Tracking of Borrelia afzelii Transmission from Infected Ixodes ricinus Nymphs to Mice
Jazyk angličtina Země Spojené státy americké Médium electronic-print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30910791
PubMed Central
PMC6529662
DOI
10.1128/iai.00896-18
PII: IAI.00896-18
Knihovny.cz E-zdroje
- Klíčová slova
- Borrelia, Borrelia afzelii, Ixodes ricinus, Lyme disease, tick-borne pathogens, transmission,
- MeSH
- arachnida jako vektory mikrobiologie fyziologie MeSH
- Borrelia burgdorferi komplex fyziologie MeSH
- klíště mikrobiologie fyziologie MeSH
- lidé MeSH
- lymeská nemoc mikrobiologie přenos MeSH
- myši inbrední C3H MeSH
- myši MeSH
- nymfa mikrobiologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Quantitative and microscopic tracking of Borrelia afzelii transmission from infected Ixodes ricinus nymphs has shown a transmission cycle different from that of Borrelia burgdorferi and Ixodes scapularisBorrelia afzelii organisms are abundant in the guts of unfed I. ricinus nymphs, and their numbers continuously decrease during feeding. Borrelia afzelii spirochetes are present in murine skin within 1 day of tick attachment. In contrast, spirochetes were not detectable in salivary glands at any stage of tick feeding. Further experiments demonstrated that tick saliva is not essential for B. afzelii infectivity, the most important requirement for successful host colonization being a change in expression of outer surface proteins that occurs in the tick gut during feeding. Spirochetes in vertebrate mode are then able to survive within the host even in the absence of tick saliva. Taken together, our data suggest that the tick gut is the decisive organ that determines the competence of I. ricinus to vector B. afzelii We discuss possible transmission mechanisms of B. afzelii spirochetes that should be further tested in order to design effective preventive and therapeutic strategies against Lyme disease.
Zobrazit více v PubMed
Lane RS, Piesman J, Burgdorfer W. 1991. Lyme borreliosis: relation of its causative agent to its vectors and hosts in North America and Europe. Annu Rev Entomol 36:587–609. doi:10.1146/annurev.en.36.010191.003103. PubMed DOI
Benach JL, Coleman JL, Skinner RA, Bosler EM. 1987. Adult Ixodes dammini on rabbits: a hypothesis for the development and transmission of Borrelia burgdorferi. J Infect Dis 155:1300–1306. doi:10.1093/infdis/155.6.1300. PubMed DOI
Ribeiro JM, Mather TN, Piesman J, Spielman A. 1987. Dissemination and salivary delivery of Lyme disease spirochetes in vector ticks (Acari: Ixodidae). J Med Entomol 24:201–205. PubMed
Burgdorfer W. 1984. Discovery of the Lyme disease spirochete and its relation to tick vectors. Yale J Biol Med 57:515–520. PubMed PMC
Cook MJ. 2015. Lyme borreliosis: a review of data on transmission time after tick attachment. Int J Gen Med 8:1–8. doi:10.2147/IJGM.S73791. PubMed DOI PMC
Piesman J, Oliver JR, Sinsky RJ. 1990. Growth kinetics of the Lyme disease spirochete (Borrelia burgdorferi) in vector ticks (Ixodes dammini). Am J Trop Med Hyg 42:352–357. doi:10.4269/ajtmh.1990.42.352. PubMed DOI
Schwan TG, Piesman J, Golde WT, Dolan MC, Rosa PA. 1995. Induction of an outer surface protein on Borrelia burgdorferi during tick feeding. Proc Natl Acad Sci U S A 92:2909–2913. doi:10.1073/pnas.92.7.2909. PubMed DOI PMC
Pal U, Yang X, Chen M, Bockenstedt LK, Anderson JF, Flavell RA, Norgard MV, Fikrig E. 2004. OspC facilitates Borrelia burgdorferi invasion of Ixodes scapularis salivary glands. J Clin Investig 113:220–230. doi:10.1172/JCI200419894. PubMed DOI PMC
Carroll JA, Cordova RM, Garon CF. 2000. Identification of 11 pH-regulated genes in Borrelia burgdorferi localizing to linear plasmids. Infect Immun 68:6677–6684. doi:10.1128/IAI.68.12.6677-6684.2000. PubMed DOI PMC
De Silva AM, Fikrig E. 1995. Growth and migration of Borrelia burgdorferi in Ixodes ticks during blood feeding. Am J Trop Med Hyg 53:397–404. doi:10.4269/ajtmh.1995.53.397. PubMed DOI
Piesman J, Schneider BS, Zeidner NS. 2001. Use of quantitative PCR to measure density of Borrelia burgdorferi in the midgut and salivary glands of feeding tick vectors. J Clin Microbiol 39:4145–4148. doi:10.1128/JCM.39.11.4145-4148.2001. PubMed DOI PMC
Stevenson B, Schwan TG, Rosa PA. 1995. Temperature-related differential expression of antigens in the Lyme disease spirochete, Borrelia burgdorferi. Infect Immun 63:4535–4539. PubMed PMC
Crippa M, Rais O, Gern L. 2002. Investigations on the mode and dynamics of transmission and infectivity of Borrelia burgdorferi sensu stricto and Borrelia afzelii in Ixodes ricinus ticks. Vector Borne Zoonotic Dis 2:3–9. doi:10.1089/153036602760260724. PubMed DOI
Genné D, Sarr A, Gomez-Chamorro A, Durand J, Cayol C, Rais O, Voordouw MJ. 2018. Competition between strains of Borrelia afzelii inside the rodent host and the tick vector. Proc R Soc B 285:20181804. doi:10.1098/rspb.2018.1804. PubMed DOI PMC
Cayol C, Giermek A, Gomez-Chamorro A, Hytönen J, Kallio ER, Mappes T, Salo J, Voordouw MJ, Koskela E. 2018. Borrelia afzelii alters reproductive success in a rodent host. Proc R Soc B 285:20181056. doi:10.1098/rspb.2018.1056. PubMed DOI PMC
Stĕpánová-Tresová G, Kopecký J, Kuthejlová M. 2000. Identification of Borrelia burgdorferi sensu stricto, Borrelia garinii and Borrelia afzelii in Ixodes ricinus ticks from southern Bohemia using monoclonal antibodies. Zentralbl Bakteriol 289:797–806. doi:10.1016/S0934-8840(00)80005-5. PubMed DOI
Ribeiro JMC, Alarcon-Chaidez F, Francischetti IMB, Mans BJ, Mather TN, Valenzuela JG, Wikel SK. 2006. An annotated catalog of salivary gland transcripts from Ixodes scapularis ticks. Insect Biochem Mol Biol 36:111–129. doi:10.1016/j.ibmb.2005.11.005. PubMed DOI
Hajdušek O, Síma R, Ayllón N, Jalovecká M, Perner J, de la Fuente J, Kopáček P. 2013. Interaction of the tick immune system with transmitted pathogens. Front Cell Infect Microbiol 3:26. doi:10.3389/fcimb.2013.00026. PubMed DOI PMC
Sprong H, Trentelman J, Seemann I, Grubhoffer L, Rego ROM, Hajdušek O, Kopáček P, Sima R, Nijhof AM, Anguita J, Winter P, Rotter B, Havlíková S, Klempa B, Schetters TP, Hovius J. 2014. ANTIDotE: anti-tick vaccines to prevent tick-borne diseases in Europe. Parasit Vectors 7:77. doi:10.1186/1756-3305-7-77. PubMed DOI PMC
Ohnishi J, Piesman J, de Silva AM. 2001. Antigenic and genetic heterogeneity of Borrelia burgdorferi populations transmitted by ticks. Proc Natl Acad Sci U S A 98:670–675. doi:10.1073/pnas.98.2.670. PubMed DOI PMC
de Silva AM, Telford SR, Brunet LR, Barthold SW, Fikrig E. 1996. Borrelia burgdorferi OspA is an arthropod-specific transmission-blocking Lyme disease vaccine. J Exp Med 183:271–275. doi:10.1084/jem.183.1.271. PubMed DOI PMC
Fikrig E, Feng W, Barthold SW, Telford SR, Flavell RA. 2000. Arthropod- and host-specific Borrelia burgdorferi bbk32 expression and the inhibition of spirochete transmission. J Immunol 164:5344–5351. doi:10.4049/jimmunol.164.10.5344. PubMed DOI
Lackum K, Stevenson B. 2005. Carbohydrate utilization by the Lyme borreliosis spirochete, Borrelia burgdorferi. FEMS Microbiol Lett 243:173–179. doi:10.1016/j.femsle.2004.12.002. PubMed DOI
Radolf JD, Caimano MJ, Stevenson B, Hu LT. 2012. Of ticks, mice and men: understanding the dual-host lifestyle of Lyme disease spirochaetes. Nat Rev Microbiol 10:87–99. doi:10.1038/nrmicro2714. PubMed DOI PMC
Hodzic E, Feng S, Freet KJ, Borjesson DL, Barthold SW. 2002. Borrelia burgdorferi population kinetics and selected gene expression at the host-vector interface. Infect Immun 70:3382–3388. doi:10.1128/IAI.70.7.3382-3388.2002. PubMed DOI PMC
Nuttall P, Labuda M. 2008. Saliva-assisted transmission of tick-borne pathogens. Cambridge University Press, Cambridge, United Kingdom.
Kazimírová M, Štibrániová I. 2013. Tick salivary compounds: their role in modulation of host defences and pathogen transmission. Front Cell Infect Microbiol 3:43. doi:10.3389/fcimb.2013.00043. PubMed DOI PMC
Francischetti IMB, Sa-Nunes A, Mans BJ, Santos IM, Ribeiro J. 2009. The role of saliva in tick feeding. Front Biosci 14:2051–2088. PubMed PMC
Šimo L, Kazimirova M, Richardson J, Bonnet SI. 2017. The essential role of tick salivary glands and saliva in tick feeding and pathogen transmission. Front Cell Infect Microbiol 7:281. doi:10.3389/fcimb.2017.00281. PubMed DOI PMC
Hubner A, Yang X, Nolen DM, Popova TG, Cabello FC, Norgard MV. 2001. Expression of Borrelia burgdorferi OspC and DbpA is controlled by a RpoN-RpoS regulatory pathway. Proc Natl Acad Sci U S A 98:12724–12729. doi:10.1073/pnas.231442498. PubMed DOI PMC
He M, Oman T, Xu H, Blevins J, Norgard MV, Yang XF. 2008. Abrogation of ospAB constitutively activates the Rrp2-RpoN-RpoS pathway (sigmaN-sigmaS cascade) in Borrelia burgdorferi. Mol Microbiol 70:1453–1464. doi:10.1111/j.1365-2958.2008.06491.x. PubMed DOI PMC
Kasumba IN, Bestor A, Tilly K, Rosa PA. 2016. Virulence of the Lyme disease spirochete before and after the tick bloodmeal: a quantitative assessment. Parasit Vectors 9:129. doi:10.1186/s13071-016-1380-1. PubMed DOI PMC
Zung JL, Lewengrub S, Rudzinska MA, Spielman A, Telford SR, Piesman J. 1989. Fine structural evidence for the penetration of the Lyme disease spirochete Borrelia burgdorferi through the gut and salivary tissues of Ixodes dammini. Can J Zool 67:1737–1748. doi:10.1139/z89-249. DOI
Dunham-Ems SM, Caimano MJ, Pal U, Wolgemuth CW, Eggers CH, Balic A, Radolf JD. 2009. Live imaging reveals a biphasic mode of dissemination of Borrelia burgdorferi within ticks. J Clin Investig 119:3652–3665. doi:10.1172/JCI39401. PubMed DOI PMC
Piesman J, Schneider BS. 2002. Dynamic changes in Lyme disease spirochetes during transmission by nymphal ticks. Exp Appl Acarol 28:141–145. doi:10.1023/A:1025351727785. PubMed DOI
Urbanová V, Hajdušek O, Mondeková HH, Šíma R, Kopáček P. 2017. Tick thioester-containing proteins and phagocytosis do not affect transmission of Borrelia afzelii from the competent vector Ixodes ricinus. Front Cell Infect Microbiol 7:73. doi:10.3389/fcimb.2017.00073. PubMed DOI PMC
Urbanová V, Hajdušek O, Šíma R, Franta Z, Hönig-Mondeková H, Grunclová L, Bartošová-Sojková P, Jalovecká M, Kopáček P. 2018. IrC2/Bf–a yeast and Borrelia responsive component of the complement system from the hard tick Ixodes ricinus. Dev Comp Immunol 79:86–94. doi:10.1016/j.dci.2017.10.012. PubMed DOI
Honig Mondekova H, Sima R, Urbanova V, Kovar V, Rego ROM, Grubhoffer L, Kopacek P, Hajdusek O. 2017. Characterization of Ixodes ricinus fibrinogen-related proteins (ixoderins) discloses their function in the tick innate immunity. Front Cell Infect Microbiol 7:509. doi:10.3389/fcimb.2017.00509. PubMed DOI PMC
Golovchenko M, Sima R, Hajdusek O, Grubhoffer L, Oliver JH, Rudenko N. 2014. Invasive potential of Borrelia burgdorferi sensu stricto ospC type L strains increases the possible disease risk to humans in the regions of their distribution. Parasit Vectors 7:538. doi:10.1186/s13071-014-0538-y. PubMed DOI PMC
Boudova L, Kazakov DV, Sima R, Vanecek T, Torlakovic E, Lamovec J, Kutzner H, Szepe P, Plank L, Bouda J, Hes O, Mukensnabl P, Michal M. 2005. Cutaneous lymphoid hyperplasia and other lymphoid infiltrates of the breast nipple: a retrospective clinicopathologic study of fifty-six patients. Am J Dermatopathol 27:375–386. doi:10.1097/01.dad.0000179463.55129.8a. PubMed DOI
Bunikis J, Garpmo U, Tsao J, Berglund J, Fish D, Barbour AG. 2004. Sequence typing reveals extensive strain diversity of the Lyme borreliosis agents Borrelia burgdorferi in North America and Borrelia afzelii in Europe. Microbiology 150:1741–1755. doi:10.1099/mic.0.26944-0. PubMed DOI
Schwaiger M, Peter O, Cassinotti P. 2001. Routine diagnosis of Borrelia burgdorferi (sensu lato) infections using a real-time PCR assay. Clin Microbiol Infect 7:461–469. doi:10.1046/j.1198-743x.2001.00282.x. PubMed DOI
Dai J, Wang P, Adusumilli S, Booth CJ, Narasimhan S, Anguita J, Fikrig E. 2009. Antibodies against a tick protein, Salp15, protect mice from the Lyme disease agent. Cell Host Microbe 6:482–492. doi:10.1016/j.chom.2009.10.006. PubMed DOI PMC
Pfaffl MW. 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45. doi:10.1093/nar/29.9.e45. PubMed DOI PMC
Koci J, Derdakova M, Peterkova K, Kazimirova M, Selyemova D, Labuda M. 2006. Borrelia afzelii gene expression in Ixodes ricinus (Acari: Ixodidae) ticks. Vector Borne Zoonotic Dis 6:296–304. doi:10.1089/vbz.2006.6.296. PubMed DOI
Fipronil prevents transmission of Lyme disease spirochetes
Pathogenicity and virulence of Borrelia burgdorferi
Insight Into the Dynamics of the Ixodes ricinus Nymphal Midgut Proteome
Experimental Infection of Mice and Ticks with the Human Isolate of Anaplasma phagocytophilum NY-18
Lyme disease transmission by severely impaired ticks
Ixodes ricinus Salivary Serpin Iripin-8 Inhibits the Intrinsic Pathway of Coagulation and Complement
Tick Immune System: What Is Known, the Interconnections, the Gaps, and the Challenges
Putative morphology of Neoehrlichia mikurensis in salivary glands of Ixodes ricinus