymphocytes. Mol. Cell Biol. 18, 4589–4596 PubMed PMC
Roos J., DiGregorio P. J., Yeromin A. V., Ohlsen K., Lioudyno M., Zhang S., Safrina O., Kozak J. A., Wagner S. L., Cahalan M. D., Velicelebi G., Stauderman K. A. (2005). STIM1, an essential and conserved component of store-operated Ca2+ channel function. J. Cell Biol. 169, 435–44510.1083/jcb.200502019 PubMed DOI PMC
Sampieri A., Zepeda A., Asanov A., Vaca L. (2009). Visualizing the store-operated channel complex assembly in real time: identification of SERCA2 as a new member. Cell Calcium 45, 439–44610.1016/j.ceca.2009.02.010 PubMed DOI
Schwartz M. A., Schaller M. D., Ginsberg M. H. (1995). Integrins: emerging paradigms of signal transduction. Annu. Rev. Cell Dev. Biol. 11, 549–59910.1146/annurev.cb.11.110195.003001 PubMed DOI
Sells M. A., Pfaff A., Chernoff J. (2000). Temporal and spatial distribution of activated Pak1 in fibroblasts. J. Cell Biol. 151, 1449–145810.1083/jcb.151.7.1449 PubMed DOI PMC
Shimizu T., Owsianik G., Freichel M., Flockerzi V., Nilius B., Vennekens R. (2009). TRPM4 regulates migration of mast cells in mice. Cell Calcium 45, 226–23210.1016/j.ceca.2008.10.005 PubMed DOI
Simon J. R., Graff R. D., Maness P. F. (1998). Microtubule dynamics in a cytosolic extract of fetal rat brain. J. Neurocytol. 27, 119–12610.1023/A:1006999306413 PubMed DOI
Sivalenka R. R., Jessberger R. (2004). SWAP-70 regulates c-kit-induced mast cell activation, cell-cell adhesion, and migration. Mol. Cell Biol. 24, 10277–1028810.1128/MCB.24.23.10277-10288.2004 PubMed DOI PMC
Smith A. J., Pfeiffer J. R., Zhang J., Martinez A. M., Griffiths G. M., Wilson B. S. (2003). Microtubule-dependent transport of secretory vesicles in RBL-2H3 cells. Traffic 4, 302–31210.1034/j.1600-0854.2003.00084.x PubMed DOI
Smyth J. T., Dehaven W. I., Bird G. S., Putney J. W., Jr. (2007). Role of the microtubule cytoskeleton in the function of the store-operated Ca2+ channel activator STIM1. J. Cell Sci. 120, 3762–377110.1242/jcs.015735 PubMed DOI PMC
Smyth J. T., Dehaven W. I., Jones B. F., Mercer J. C., Trebak M., Vazquez G., Putney J. W., Jr. (2006). Emerging perspectives in store-operated Ca2+ entry: roles of Orai, Stim and TRP. Biochim. Biophys. Acta 1763, 1147–116010.1016/j.bbamcr.2006.08.050 PubMed DOI
Spiering D., Hodgson L. (2011). Dynamics of the Rho-family small GTPases in actin regulation and motility. Cell Adh. Migr. 5, 170–18010.4161/cam.5.2.14403 PubMed DOI PMC
Srikanth S., Jung H. J., Kim K. D., Souda P., Whitelegge J., Gwack Y. (2010). A novel EF-hand protein, CRACR2A, is a cytosolic Ca2+ sensor that stabilizes CRAC channels in T cells. Nat. Cell Biol. 12, 436–44610.1038/ncb2045 PubMed DOI PMC
Stearns T., Evans L., Kirschner M. (1991). γ-Tubulin is highly conserved component of the centrosome. Cell 65, 825–83610.1016/0092-8674(91)90390-K PubMed DOI
Struckhoff A. P., Vitko J. R., Rana M. K., Davis C. T., Foderingham K. E., Liu C. H., Vanhoy-Rhodes L., Elliot S., Zhu Y., Burow M., Worthylake R. A. (2010). Dynamic regulation of ROCK in tumor cells controls CXCR4-driven adhesion events. J. Cell Sci. 123, 401–41210.1242/jcs.052167 PubMed DOI PMC
Stumpff J., Duncan T., Homola E., Campbell S. D., Su T. T. (2004). Drosophila Wee1 kinase regulates Cdk1 and mitotic entry during embryogenesis. Curr. Biol. 14, 2143–214810.1016/j.cub.2004.11.050 PubMed DOI PMC
Sulimenko V., Dráberová E., Sulimenko T., Macurek L., Richterová V., Dráber Pe., Dráber P. (2006). Regulation of microtubule formation in activated mast cells by complexes of γ-tubulin with Fyn and Syk kinases. J. Immunol. 176, 7243–7253 PubMed
Sulimenko V., Sulimenko T., Poznanovic S., Nechiporuk-Zloy V., Böhm J. K., Macurek L., Unger E., Dráber P. (2002). Association of brain γ-tubulins with αβ-tubulin dimers. Biochem. J. 365, 889–895 PubMed PMC
Sullivan R., Burnham M., Torok K., Koffer A. (2000). Calmodulin regulates the disassembly of cortical F-actin in mast cells but is not required for secretion. Cell Calcium 28, 33–4610.1054/ceca.2000.0127 PubMed DOI
Sullivan R., Price L. S., Koffer A. (1999). Rho controls cortical F-actin disassembly in addition to, but independently of, secretion in mast cells. J. Biol. Chem. 274, 38140–3814610.1074/jbc.274.53.38140 PubMed DOI
Suzuki R., Liu X., Olivera A., Aguiniga L., Yamashita Y., Blank U., Ambudkar I., Rivera J. (2010). Loss of TRPC1-mediated Ca2+ influx contributes to impaired degranulation in Fyn-deficient mouse bone marrow-derived mast cells. J. Leukoc. Biol. 88, 863–87510.1189/jlb.0510253 PubMed DOI PMC
Tasaka K. (1994). Molecular mechanism of histamine release: the role of intermediate filaments and membrane skeletons. J. Physiol. Pharmacol. 45, 479–492 PubMed
Tasaka K., Mio M., Fujisawa K., Aoki I. (1991). Role of microtubules on Ca2+ release from the endoplasmic-reticulum and associated histamine-release from rat peritoneal mast-cells. Biochem. Pharmacol. 41, 1031–103710.1016/0006-2952(91)90211-M PubMed DOI
Teshima R., Ikebuchi H., Nakanishi M., Sawada J. (1994). Stimulatory effect of pervanadate on calcium signals and histamine secretion of RBL-2H3 cells. Biochem. J. 302, 867–874 PubMed PMC
Thastrup O., Cullen P. J., Drobak B. K., Hanley M. R., Dawson A. P. (1990). Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2+-ATPase. Proc. Natl. Acad. Sci. U.S.A. 87, 2466–247010.1073/pnas.87.7.2466 PubMed DOI PMC
Tolarová H., Dráberová L., Heneberg P., Dráber P. (2004). Involvement of filamentous actin in setting the threshold for degranulation in mast cells. Eur. J. Immunol. 34, 1627–163610.1002/eji.200424991 PubMed DOI
Tumová M., Koffer A., Šimícek M., Dráberová L., Dráber P. (2010). The transmembrane adaptor protein NTAL signals to mast cell cytoskeleton via the small GTPase Rho. Eur. J. Immunol. 40, 3235–324510.1002/eji.201040403 PubMed DOI
Urata C., Siraganian R. P. (1985). Pharmacologic modulation of the IgE or Ca2+ Ionophore A23187 mediated Ca2+ influx, phospholipase activation, and histamine release in rat basophilic leukemia cells. Int. Arch. Allergy Immunol. 78, 92–10010.1159/000233869 PubMed DOI
Verhey K. J., Gaertig J. (2007). The tubulin code. Cell Cycle 6, 2152–216010.4161/cc.6.17.4633 PubMed DOI
Vinopal S., černohorská M., Sulimenko V., Sulimenko T., Vosecká V., Flemr M., Dráberová E., Dráber P. (2012). γ-Tubulin 2 nucleates microtubules and is downregulated in mouse early embryogenesis. PLoS ONE 7, e29919.10.1371/journal.pone.0029919 PubMed DOI PMC
Vogel J., Drapkin B., Oomen J., Beach D., Bloom K., Snyder M. (2001). Phosphorylation of γ-tubulin regulates microtubule organization in budding yeast. Dev. Cell 1, 621–63110.1016/S1534-5807(01)00073-9 PubMed DOI
Wade R. H. (2009). On and around microtubules: an overview. Mol. Biotechnol. 43, 177–19110.1007/s12033-009-9193-5 PubMed DOI
Wade R. H., Hyman A. A. (1997). Microtubule structure and dynamics. Curr. Opin. Cell Biol. 9, 12–1710.1016/S0955-0674(97)80146-9 PubMed DOI
Weller C. L., Collington S. J., Hartnell A., Conroy D. M., Kaise T., Barker J. E., Wilson M. S., Taylor G. W., Jose P. J., Williams T. J. (2007). Chemotactic action of prostaglandin E2 on mouse mast cells acting via the PGE2 receptor 3. Proc. Natl. Acad. Sci. U.S.A. 104, 11712–1171710.1073/pnas.0701700104 PubMed DOI PMC
Westermann S., Weber K. (2003). Post-translational modifications regulate microtubule function. Nat. Rev. Mol. Cell Biol. 4, 938–94510.1038/nrm1260 PubMed DOI
Wilson B. S., Pfeiffer J. R., Oliver J. M. (2000). Observing FcεRI signaling from the inside of the mast cell membrane. J. Cell Biol. 149, 1131–114210.1083/jcb.149.5.1131 PubMed DOI PMC
Wise D. O., Krahe R., Oakley B. R. (2000). The γ-tubulin gene family in humans. Genomics 67, 164–17010.1006/geno.2000.6247 PubMed DOI
Wolff A., Denoulet P., Jeantet C. (1982). High level of tubulin microheterogeneity in the mouse brain. Neurosci. Lett. 31, 323–32810.1016/0304-3940(82)90041-6 PubMed DOI
Wu M. M., Buchanan J., Luik R. M., Lewis R. S. (2006). Ca2+ store depletion causes STIM1 to accumulate in ER regions closely associated with the plasma membrane. J. Cell Biol. 174, 803–81310.1083/jcb.200601113 PubMed DOI PMC
Yanase Y., Hide I., Mihara S., Shirai Y., Saito N., Nakata Y., Hide M., Sakai N. (2011). A critical role of conventional protein kinase C in morphological changes of rodent mast cells. Immunol. Cell Biol. 89, 149–15910.1038/icb.2010.67 PubMed DOI
Yang F. C., Kapur R., King A. J., Tao W., Kim C., Borneo J., Breese R., Marshall M., Dinauer M. C., Williams D. A. (2000). Rac2 stimulates Akt activation affecting BAD/Bcl-XL expression while mediating survival and actin function in primary mast cells. Immunity 12, 557–56810.1016/S1074-7613(00)80207-1 PubMed DOI