Probing an Ixodes ricinus salivary gland yeast surface display with tick-exposed human sera to identify novel candidates for an anti-tick vaccine
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34344917
PubMed Central
PMC8333314
DOI
10.1038/s41598-021-92538-9
PII: 10.1038/s41598-021-92538-9
Knihovny.cz E-zdroje
- MeSH
- antigeny krev imunologie izolace a purifikace MeSH
- Borrelia burgdorferi izolace a purifikace MeSH
- imunizace MeSH
- infestace klíšťaty imunologie parazitologie MeSH
- klíště imunologie MeSH
- kousnutí klíštětem imunologie MeSH
- králíci MeSH
- lidé MeSH
- lymeská nemoc krev parazitologie přenos MeSH
- metody zobrazení buněčného povrchu metody MeSH
- peptidová knihovna MeSH
- peptidové fragmenty imunologie MeSH
- Saccharomyces cerevisiae MeSH
- skot MeSH
- slinné proteiny a peptidy imunologie MeSH
- slinné žlázy imunologie MeSH
- zvířata MeSH
- Check Tag
- králíci MeSH
- lidé MeSH
- mužské pohlaví MeSH
- skot MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antigeny MeSH
- peptidová knihovna MeSH
- peptidové fragmenty MeSH
- slinné proteiny a peptidy MeSH
In Europe, Ixodes ricinus is the most important vector of human infectious diseases, most notably Lyme borreliosis and tick-borne encephalitis virus. Multiple non-natural hosts of I. ricinus have shown to develop immunity after repeated tick bites. Tick immunity has also been shown to impair B. burgdorferi transmission. Most interestingly, multiple tick bites reduced the likelihood of contracting Lyme borreliosis in humans. A vaccine that mimics tick immunity could therefore potentially prevent Lyme borreliosis in humans. A yeast surface display library (YSD) of nymphal I. ricinus salivary gland genes expressed at 24, 48 and 72 h into tick feeding was constructed and probed with antibodies from humans repeatedly bitten by ticks, identifying twelve immunoreactive tick salivary gland proteins (TSGPs). From these, three proteins were selected for vaccination studies. An exploratory vaccination study in cattle showed an anti-tick effect when all three antigens were combined. However, immunization of rabbits did not provide equivalent levels of protection. Our results show that YSD is a powerful tool to identify immunodominant antigens in humans exposed to tick bites, yet vaccination with the three selected TSGPs did not provide protection in the present form. Future efforts will focus on exploring the biological functions of these proteins, consider alternative systems for recombinant protein generation and vaccination platforms and assess the potential of the other identified immunogenic TSGPs.
Biology Centre Institute of Parasitology Czech Academy of Sciences Ceske Budejovice Czech Republic
CIC bioGUNE Basque Research and Technology Alliance 48160 Derio Spain
Ikerbasque Basque Foundation for Science 48012 Bilbao Spain
Institute for Parasitology and Tropical Veterinary Medicine Freie Universität Berlin Berlin Germany
Section of Infectious Diseases Department of Internal Medicine Yale University New Haven CT USA
UCD Conway Institute University College Dublin Belfield Dublin 4 Ireland
Zobrazit více v PubMed
Semenza JC, Suk JE. Vector-borne diseases and climate change: a European perspective. FEMS Microbiol. Lett. 2017 doi: 10.1093/femsle/fnx244. PubMed DOI PMC
Hubálek Z. Epidemiology of lyme borreliosis. Curr. Probl. Dermatol. 2009;37:31–50. doi: 10.1159/000213069. PubMed DOI
van Dam AP, et al. Different genospecies of Borrelia burgdorferi are associated with distinct clinical manifestations of Lyme borreliosis. Clin. Infect. Dis. 1993;17:708–717. doi: 10.1093/clinids/17.4.708. PubMed DOI
Embers ME, Narasimhan S. Vaccination against Lyme disease: past, present, and future. Front. Cell. Infect. Microbiol. 2013;3:6–6. doi: 10.3389/fcimb.2013.00006. PubMed DOI PMC
Crippa M, Rais O, Gern L. Investigations on the Mode and Dynamics of Transmission and Infectivity of Borrelia burgdorferi Sensu Stricto and Borrelia afzelii in Ixodes ricinus Ticks. Vector-Borne Zoonotic Dis. 2002;2:3–9. doi: 10.1089/153036602760260724. PubMed DOI
Pospisilova M, et al. Tracking of Borrelia afzelii transmission from infected Ixodes ricinus nymphs to mice. Infect. Immun. 2019 doi: 10.1128/IAI.00896-18. PubMed DOI PMC
Cook MJ. Lyme borreliosis: a review of data on transmission time after tick attachment. Int. J. Gen. Med. 2014;8:1–8. doi: 10.2147/IJGM.S73791. PubMed DOI PMC
Anguita J, et al. Salp15, an ixodes scapularis salivary protein, inhibits CD4(+) T cell activation. Immunity. 2002;16:849–859. doi: 10.1016/S1074-7613(02)00325-4. PubMed DOI
Chmelar J, Kotal J, Kovarikova A, Kotsyfakis M. The use of tick salivary proteins as novel therapeutics. Front. Physiol. 2019;10:812. doi: 10.3389/fphys.2019.00812. PubMed DOI PMC
Hovius JW, et al. Preferential Protection of Borrelia burgdorferi Sensu Stricto by a Salp 15 Homologue in Ixodes ricinus Saliva. J. Infect. Dis. 2008;198:1189–1197. doi: 10.1086/591917. PubMed DOI PMC
Schuijt TJ, et al. Factor Xa activation of factor V is of paramount importance in initiating the coagulation system: lessons from a tick salivary protein. Circulation. 2013 doi: 10.1161/CIRCULATIONAHA.1113.003191. PubMed DOI PMC
Wagemakers A, Coumou J, Schuijt TJ, Oei A, Nijhof AM, van 't Veer C, van der Poll T, Bins AD, Hovius JW. An ixodes ricinus tick salivary lectin pathway inhibitor protects borrelia burgdorferi sensu lato from human complement. Vector Borne Zoonotic Dis. 2016;16(4):223–8. doi: 10.1089/vbz.2015.1901. PubMed DOI
Francischetti IM, Sa-Nunes A, Mans BJ, Santos IM, Ribeiro JM. The role of saliva in tick feeding. Front. Biosci. (Landmark edition) 2009;14:2051–2088. doi: 10.2741/3363. PubMed DOI PMC
Nuttall PA, Labuda M. Tick-host interactions: saliva-activated transmission. Parasitology. 2004;129(Suppl):S177–189. doi: 10.1017/s0031182004005633. PubMed DOI
Dai J, et al. Tick histamine release factor is critical for Ixodes scapularis Engorgement and transmission of the lyme disease agent. PLoS Pathog. 2010;6:e1001205. doi: 10.1371/journal.ppat.1001205. PubMed DOI PMC
Dai J, et al. Antibodies against a tick protein, Salp15, protect mice from the Lyme disease agent. Cell Host Microbe. 2009;6:482–492. doi: 10.1016/j.chom.2009.10.006. PubMed DOI PMC
Schuijt TJ, et al. A tick mannose-binding lectin inhibitor interferes with the vertebrate complement cascade to enhance transmission of the lyme disease agent. Cell Host Microbe. 2011;10:136–146. doi: 10.1016/j.chom.2011.06.010. PubMed DOI PMC
Trager W. Acquired immunity to ticks. J. Parasitol. 1939;25:57–81. doi: 10.2307/3272160. DOI
Bowessidjaou J, Brossard M, Aeschlimann A. Effects and duration of resistance acquired by rabbits on feeding and egg laying in Ixodes ricinus L. Experientia. 1977;33:528–530. doi: 10.1007/BF01922254. PubMed DOI
Mbow ML, Christe M, Rutti B, Brossard M. Absence of acquired-resistance to nymphal ixodes-ricinus ticks in balb/c mice developing cutaneous reactions. J. Parasitol. 1994;80:81–87. doi: 10.2307/3283349. PubMed DOI
Ribeiro JMC. Role of saliva in tick host interactions. Exp. Appl. Acarol. 1989;7:15–20. doi: 10.1007/bf01200449. PubMed DOI
Wada T, et al. Selective ablation of basophils in mice reveals their nonredundant role in acquired immunity against ticks. J. Clin. Invest. 2010;120:2867–2875. doi: 10.1172/jci42680. PubMed DOI PMC
Brossard M, Wikel SK. Immunology of interactions between ticks and hosts. Med. Vet. Entomol. 1997;11:270–276. doi: 10.1111/j.1365-2915.1997.tb00406.x. PubMed DOI
Brossard M, Wikel S. K. Parasitology. 2004;129:S161–S176. doi: 10.1017/S0031182004004834. PubMed DOI
Wikel SK. Host immunity to ticks. Annu. Rev. Entomol. 1996;41:1–22. doi: 10.1146/annurev.en.41.010196.000245. PubMed DOI
Lawrie CH, Nuttall PA. Antigenic profile of Ixodes ricinus: effect of developmental stage, feeding time and the response of different host species. Parasite Immunol. 2001;23:549–556. doi: 10.1046/j.1365-3024.2001.00412.x. PubMed DOI
Brossard M, Girardin P. Passive transfer of resistance in rabbits infested with adult Ixodes ricinus L: humoral factors influence feeding and egg laying. Experientia. 1979;35:1395–1397. doi: 10.1007/BF01964030. PubMed DOI
Roberts JA, Kerr JD. Boophilus microplus: passive transfer of resistance in cattle. J Parasitol. 1976;62:485–488. doi: 10.2307/3279162. PubMed DOI
Nazario S, et al. Prevention of Borrelia burgdorferi transmission in guinea pigs by tick immunity. Am. J. Trop. Med. Hyg. 1998;58:780–785. doi: 10.4269/ajtmh.1998.58.780. PubMed DOI
Wikel SK, Ramachandra RN, Bergman DK, Burkot TR, Piesman J. Infestation with pathogen-free nymphs of the tick Ixodes scapularis induces host resistance to transmission of Borrelia burgdorferi by ticks. Infect. Immun. 1997;65:335–338. doi: 10.1128/iai.65.1.335-338.1997. PubMed DOI PMC
Narasimhan S, et al. Immunity against Ixodes scapularis Salivary Proteins Expressed within 24 Hours of Attachment Thwarts Tick Feeding and Impairs Borrelia Transmission. PLoS ONE. 2007;2:e451. doi: 10.1371/journal.pone.0000451. PubMed DOI PMC
Moyer MW. The growing global battle against blood-sucking ticks. Nature. 2015;524:406–408. doi: 10.1038/524406a. PubMed DOI
Krause PJ, et al. Dermatologic changes induced by repeated Ixodes scapularis bites and implications for prevention of tick-borne infection. Vector Borne Zoonot. Dis. (Larchmont, NY) 2009;9:603–610. doi: 10.1089/vbz.2008.0091. PubMed DOI PMC
Burke GS, et al. Hypersensitivity to ticks and Lyme disease risk. Emerg. Infect. Dis. 2005;11:36–41. PubMed PMC
Consortium TU. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 2018;47:D506–D515. doi: 10.1093/nar/gky1049. PubMed DOI PMC
Narasimhan S, et al. Ixodes scapularis saliva components that elicit responses associated with acquired tick-resistance. Ticks Tick Borne Dis. 2020;10:1369. doi: 10.1016/j.ttbdis.2019.101369. PubMed DOI PMC
Schuijt TJ, et al. Identification and characterization of Ixodes scapularis antigens that elicit tick immunity using yeast surface display. PLoS ONE. 2011;6:e15926. doi: 10.1371/journal.pone.0015926. PubMed DOI PMC
Pospisilova, T. et al. Tracking of Borrelia afzelii transmission from infected Ixodes ricinus nymphs to mice. Infection and Immunity, IAI.00896–00818, doi:10.1128/IAI.00896-18 (2019). PubMed PMC
Crippa M, Rais O, Gern L. Investigations on the mode and dynamics of transmission and infectivity of Borrelia burgdorferi sensu stricto and Borrelia afzelii in Ixodes ricinus ticks. Vector Borne Zoonot. Dis. (Larchmont, NY) 2002;2:3–9. doi: 10.1089/153036602760260724. PubMed DOI
Piesman J, Mather TN, Sinsky RJ, Spielman A. Duration of tick attachment and Borrelia burgdorferi transmission. J. Clin. Microbiol. 1987;25:557–558. doi: 10.1128/jcm.25.3.557-558.1987. PubMed DOI PMC
Hofhuis A, et al. Decrease in tick bite consultations and stabilization of early Lyme borreliosis in the Netherlands in 2014 after 15 years of continuous increase. BMC Public Health. 2016;16:425. doi: 10.1186/s12889-016-3105-y. PubMed DOI PMC
Chmelař J, Kotál J, Kopecký J, Pedra JHF, Kotsyfakis M. All for one and one for all on the tick-host battlefield. Trends Parasitol. 2016;32:368–377. doi: 10.1016/j.pt.2016.01.004. PubMed DOI PMC
Lewis LA, Radulović ŽM, Kim TK, Porter LM, Mulenga A. Identification of 24h Ixodes scapularis immunogenic tick saliva proteins. Ticks Tick Borne Dis. 2015;6:424–434. doi: 10.1016/j.ttbdis.2015.03.012. PubMed DOI PMC
Robson P, et al. Characterization of lamprin, an unusual matrix protein from lamprey cartilage Implications for evolution, structure, and assembly of elastin and other fibrillar proteins. J. Biol. Chem. 1993;268:1440–1447. doi: 10.1016/S0021-9258(18)54095-3. PubMed DOI
Suppan J, Engel B, Marchetti-Deschmann M, Nürnberger S. Tick attachment cement—reviewing the mysteries of a biological skin plug system. Biol. Rev. 2018;93:1056–1076. doi: 10.1111/brv.12384. PubMed DOI PMC
Krober T, Guerin PM. In vitro feeding assays for hard ticks. Trends Parasitol. 2007;23:445–449. doi: 10.1016/j.pt.2007.07.010. PubMed DOI
Krober T, Guerin PM. An in vitro feeding assay to test acaricides for control of hard ticks. Pest Manag. Sci. 2007;63:17–22. doi: 10.1002/ps.1293. PubMed DOI
Labuda M, et al. An Antivector vaccine protects against a lethal vector-borne pathogen. PLoS Pathog. 2006;2:e27. doi: 10.1371/journal.ppat.0020027. PubMed DOI PMC
Trimnell AR, Davies GM, Lissina O, Hails RS, Nuttall PA. A cross-reactive tick cement antigen is a candidate broad-spectrum tick vaccine. Vaccine. 2005;23:4329–4341. doi: 10.1016/j.vaccine.2005.03.041. PubMed DOI
Trimnell AR, Hails RS, Nuttall PA. Dual action ectoparasite vaccine targeting 'exposed' and 'concealed' antigens. Vaccine. 2002;20:3560–3568. doi: 10.1016/s0264-410x(02)00334-1. PubMed DOI
Hofmeester TR, Sprong H, Jansen PA, Prins HHT, van Wieren SE. Deer presence rather than abundance determines the population density of the sheep tick, Ixodes ricinus, in Dutch forests. Parasit. Vectors. 2017;10:433. doi: 10.1186/s13071-017-2370-7. PubMed DOI PMC
Schwarz A, et al. A systems level analysis reveals transcriptomic and proteomic complexity in Ixodes ricinus midgut and salivary glands during early attachment and feeding. Mol Cell Proteom. 2014;13:2725–2735. doi: 10.1074/mcp.M114.039289. PubMed DOI PMC
Sprong H, et al. ANTIDote: anti-tick vaccines to prevent tick-borne diseases in Europe. Parasit Vectors. 2014 doi: 10.1186/1756-3305-7-77. PubMed DOI PMC
Mulenga A, et al. Molecular characterization of a <em>Haemaphysalis longicornis</em> tick salivary gland-associated 29-kilodalton protein and its effect as a vaccine against tick infestation in rabbits. Infect. Immun. 1999;67:1652. doi: 10.1128/IAI.67.4.1652-1658.1999. PubMed DOI PMC
Raman PM, Ramadass P, Rajavelu G. Evaluation of Saponin and Montanide ISA 50 adjuvants for their immunopotency and effect on humoral immune response of calves to purified midgut antigen of Boophilus microplus. Veterinarski Arhiv. 2004;74:129–140.
Chao, G. et al. Isolating and engineering human antibodies using yeast surface display (vol 1, pg 755, 2006). Nat. Protocol.1 (2006). PubMed
Kuiper H, et al. Lyme borreliosis in dutch forestry workers. J. Infect. 1991;23:279–286. doi: 10.1016/0163-4453(91)92936-Y. PubMed DOI
Kuiper H, van Dam AP, Moll van Charante AW, Nauta NP, Dankert J. One year follow-up study to assess the prevalence and incidence of Lyme borreliosis among Dutch forestry workers. Eur. J. Clin. Microbiol. Infect. Dis. 1993;12:413–418. doi: 10.1007/bf01967434. PubMed DOI
Trentelman JJA, et al. A combined transcriptomic approach to identify candidates for an anti-tick vaccine blocking B afzelii transmission. Sci. Rep. 2020;10:20061. doi: 10.1038/s41598-020-76268-y. PubMed DOI PMC
Sheffield P, Garrard S, Derewenda Z. Overcoming expression and purification problems of RhoGDI using a family of "parallel" expression vectors. Protein Exp. Purif. 1999;15:34–39. doi: 10.1006/prep.1998.1003. PubMed DOI
Knorr S, et al. Preliminary evaluation of tick protein extracts and recombinant ferritin 2 as anti-tick vaccines targeting ixodes ricinus in cattle. Front. Physiol. 2018;9:1. doi: 10.3389/fphys.2018.01696. PubMed DOI PMC
Coumou J, Wagemakers A, Trentelman JJ, Nijhof AM, Hovius JW. Vaccination against bm86 homologues in rabbits does not impair ixodes ricinus feeding or oviposition. PLoS ONE. 2014;10:e0123495. doi: 10.1371/journal.pone.0123495. PubMed DOI PMC
Klouwens MJ, et al. Investigating BB0405 as a novel Borrelia afzelii vaccination candidate in Lyme borreliosis. Sci. Rep. 2021;11:4775. doi: 10.1038/s41598-021-84130-y. PubMed DOI PMC
Wagemakers A, et al. Rapid outer-surface protein C DNA tattoo vaccination protects against Borrelia afzelii infection. Gene Ther. 2014;21:1051–1057. doi: 10.1038/gt.2014.87. PubMed DOI
AlmagroArmenteros JJ, et al. SignalP 50 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 2019;37:420–423. doi: 10.1038/s41587-019-0036-z. PubMed DOI
Krogh A, Larsson B, von Heijne G, Sonnhammer ELL. Predicting transmembrane protein topology with a hidden markov model: application to complete genomes11Edited by F Cohen. J. Mol. Biol. 2001;305:567–580. doi: 10.1006/jmbi.2000.4315. PubMed DOI
Mitchell AL, et al. InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res. 2019;47:D351–D360. doi: 10.1093/nar/gky1100. PubMed DOI PMC