Tracking of Borrelia afzelii Transmission from Infected Ixodes ricinus Nymphs to Mice

. 2019 Jun ; 87 (6) : . [epub] 20190521

Jazyk angličtina Země Spojené státy americké Médium electronic-print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30910791

Quantitative and microscopic tracking of Borrelia afzelii transmission from infected Ixodes ricinus nymphs has shown a transmission cycle different from that of Borrelia burgdorferi and Ixodes scapularisBorrelia afzelii organisms are abundant in the guts of unfed I. ricinus nymphs, and their numbers continuously decrease during feeding. Borrelia afzelii spirochetes are present in murine skin within 1 day of tick attachment. In contrast, spirochetes were not detectable in salivary glands at any stage of tick feeding. Further experiments demonstrated that tick saliva is not essential for B. afzelii infectivity, the most important requirement for successful host colonization being a change in expression of outer surface proteins that occurs in the tick gut during feeding. Spirochetes in vertebrate mode are then able to survive within the host even in the absence of tick saliva. Taken together, our data suggest that the tick gut is the decisive organ that determines the competence of I. ricinus to vector B. afzelii We discuss possible transmission mechanisms of B. afzelii spirochetes that should be further tested in order to design effective preventive and therapeutic strategies against Lyme disease.

Zobrazit více v PubMed

Lane RS, Piesman J, Burgdorfer W. 1991. Lyme borreliosis: relation of its causative agent to its vectors and hosts in North America and Europe. Annu Rev Entomol 36:587–609. doi:10.1146/annurev.en.36.010191.003103. PubMed DOI

Benach JL, Coleman JL, Skinner RA, Bosler EM. 1987. Adult Ixodes dammini on rabbits: a hypothesis for the development and transmission of Borrelia burgdorferi. J Infect Dis 155:1300–1306. doi:10.1093/infdis/155.6.1300. PubMed DOI

Ribeiro JM, Mather TN, Piesman J, Spielman A. 1987. Dissemination and salivary delivery of Lyme disease spirochetes in vector ticks (Acari: Ixodidae). J Med Entomol 24:201–205. PubMed

Burgdorfer W. 1984. Discovery of the Lyme disease spirochete and its relation to tick vectors. Yale J Biol Med 57:515–520. PubMed PMC

Cook MJ. 2015. Lyme borreliosis: a review of data on transmission time after tick attachment. Int J Gen Med 8:1–8. doi:10.2147/IJGM.S73791. PubMed DOI PMC

Piesman J, Oliver JR, Sinsky RJ. 1990. Growth kinetics of the Lyme disease spirochete (Borrelia burgdorferi) in vector ticks (Ixodes dammini). Am J Trop Med Hyg 42:352–357. doi:10.4269/ajtmh.1990.42.352. PubMed DOI

Schwan TG, Piesman J, Golde WT, Dolan MC, Rosa PA. 1995. Induction of an outer surface protein on Borrelia burgdorferi during tick feeding. Proc Natl Acad Sci U S A 92:2909–2913. doi:10.1073/pnas.92.7.2909. PubMed DOI PMC

Pal U, Yang X, Chen M, Bockenstedt LK, Anderson JF, Flavell RA, Norgard MV, Fikrig E. 2004. OspC facilitates Borrelia burgdorferi invasion of Ixodes scapularis salivary glands. J Clin Investig 113:220–230. doi:10.1172/JCI200419894. PubMed DOI PMC

Carroll JA, Cordova RM, Garon CF. 2000. Identification of 11 pH-regulated genes in Borrelia burgdorferi localizing to linear plasmids. Infect Immun 68:6677–6684. doi:10.1128/IAI.68.12.6677-6684.2000. PubMed DOI PMC

De Silva AM, Fikrig E. 1995. Growth and migration of Borrelia burgdorferi in Ixodes ticks during blood feeding. Am J Trop Med Hyg 53:397–404. doi:10.4269/ajtmh.1995.53.397. PubMed DOI

Piesman J, Schneider BS, Zeidner NS. 2001. Use of quantitative PCR to measure density of Borrelia burgdorferi in the midgut and salivary glands of feeding tick vectors. J Clin Microbiol 39:4145–4148. doi:10.1128/JCM.39.11.4145-4148.2001. PubMed DOI PMC

Stevenson B, Schwan TG, Rosa PA. 1995. Temperature-related differential expression of antigens in the Lyme disease spirochete, Borrelia burgdorferi. Infect Immun 63:4535–4539. PubMed PMC

Crippa M, Rais O, Gern L. 2002. Investigations on the mode and dynamics of transmission and infectivity of Borrelia burgdorferi sensu stricto and Borrelia afzelii in Ixodes ricinus ticks. Vector Borne Zoonotic Dis 2:3–9. doi:10.1089/153036602760260724. PubMed DOI

Genné D, Sarr A, Gomez-Chamorro A, Durand J, Cayol C, Rais O, Voordouw MJ. 2018. Competition between strains of Borrelia afzelii inside the rodent host and the tick vector. Proc R Soc B 285:20181804. doi:10.1098/rspb.2018.1804. PubMed DOI PMC

Cayol C, Giermek A, Gomez-Chamorro A, Hytönen J, Kallio ER, Mappes T, Salo J, Voordouw MJ, Koskela E. 2018. Borrelia afzelii alters reproductive success in a rodent host. Proc R Soc B 285:20181056. doi:10.1098/rspb.2018.1056. PubMed DOI PMC

Stĕpánová-Tresová G, Kopecký J, Kuthejlová M. 2000. Identification of Borrelia burgdorferi sensu stricto, Borrelia garinii and Borrelia afzelii in Ixodes ricinus ticks from southern Bohemia using monoclonal antibodies. Zentralbl Bakteriol 289:797–806. doi:10.1016/S0934-8840(00)80005-5. PubMed DOI

Ribeiro JMC, Alarcon-Chaidez F, Francischetti IMB, Mans BJ, Mather TN, Valenzuela JG, Wikel SK. 2006. An annotated catalog of salivary gland transcripts from Ixodes scapularis ticks. Insect Biochem Mol Biol 36:111–129. doi:10.1016/j.ibmb.2005.11.005. PubMed DOI

Hajdušek O, Síma R, Ayllón N, Jalovecká M, Perner J, de la Fuente J, Kopáček P. 2013. Interaction of the tick immune system with transmitted pathogens. Front Cell Infect Microbiol 3:26. doi:10.3389/fcimb.2013.00026. PubMed DOI PMC

Sprong H, Trentelman J, Seemann I, Grubhoffer L, Rego ROM, Hajdušek O, Kopáček P, Sima R, Nijhof AM, Anguita J, Winter P, Rotter B, Havlíková S, Klempa B, Schetters TP, Hovius J. 2014. ANTIDotE: anti-tick vaccines to prevent tick-borne diseases in Europe. Parasit Vectors 7:77. doi:10.1186/1756-3305-7-77. PubMed DOI PMC

Ohnishi J, Piesman J, de Silva AM. 2001. Antigenic and genetic heterogeneity of Borrelia burgdorferi populations transmitted by ticks. Proc Natl Acad Sci U S A 98:670–675. doi:10.1073/pnas.98.2.670. PubMed DOI PMC

de Silva AM, Telford SR, Brunet LR, Barthold SW, Fikrig E. 1996. Borrelia burgdorferi OspA is an arthropod-specific transmission-blocking Lyme disease vaccine. J Exp Med 183:271–275. doi:10.1084/jem.183.1.271. PubMed DOI PMC

Fikrig E, Feng W, Barthold SW, Telford SR, Flavell RA. 2000. Arthropod- and host-specific Borrelia burgdorferi bbk32 expression and the inhibition of spirochete transmission. J Immunol 164:5344–5351. doi:10.4049/jimmunol.164.10.5344. PubMed DOI

Lackum K, Stevenson B. 2005. Carbohydrate utilization by the Lyme borreliosis spirochete, Borrelia burgdorferi. FEMS Microbiol Lett 243:173–179. doi:10.1016/j.femsle.2004.12.002. PubMed DOI

Radolf JD, Caimano MJ, Stevenson B, Hu LT. 2012. Of ticks, mice and men: understanding the dual-host lifestyle of Lyme disease spirochaetes. Nat Rev Microbiol 10:87–99. doi:10.1038/nrmicro2714. PubMed DOI PMC

Hodzic E, Feng S, Freet KJ, Borjesson DL, Barthold SW. 2002. Borrelia burgdorferi population kinetics and selected gene expression at the host-vector interface. Infect Immun 70:3382–3388. doi:10.1128/IAI.70.7.3382-3388.2002. PubMed DOI PMC

Nuttall P, Labuda M. 2008. Saliva-assisted transmission of tick-borne pathogens. Cambridge University Press, Cambridge, United Kingdom.

Kazimírová M, Štibrániová I. 2013. Tick salivary compounds: their role in modulation of host defences and pathogen transmission. Front Cell Infect Microbiol 3:43. doi:10.3389/fcimb.2013.00043. PubMed DOI PMC

Francischetti IMB, Sa-Nunes A, Mans BJ, Santos IM, Ribeiro J. 2009. The role of saliva in tick feeding. Front Biosci 14:2051–2088. PubMed PMC

Šimo L, Kazimirova M, Richardson J, Bonnet SI. 2017. The essential role of tick salivary glands and saliva in tick feeding and pathogen transmission. Front Cell Infect Microbiol 7:281. doi:10.3389/fcimb.2017.00281. PubMed DOI PMC

Hubner A, Yang X, Nolen DM, Popova TG, Cabello FC, Norgard MV. 2001. Expression of Borrelia burgdorferi OspC and DbpA is controlled by a RpoN-RpoS regulatory pathway. Proc Natl Acad Sci U S A 98:12724–12729. doi:10.1073/pnas.231442498. PubMed DOI PMC

He M, Oman T, Xu H, Blevins J, Norgard MV, Yang XF. 2008. Abrogation of ospAB constitutively activates the Rrp2-RpoN-RpoS pathway (sigmaN-sigmaS cascade) in Borrelia burgdorferi. Mol Microbiol 70:1453–1464. doi:10.1111/j.1365-2958.2008.06491.x. PubMed DOI PMC

Kasumba IN, Bestor A, Tilly K, Rosa PA. 2016. Virulence of the Lyme disease spirochete before and after the tick bloodmeal: a quantitative assessment. Parasit Vectors 9:129. doi:10.1186/s13071-016-1380-1. PubMed DOI PMC

Zung JL, Lewengrub S, Rudzinska MA, Spielman A, Telford SR, Piesman J. 1989. Fine structural evidence for the penetration of the Lyme disease spirochete Borrelia burgdorferi through the gut and salivary tissues of Ixodes dammini. Can J Zool 67:1737–1748. doi:10.1139/z89-249. DOI

Dunham-Ems SM, Caimano MJ, Pal U, Wolgemuth CW, Eggers CH, Balic A, Radolf JD. 2009. Live imaging reveals a biphasic mode of dissemination of Borrelia burgdorferi within ticks. J Clin Investig 119:3652–3665. doi:10.1172/JCI39401. PubMed DOI PMC

Piesman J, Schneider BS. 2002. Dynamic changes in Lyme disease spirochetes during transmission by nymphal ticks. Exp Appl Acarol 28:141–145. doi:10.1023/A:1025351727785. PubMed DOI

Urbanová V, Hajdušek O, Mondeková HH, Šíma R, Kopáček P. 2017. Tick thioester-containing proteins and phagocytosis do not affect transmission of Borrelia afzelii from the competent vector Ixodes ricinus. Front Cell Infect Microbiol 7:73. doi:10.3389/fcimb.2017.00073. PubMed DOI PMC

Urbanová V, Hajdušek O, Šíma R, Franta Z, Hönig-Mondeková H, Grunclová L, Bartošová-Sojková P, Jalovecká M, Kopáček P. 2018. IrC2/Bf–a yeast and Borrelia responsive component of the complement system from the hard tick Ixodes ricinus. Dev Comp Immunol 79:86–94. doi:10.1016/j.dci.2017.10.012. PubMed DOI

Honig Mondekova H, Sima R, Urbanova V, Kovar V, Rego ROM, Grubhoffer L, Kopacek P, Hajdusek O. 2017. Characterization of Ixodes ricinus fibrinogen-related proteins (ixoderins) discloses their function in the tick innate immunity. Front Cell Infect Microbiol 7:509. doi:10.3389/fcimb.2017.00509. PubMed DOI PMC

Golovchenko M, Sima R, Hajdusek O, Grubhoffer L, Oliver JH, Rudenko N. 2014. Invasive potential of Borrelia burgdorferi sensu stricto ospC type L strains increases the possible disease risk to humans in the regions of their distribution. Parasit Vectors 7:538. doi:10.1186/s13071-014-0538-y. PubMed DOI PMC

Boudova L, Kazakov DV, Sima R, Vanecek T, Torlakovic E, Lamovec J, Kutzner H, Szepe P, Plank L, Bouda J, Hes O, Mukensnabl P, Michal M. 2005. Cutaneous lymphoid hyperplasia and other lymphoid infiltrates of the breast nipple: a retrospective clinicopathologic study of fifty-six patients. Am J Dermatopathol 27:375–386. doi:10.1097/01.dad.0000179463.55129.8a. PubMed DOI

Bunikis J, Garpmo U, Tsao J, Berglund J, Fish D, Barbour AG. 2004. Sequence typing reveals extensive strain diversity of the Lyme borreliosis agents Borrelia burgdorferi in North America and Borrelia afzelii in Europe. Microbiology 150:1741–1755. doi:10.1099/mic.0.26944-0. PubMed DOI

Schwaiger M, Peter O, Cassinotti P. 2001. Routine diagnosis of Borrelia burgdorferi (sensu lato) infections using a real-time PCR assay. Clin Microbiol Infect 7:461–469. doi:10.1046/j.1198-743x.2001.00282.x. PubMed DOI

Dai J, Wang P, Adusumilli S, Booth CJ, Narasimhan S, Anguita J, Fikrig E. 2009. Antibodies against a tick protein, Salp15, protect mice from the Lyme disease agent. Cell Host Microbe 6:482–492. doi:10.1016/j.chom.2009.10.006. PubMed DOI PMC

Pfaffl MW. 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45. doi:10.1093/nar/29.9.e45. PubMed DOI PMC

Koci J, Derdakova M, Peterkova K, Kazimirova M, Selyemova D, Labuda M. 2006. Borrelia afzelii gene expression in Ixodes ricinus (Acari: Ixodidae) ticks. Vector Borne Zoonotic Dis 6:296–304. doi:10.1089/vbz.2006.6.296. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Activation of the tick Toll pathway to control infection of Ixodes ricinus by the apicomplexan parasite Babesia microti

. 2024 Dec ; 20 (12) : e1012743. [epub] 20241216

Fipronil prevents transmission of Lyme disease spirochetes

. 2024 Aug ; 151 (9) : 953-961. [epub] 20241120

Pathogenicity and virulence of Borrelia burgdorferi

. 2023 Dec ; 14 (1) : 2265015. [epub] 20231009

Insight Into the Dynamics of the Ixodes ricinus Nymphal Midgut Proteome

. 2023 Nov ; 22 (11) : 100663. [epub] 20231012

Experimental Infection of Mice and Ticks with the Human Isolate of Anaplasma phagocytophilum NY-18

. 2022 Jul 21 ; 11 (7) : . [epub] 20220721

Lyme disease transmission by severely impaired ticks

. 2022 Feb ; 12 (2) : 210244. [epub] 20220216

Ixodes ricinus Salivary Serpin Iripin-8 Inhibits the Intrinsic Pathway of Coagulation and Complement

. 2021 Aug 31 ; 22 (17) : . [epub] 20210831

Probing an Ixodes ricinus salivary gland yeast surface display with tick-exposed human sera to identify novel candidates for an anti-tick vaccine

. 2021 Aug 03 ; 11 (1) : 15745. [epub] 20210803

Host tropism determination by convergent evolution of immunological evasion in the Lyme disease system

. 2021 Jul ; 17 (7) : e1009801. [epub] 20210729

Tick Immune System: What Is Known, the Interconnections, the Gaps, and the Challenges

. 2021 ; 12 () : 628054. [epub] 20210302

A combined transcriptomic approach to identify candidates for an anti-tick vaccine blocking B. afzelii transmission

. 2020 Nov 18 ; 10 (1) : 20061. [epub] 20201118

Putative morphology of Neoehrlichia mikurensis in salivary glands of Ixodes ricinus

. 2020 Sep 29 ; 10 (1) : 15987. [epub] 20200929

Design of a broadly reactive Lyme disease vaccine

. 2020 ; 5 (1) : 33. [epub] 20200501

Identification of Tick Ixodes ricinus Midgut Genes Differentially Expressed During the Transmission of Borrelia afzelii Spirochetes Using a Transcriptomic Approach

. 2020 ; 11 () : 612412. [epub] 20210204

The Use of Tick Salivary Proteins as Novel Therapeutics

. 2019 ; 10 () : 812. [epub] 20190626

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...