Pathogenicity and virulence of Borrelia burgdorferi
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy, práce podpořená grantem
PubMed
37814488
PubMed Central
PMC10566445
DOI
10.1080/21505594.2023.2265015
Knihovny.cz E-zdroje
- Klíčová slova
- Borrelia burgdorferi, Lyme disease, clinical manifestations, pathogenicity, tick-borne disease, virulence determinants,
- MeSH
- Borrelia burgdorferi * genetika MeSH
- faktory virulence MeSH
- lidé MeSH
- lymeská nemoc * MeSH
- savci MeSH
- virulence MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- faktory virulence MeSH
Infection with Borrelia burgdorferi often triggers pathophysiologic perturbations that are further augmented by the inflammatory responses of the host, resulting in the severe clinical conditions of Lyme disease. While our apprehension of the spatial and temporal integration of the virulence determinants during the enzootic cycle of B. burgdorferi is constantly being improved, there is still much to be discovered. Many of the novel virulence strategies discussed in this review are undetermined. Lyme disease spirochaetes must surmount numerous molecular and mechanical obstacles in order to establish a disseminated infection in a vertebrate host. These barriers include borrelial relocation from the midgut of the feeding tick to its body cavity and further to the salivary glands, deposition to the skin, haematogenous dissemination, extravasation from blood circulation system, evasion of the host immune responses, localization to protective niches, and establishment of local as well as distal infection in multiple tissues and organs. Here, the various well-defined but also possible novel strategies and virulence mechanisms used by B. burgdorferi to evade obstacles laid out by the tick vector and usually the mammalian host during colonization and infection are reviewed.
Biology Centre CAS Institute of Parasitology České Budějovice Czech Republic
Faculty of Science University of South Bohemia Branišovská Czech Republic
Zobrazit více v PubMed
Kugeler KJ, Schwartz AM, Delorey MJ, et al. Estimating the frequency of Lyme disease Diagnoses, United States, 2010–2018. Emerg Infect Dis. 2021;27(2):616–31. doi: 10.3201/eid2702.202731 PubMed DOI PMC
Sylvie Goddyn WF, Peterle A, Octavia Sârbu D, et al. MOTION for a RESOLUTION on Lyme disease (borreliosis) | B8-0514/2018 | European Parliament [Internet]. [cited 2022 Oct 27]. Available from: https://www.europarl.europa.eu/doceo/document/B-8-2018-0514_EN.html
Stanek G, Strle F.. Lyme borreliosis–from tick bite to diagnosis and treatment. FEMS Microbiol Rev. 2018;42(3):233–258. doi: 10.1093/femsre/fux047 PubMed DOI
Strnad M, Grubhoffer L, Rego ROM. Novel targets and strategies to combat borreliosis. Appl Microbiol Biotechnol. 2020;104(5):1915–1925. doi: 10.1007/s00253-020-10375-8 PubMed DOI PMC
Jauris-Heipke S, Fuchs R, Motz M, et al. Genetic heterogenity of the genes coding for the outer surface protein C (OspC) and the flagellin of Borrelia burgdorferi. Med Microbiol Immunol. 1993;182(1):37–50. doi: 10.1007/BF00195949 PubMed DOI
Roberts WC, Mullikin BA, Lathigra R, et al. Molecular analysis of sequence heterogeneity among genes encoding decorin binding proteins a and B of Borrelia burgdorferi Sensu Lato. Infect Immun. 1998;66(11):5275–5285. doi: 10.1128/IAI.66.11.5275-5285.1998 PubMed DOI PMC
Comstedt P, Schüler W, Meinke A, et al. The novel Lyme borreliosis vaccine VLA15 shows broad protection against Borrelia species expressing six different OspA serotypes. PLoS One. 2017;12(9):e0184357. doi: 10.1371/journal.pone.0184357 PubMed DOI PMC
Coburn J, Garcia B, Hu LT, et al. Lyme disease pathogenesis. Curr Issues Mol Biol. 2021;42:473–518. doi: 10.21775/cimb.042.473 PubMed DOI PMC
Strnad M, Rego ROM. The need to unravel the twisted nature of the Borrelia burgdorferi sensu lato complex across Europe. Microbiol (Reading). 2020;166(5):428–435. doi: 10.1099/mic.0.000899 PubMed DOI
Stewart PE, Byram R, Grimm D, et al. The plasmids of Borrelia burgdorferi: essential genetic elements of a pathogen. Plasmid. 2005;53(1):1–13. doi: 10.1016/j.plasmid.2004.10.006 PubMed DOI
Vancová M, Bílý T, Šimo L, et al. Three-dimensional reconstruction of the feeding apparatus of the tick Ixodes ricinus (Acari: ixodidae): a new insight into the mechanism of blood-feeding. Sci Rep. 2020;10(1):165. doi: 10.1038/s41598-019-56811-2 PubMed DOI PMC
Dunham-Ems SM, Caimano MJ, Pal U, et al. Live imaging reveals a biphasic mode of dissemination of Borrelia burgdorferi within ticks. J Clin Invest. 2009;119(12):3652–3665. doi: 10.1172/JCI39401 PubMed DOI PMC
Strnad M, Oh YJ, Vancová M, et al. Nanomechanical mechanisms of Lyme disease spirochete motility enhancement in extracellular matrix. Commun Biol. 2021;4(1):1–9. doi: 10.1038/s42003-021-01783-1 PubMed DOI PMC
Moriarty TJ, Norman MU, Colarusso P, et al. Real-time high resolution 3D imaging of the lyme disease spirochete adhering to and escaping from the vasculature of a living host. PLOS Pathog. 2008;4(6):e1000090. doi: 10.1371/journal.ppat.1000090 PubMed DOI PMC
Fraser CM, Casjens S, Huang WM, et al. Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature. 1997;390(6660):580–586. doi: 10.1038/37551 PubMed DOI
Casjens SR, Mongodin EF, Qiu W-G, et al. Whole-genome sequences of two Borrelia afzelii and two Borrelia garinii Lyme disease agent isolates. J Bacteriol. 2011;193(24):6995–6996. doi: 10.1128/JB.05951-11 PubMed DOI PMC
Meriläinen L, Herranen A, Schwarzbach A, et al. Morphological and biochemical features of Borrelia burgdorferi pleomorphic forms. Microbiology (Reading). 2015;161(3):516–527. doi: 10.1099/mic.0.000027 PubMed DOI PMC
Rudenko N, Golovchenko M, Kybicova K, et al. Metamorphoses of Lyme disease spirochetes: phenomenon of Borrelia persisters. Parasites Vectors. 2019;12(1):237. doi: 10.1186/s13071-019-3495-7 PubMed DOI PMC
Karvonen K, Nykky J, Marjomäki V, et al. Distinctive evasion mechanisms to allow persistence of Borrelia burgdorferi in different human cell lines. Front Microbiol. 2021;12:711291. doi: 10.3389/fmicb.2021.711291 PubMed DOI PMC
Karvonen K, Tammisto H, Nykky J, et al. Borrelia burgdorferi Outer Membrane Vesicles Contain Antigenic Proteins, but Do Not Induce Cell Death in Human Cells. Microorganisms. 2022;10(2):212. doi: 10.3390/microorganisms10020212 PubMed DOI PMC
Kuhn HW, Lasseter AG, Adams PP, et al. BB0562 is a nutritional virulence determinant with lipase activity important for Borrelia burgdorferi infection and survival in fatty acid deficient environments. PLOS Pathogens. 2021;17(8):e1009869. doi: 10.1371/journal.ppat.1009869 PubMed DOI PMC
Klose M, Scheungrab M, Luckner M, et al. FIB-SEM-based analysis of Borrelia intracellular processing by human macrophages. J Cell Sci. 2021;134:jcs252320. doi: 10.1242/jcs.252320 PubMed DOI
Narasimhan S, Rajeevan N, Liu L, et al. Gut microbiota of the tick vector Ixodes scapularis modulate colonization of the Lyme disease spirochete. Cell Host Microbe. 2014;15(1):58–71. doi: 10.1016/j.chom.2013.12.001 PubMed DOI PMC
Herrmann C, Gern L. Search for blood or water is influenced by Borrelia burgdorferi in Ixodes ricinus. Parasites Vectors. 2015;8(1):6. doi: 10.1186/s13071-014-0526-2 PubMed DOI PMC
Yuste RA, Muenkel M, Axarlis K, et al. Borrelia burgdorferi modulates the physical forces and immunity signaling in endothelial cells. iScience. 2022;25(8):104793. doi: 10.1016/j.isci.2022.104793 PubMed DOI PMC
Lin Y-P, Diuk-Wasser MA, Stevenson B, et al. Complement evasion contributes to Lyme borreliae–host associations. Trends Parasitol. 2020;36(7):634–645. doi: 10.1016/j.pt.2020.04.011 PubMed DOI PMC
Coburn J, Leong J, Chaconas G. Illuminating the roles of the Borrelia burgdorferi adhesins. Trends Microbiol. 2013;21(8):372–379. doi: 10.1016/j.tim.2013.06.005 PubMed DOI PMC
Hyde JA. Borrelia burgdorferi keeps moving and carries on: a review of borrelial dissemination and invasion. Front Immunol. 2017;8:114. doi: 10.3389/fimmu.2017.00114 PubMed DOI PMC
Kurokawa C, Lynn GE, Pedra JHF, et al. Interactions between Borrelia burgdorferi and ticks. Nat Rev Microbiol. 2020;18(10):587–600. doi: 10.1038/s41579-020-0400-5 PubMed DOI PMC
Schutzer SE, Berger BW, Krueger JG, et al. Atypical erythema migrans in patients with PCR-Positive Lyme disease. Emerg Infect Dis. 2013;19(5):815–817. doi: 10.3201/eid1905.120796 PubMed DOI PMC
Waddell LA, Greig J, Mascarenhas M, et al. The accuracy of diagnostic tests for Lyme disease in humans, a Systematic review and meta-analysis of North American research. PLoS One. 2016;11(12):e0168613. doi: 10.1371/journal.pone.0168613 PubMed DOI PMC
Baarsma ME, Schellekens J, Meijer BC, et al. Diagnostic parameters of modified two-tier testing in European patients with early Lyme disease. Eur J Clin Microbiol Infect Dis. 2020;39(11):2143–2152. doi: 10.1007/s10096-020-03946-0 PubMed DOI PMC
Davis IRC, McNeil SA, Allen W, et al. Performance of a modified two-tiered testing enzyme immunoassay algorithm for serologic diagnosis of Lyme disease in Nova Scotia. J Clin Microbiol. 2020;58(7):e01841–19. doi: 10.1128/JCM.01841-19 PubMed DOI PMC
Branda JA, Steere AC. Laboratory Diagnosis of Lyme Borreliosis. Clin Microbiol Rev. 2021;34(2):e00018–19. doi: 10.1128/CMR.00018-19 PubMed DOI PMC
Ang CW, Brandenburg AH, van Burgel ND, et al. A Dutch nationwide evaluation of serological assays for detection of Borrelia antibodies in clinically well-defined patients. Diagn Microbiol Infect Dis. 2015;83(3):222–228. doi: 10.1016/j.diagmicrobio.2015.07.007 PubMed DOI
Joyner G, Mavin S, Milner R, et al. Introduction of IgM testing for the diagnosis of acute Lyme borreliosis: a study of the benefits, limitations and costs. Eur J Clin Microbiol Infect Dis. 2022;41(4):671–675. doi: 10.1007/s10096-021-04366-4 PubMed DOI PMC
Sabin AP, Scholze BP, Lovrich SD, et al. Clinical evaluation of a Borrelia modified two-tiered testing (MTTT) shows increased early sensitivity for Borrelia burgdorferi but not other endemic Borrelia species in a high incidence region for Lyme disease in Wisconsin. Diagn Microbiol Infect Dis. 2023;105(1):115837. doi: 10.1016/j.diagmicrobio.2022.115837 PubMed DOI
Wilske B, Fingerle V, Schulte-Spechtel U. Microbiological and serological diagnosis of Lyme borreliosis. FEMS Immunol Med Microbiol. 2007;49(1):13–21. doi: 10.1111/j.1574-695X.2006.00139.x PubMed DOI
Kalish RA, McHugh G, Granquist J, et al. Persistence of Immunoglobulin M or Immunoglobulin G Antibody Responses to Borrelia burgdorferi 10–20 Years after Active Lyme Disease. Clin Infect Dis. 2001;33(6):780–785. doi: 10.1086/322669 PubMed DOI
Krogen I, Skarphédinsson S, Jensen TG, et al. No correlation between symptom duration and intrathecal production of IgM and/or IgG antibodies in Lyme neuroborreliosis – a retrospective cohort study in Denmark. J Infect. 2022;85(5):507–512. doi: 10.1016/j.jinf.2022.08.045 PubMed DOI
Lantos PM, Rumbaugh J, Bockenstedt LK, et al. Clinical practice guidelines by the infectious Diseases Society of America (IDSA), American Academy of Neurology (AAN), and American College of Rheumatology (ACR): 2020 guidelines for the Prevention, diagnosis, and treatment of Lyme disease. Arthritis Care Res (Hoboken). 2021;73(1):1–9. doi: 10.1002/acr.24495 PubMed DOI
Crossland NA, Alvarez X, Embers ME. Late disseminated Lyme disease. Am J Pathol. 2018;188(3):672–682. doi: 10.1016/j.ajpath.2017.11.005 PubMed DOI PMC
Stanek G, Fingerle V, Hunfeld K-P, et al. Lyme borreliosis: Clinical case definitions for diagnosis and management in Europe. Clin Microbiol Infect. 2011;17(1):69–79. doi: 10.1111/j.1469-0691.2010.03175.x PubMed DOI
Bobe JR, Jutras BL, Horn EJ, et al. Recent Progress in Lyme Disease and Remaining Challenges. Front Med. 2021;8:666554. doi: 10.3389/fmed.2021.666554 PubMed DOI PMC
Wong KH, Shapiro ED, Soffer GK. A review of post-treatment Lyme disease syndrome and chronic Lyme disease for the practicing immunologist. Clin Rev Allergy Immunol. 2022;62(1):264–271. doi: 10.1007/s12016-021-08906-w PubMed DOI
Jutras BL, Lochhead RB, Kloos ZA, et al. Borrelia burgdorferi peptidoglycan is a persistent antigen in patients with Lyme arthritis. Proc Natl Acad Sci U S A. 2019;116(27):13498–13507. doi: 10.1073/pnas.1904170116 PubMed DOI PMC
Rudenko N, Golovchenko M. Sexual transmission of Lyme Borreliosis? The question that calls for an answer. Trop Med Infect Dis. 2021;6(2):87. doi: 10.3390/tropicalmed6020087 PubMed DOI PMC
Majerová K, Hönig V, Houda M, et al. Hedgehogs, squirrels, and blackbirds as sentinel hosts for active surveillance of Borrelia miyamotoi and Borrelia burgdorferi complex in urban and rural environments. Microorganisms. 2020;8(12):E1908. doi: 10.3390/microorganisms8121908 PubMed DOI PMC
Rudenko N, Golovchenko M, Grubhoffer L, et al. Updates on Borrelia burgdorferi sensu lato complex with respect to public health. Ticks Tick Borne Dis. 2011;2(3):123–128. doi: 10.1016/j.ttbdis.2011.04.002 PubMed DOI PMC
Clark KL, Leydet B, Hartman S. Lyme borreliosis in human patients in Florida and Georgia, USA. Int J Med Sci. 2013;10(7):915–931. doi: 10.7150/ijms.6273 PubMed DOI PMC
Steere AC. Lyme disease. N Engl J Med. 1989;321(9):586–596. doi: 10.1056/NEJM198908313210906 PubMed DOI
Oschmann P, Dorndorf W, Hornig C, et al. Stages and syndromes of neuroborreliosis. J Neurol. 1998;245(5):262–272. doi: 10.1007/s004150050216 PubMed DOI
Ornstein K, Berglund J, Nilsson I, et al. Characterization of Lyme borreliosis isolates from patients with erythema migrans and neuroborreliosis in southern Sweden. J Clin Microbiol. 2001;39(4):1294–1298. doi: 10.1128/JCM.39.4.1294-1298.2001 PubMed DOI PMC
Ruzić-Sabljić E, Maraspin V, Lotric-Furlan S, et al. Characterization of Borrelia burgdorferi sensu lato strains isolated from human material in Slovenia. Wien Klin Wochenschr. 2002;114:544–550. PubMed
Steere AC, Strle F, Wormser GP, et al. Lyme borreliosis. Nat Rev Dis Primers. 2016;2(1):16090. doi: 10.1038/nrdp.2016.90 PubMed DOI PMC
Grange F, Wechsler J, Guillaume J-C, et al. Borrelia burgdorferi-associated lymphocytoma cutis simulating a primary cutaneous large B-cell lymphoma. J Am Acad Dermatol. 2002;47(4):530–534. doi: 10.1067/mjd.2002.120475 PubMed DOI
Smetanick MT, Zellis SL, Ermolovich T. Acrodermatitis chronica atrophicans: a case report and review of the literature. Cutis. 2010;85:247–252. PubMed
Picken RN, Strle F, Picken MM, et al. Identification of three species of Borrelia burgdorferi sensu lato (B. burgdorferi sensu stricto, B. garinii, and B. afzelii) among isolates from acrodermatitis chronica atrophicans lesions. J Invest Dermatol. 1998;110(3):211–214. doi: 10.1046/j.1523-1747.1998.00130.x PubMed DOI
Strle F, Picken RN, Cheng Y, et al. Clinical findings for patients with Lyme borreliosis caused by Borrelia burgdorferi sensu lato with genotypic and phenotypic similarities to strain 25015. Clin Infect Dis. 1997;25(2):273–280. doi: 10.1086/514551 PubMed DOI
Margos G, Lane RS, Fedorova N, et al. Borrelia bissettiae sp. nov. and Borrelia californiensis sp. nov. prevail in diverse enzootic transmission cycles. Int J Syst Evol Microbiol. 2016;66(3):1447–1452. doi: 10.1099/ijsem.0.000897 PubMed DOI PMC
Rudenko N, Golovchenko M, Růzek D, et al. Molecular detection of Borrelia bissettii DNA in serum samples from patients in the Czech Republic with suspected borreliosis. FEMS Microbiol Lett. 2009;292(2):274–281. doi: 10.1111/j.1574-6968.2009.01498.x PubMed DOI
Rudenko N, Golovchenko M, Mokrácek A, et al. Detection of Borrelia bissettii in cardiac valve tissue of a patient with endocarditis and aortic valve stenosis in the Czech Republic. J Clin Microbiol. 2008;46(10):3540–3543. doi: 10.1128/JCM.01032-08 PubMed DOI PMC
Collares-Pereira M, Couceiro S, Franca I, et al. First isolation of Borrelia lusitaniae from a human patient. J Clin Microbiol. 2004;42(3):1316–1318. doi: 10.1128/JCM.42.3.1316-1318.2004 PubMed DOI PMC
Diza E, Papa A, Vezyri E, et al. Borrelia valaisiana in cerebrospinal fluid. Emerging Infect Dis. 2004;10(9):1692–1693. doi: 10.3201/eid1009.030439 PubMed DOI PMC
Margos G, Sing A, Fingerle V. Published data do not support the notion that Borrelia valaisiana is human pathogenic. Infection. 2017;45(4):567–569. doi: 10.1007/s15010-017-1032-1 PubMed DOI
Eliassen KE, Ocias LF, Krogfelt KA, et al. Tick-transmitted co-infections among erythema migrans patients in a general practice setting in Norway: a clinical and laboratory follow-up study. BMC Infect Dis. 2021;21(1):1044. doi: 10.1186/s12879-021-06755-8 PubMed DOI PMC
Cassatt DR, Patel NK, Ulbrandt ND, et al. DbpA, but not OspA, is expressed by Borrelia burgdorferi during spirochetemia and is a target for protective antibodies. Infect Immun. 1998;66(11):5379–5387. doi: 10.1128/IAI.66.11.5379-5387.1998 PubMed DOI PMC
Hanson MS, Cassatt DR, Guo BP, et al. Active and passive immunity against Borrelia burgdorferi decorin binding protein a (DbpA) protects against infection. Infect Immun. 1998;66(5):2143–2153. doi: 10.1128/IAI.66.5.2143-2153.1998 PubMed DOI PMC
Brown EL, Kim JH, Reisenbichler ES, et al. Multicomponent Lyme vaccine: three is not a crowd. Vaccine. 2005;23(28):3687–3696. doi: 10.1016/j.vaccine.2005.02.006 PubMed DOI
Earnhart CG, Marconi RT. An octavalent lyme disease vaccine induces antibodies that recognize all incorporated OspC type-specific sequences. Hum Vaccin. 2007;3(6):281–289. doi: 10.4161/hv.4661 PubMed DOI
Kumar M, Kaur S, Kariu T, et al. Borrelia burgdorferi BBA52 is a potential target for transmission blocking Lyme disease vaccine. Vaccine. 2011;29(48):9012–9019. doi: 10.1016/j.vaccine.2011.09.035 PubMed DOI PMC
Klouwens MJ, Trentelman JJ, Ersoz JI, et al. Investigating BB0405 as a novel Borrelia afzelii vaccination candidate in Lyme borreliosis. Sci Rep. 2021;11(1):4775. doi: 10.1038/s41598-021-84130-y PubMed DOI PMC
Singh P, Verma D, Backstedt BT, et al. Borrelia burgdorferi BBI39 paralogs, targets of protective immunity, reduce pathogen persistence either in hosts or in the vector. J Infect Dis. 2017;215(6):1000–1009. doi: 10.1093/infdis/jix036 PubMed DOI PMC
Nigrovic LE, Thompson KM. The Lyme vaccine: a cautionary tale. Epidemiol Infect. 2007;135(1):1–8. doi: 10.1017/S0950268806007096 PubMed DOI PMC
Shaffer L. Inner workings: lyme disease vaccines face familiar challenges, both societal and scientific. Proc Natl Acad Sci U S A. 2019;116(39):19214–19217. doi: 10.1073/pnas.1913923116 PubMed DOI PMC
Bézay N, Hochreiter R, Kadlecek V, et al. Safety and immunogenicity of a novel multivalent OspA-based vaccine candidate against Lyme borreliosis: a randomised, phase 1 study in healthy adults. Lancet Infect Dis. 2023;S1473-3099(23):210–214. doi: 10.1016/S1473-3099(23)00210-4 PubMed DOI
Earnhart CG, Buckles EL, Marconi RT. Development of an OspC-based tetravalent, recombinant, chimeric vaccinogen that elicits bactericidal antibody against diverse Lyme disease spirochete strains. Vaccine. 2007;25(3):466–480. doi: 10.1016/j.vaccine.2006.07.052 PubMed DOI
Wressnigg N, Pöllabauer E-M, Aichinger G, et al. Safety and immunogenicity of a novel multivalent OspA vaccine against Lyme borreliosis in healthy adults: a double-blind, randomised, dose-escalation phase 1/2 trial. Lancet Infect Dis. 2013;13(8):680–689. doi: 10.1016/S1473-3099(13)70110-5 PubMed DOI
Kamp HD, Swanson KA, Wei RR, et al. Design of a broadly reactive Lyme disease vaccine. NPJ Vaccines. 2020;5(1):33. doi: 10.1038/s41541-020-0183-8 PubMed DOI PMC
Nayak A, Schüler W, Seidel S, et al. Broadly protective multivalent OspA vaccine against Lyme borreliosis, developed based on surface shaping of the C-Terminal fragment. Infect Immun. 2020;88(4):e00917–19. doi: 10.1128/IAI.00917-19 PubMed DOI PMC
Klouwens MJ, Trentelman JJA, Wagemakers A, et al. Tick-Tattoo: DNA vaccination against B. burgdorferi or Ixodes scapularis Tick proteins. Front Immunol. 2021;12:615011. doi: 10.3389/fimmu.2021.615011 PubMed DOI PMC
Wagemakers A, Mason LMK, Oei A, et al. Rapid outer-surface protein C DNA tattoo vaccination protects against Borrelia afzelii infection. Gene Ther. 2014;21(12):1051–1057. doi: 10.1038/gt.2014.87 PubMed DOI
Pfeifle A, Thulasi Raman SN, Lansdell C, et al. DNA lipid nanoparticle vaccine targeting outer surface protein C affords protection against homologous Borrelia burgdorferi needle challenge in mice. Front Immunol. 2023;14:1020134. doi: 10.3389/fimmu.2023.1020134 PubMed DOI PMC
Saade F, Petrovsky N. Technologies for enhanced efficacy of DNA vaccines. Expert Rev Vaccines. 2012;11(2):189–209. doi: 10.1586/erv.11.188 PubMed DOI PMC
Rosa PA, Jewett MW. Genetic manipulation of Borrelia. Curr Issues Mol Biol. 2021;42:307–332. doi: 10.21775/cimb.042.307 PubMed DOI PMC
Samuels DS. Electrotransformation of the spirochete Borrelia burgdorferi. Methods Mol Biol. 1995;47:253–259. PubMed PMC
Rosa PA, Tilly K, Stewart PE. The burgeoning molecular genetics of the Lyme disease spirochaete. Nat Rev Microbiol. 2005;3(2):129–143. doi: 10.1038/nrmicro1086 PubMed DOI
Stewart PE, Hoff J, Fischer E, et al. Genome-wide transposon mutagenesis of Borrelia burgdorferi for identification of phenotypic mutants. Appl Environ Microbiol. 2004;70(10):5973–5979. doi: 10.1128/AEM.70.10.5973-5979.2004 PubMed DOI PMC
Botkin DJ, Abbott AN, Stewart PE, et al. Identification of potential virulence determinants by Himar1 transposition of infectious Borrelia burgdorferi B31. Infect Immun. 2006;74(12):6690–6699. doi: 10.1128/IAI.00993-06 PubMed DOI PMC
Lin T, Gao L, Zhang C, et al. Analysis of an ordered, Comprehensive STM mutant Library in infectious Borrelia burgdorferi: insights into the genes required for mouse infectivity. PLoS One. 2012;7(10):e47532. doi: 10.1371/journal.pone.0047532 PubMed DOI PMC
Bose JL. Chemical and UV mutagenesis. Methods Mol Biol. 2016;1373:111–115. PubMed
Lin T, Gao L. Genome-Wide Mutagenesis in Borrelia burgdorferi. Methods Mol Biol. 2018;1690:201–223. PubMed
Revel AT, Talaat AM, Norgard MV. DNA microarray analysis of differential gene expression in Borrelia burgdorferi, the Lyme disease spirochete. Proc Natl Acad Sci U S A. 2002;99(3):1562–1567. doi: 10.1073/pnas.032667699 PubMed DOI PMC
Liang FT, Nelson FK, Fikrig E. DNA microarray assessment of putative Borrelia burgdorferi lipoprotein genes. Infect Immun. 2002;70(6):3300–3303. doi: 10.1128/IAI.70.6.3300-3303.2002 PubMed DOI PMC
Akins DR, Bourell KW, Caimano MJ, et al. A new animal model for studying Lyme disease spirochetes in a mammalian host-adapted state. J Clin Invest. 1998;101(10):2240–2250. doi: 10.1172/JCI2325 PubMed DOI PMC
Caimano MJ. Cultivation of Borrelia burgdorferi in dialysis membrane chambers in rat peritonea. Curr Protoc Microbiol. 2005;(1). doi: 10.1002/9780471729259.mc12c03s00 PubMed DOI
Arnold WK, Savage CR, Brissette CA, et al. RNA-Seq of Borrelia burgdorferi in multiple phases of growth reveals insights into the dynamics of gene expression, transcriptome architecture, and noncoding RNAs. PLoS One. 2016;11(10):e0164165. doi: 10.1371/journal.pone.0164165 PubMed DOI PMC
Lybecker MC, Samuels DS. Small RNAs of Borrelia burgdorferi: characterizing functional regulators in a sea of sRnas. Yale J Biol Med. 2017;90(2):317–323. PubMed PMC
Ellis TC, Jain S, Linowski AK, et al. In vivo expression technology identifies a novel virulence factor critical for Borrelia burgdorferi persistence in mice. PLOS Pathog. 2013;9(8):e1003567. doi: 10.1371/journal.ppat.1003567 PubMed DOI PMC
Casselli T, Bankhead T. Use of in vivo expression technology for the identification of putative host adaptation factors of the Lyme disease spirochete. J Mol Microbiol Biotechnol. 2015;25(5):349–361. doi: 10.1159/000439305 PubMed DOI
Hyde JA, Weening EH, Chang M, et al. Bioluminescent imaging of Borrelia burgdorferi in vivo demonstrates that the fibronectin-binding protein BBK32 is required for optimal infectivity. Mol Microbiol. 2011;82(1):99–113. doi: 10.1111/j.1365-2958.2011.07801.x PubMed DOI PMC
Hejduk L, Rathner P, Strnad M, et al. Resonance assignment and secondary structure of DbpA protein from the European species, Borrelia afzelii. Biomol NMR Assign. 2021;15(2):415–420. doi: 10.1007/s12104-021-10039-2 PubMed DOI PMC
Niddam AF, Ebady R, Bansal A, et al. Plasma fibronectin stabilizes Borrelia burgdorferi–endothelial interactions under vascular shear stress by a catch-bond mechanism. PNAS. 2017;114(17):E3490–8. doi: 10.1073/pnas.1615007114 PubMed DOI PMC
Harman MW, Dunham-Ems SM, Caimano MJ, et al. The heterogeneous motility of the Lyme disease spirochete in gelatin mimics dissemination through tissue. Proc Natl Acad Sci, USA. 2012;109(8):3059–3064. doi: 10.1073/pnas.1114362109 PubMed DOI PMC
Bockenstedt LK, Gonzalez D, Mao J, et al. What ticks do under your skin: Two-Photon intravital imaging of Ixodes scapularis feeding in the presence of the Lyme disease spirochete. Yale J Biol Med. 2014;87:3–13. PubMed PMC
Hillman C, Stewart PE, Strnad M, et al. Visualization of spirochetes by labeling membrane proteins with fluorescent biarsenical dyes. Front Cell Infect Microbiol. 2019;9:287. doi: 10.3389/fcimb.2019.00287 PubMed DOI PMC
Strnad M, Elsterová J, Schrenková J, et al. Correlative cryo-fluorescence and cryo-scanning electron microscopy as a straightforward tool to study host-pathogen interactions. Sci Rep. 2015;5(1):18029. doi: 10.1038/srep18029 PubMed DOI PMC
Wang X. Solution structure of decorin-binding protein a from Borrelia burgdorferi. Biochemistry. 2012;51(42):8353–8362. doi: 10.1021/bi3007093 PubMed DOI PMC
Ante VM, Farris LC, Saputra EP, et al. The Borrelia burgdorferi adenylate cyclase, CyaB, is important for virulence factor production and mammalian infection. Front Microbiol. 2021;12:676192. doi: 10.3389/fmicb.2021.676192 PubMed DOI PMC
Topal H, Fulcher NB, Bitterman J, et al. Crystal structure and Regulation mechanisms of the CyaB Adenylyl cyclase from the human pathogen Pseudomonas aeruginosa. J Mol Biol. 2012;416(2):271–286. doi: 10.1016/j.jmb.2011.12.045 PubMed DOI PMC
Kim YR, Kim SY, Kim CM, et al. Essential role of an adenylate cyclase in regulating Vibrio vulnificus virulence. FEMS Microbiol Lett. 2005;243(2):497–503. doi: 10.1016/j.femsle.2005.01.016 PubMed DOI
Galperin MY, Chou S-H, Stock AM. Structural Conservation and diversity of PilZ-Related Domains. J Bacteriol. 2020;202(4):10.1128/JB.00664-19. doi: 10.1128/JB.00664-19 PubMed DOI PMC
Hong Y, Zhou X, Fang H, et al. Cyclic di-GMP mediates Mycobacterium tuberculosis dormancy and pathogenecity. Tuberculosis (Edinb). 2013;93(6):625–634. doi: 10.1016/j.tube.2013.09.002 PubMed DOI
Amikam D, Galperin MY. PilZ domain is part of the bacterial c-di-GMP binding protein. Bioinformatics. 2006;22(1):3–6. doi: 10.1093/bioinformatics/bti739 PubMed DOI
Jusufovic N, Savage CR, Saylor TC, et al. Borrelia burgdorferi PlzA is a c-di-GMP dependent DNA and RNA binding protein. bioRxiv. 2023. PubMed
Groshong AM, Grassmann AA, Luthra A, et al. PlzA is a bifunctional c-di-GMP biosensor that promotes tick and mammalian host-adaptation of Borrelia burgdorferi. PLOS Pathog. 2021;17(7):e1009725. doi: 10.1371/journal.ppat.1009725 PubMed DOI PMC
Stevenson B, Babb K. LuxS-Mediated quorum sensing in Borrelia burgdorferi, the Lyme disease spirochete. Infect Immun. 2002;70(8):4099–4105. doi: 10.1128/IAI.70.8.4099-4105.2002 PubMed DOI PMC
Jones MB, Peterson SN, Benn R, et al. Role of luxS in bacillus anthracis growth and virulence factor expression. Virulence. 2010;1(2):72–83. doi: 10.4161/viru.1.2.10752 PubMed DOI PMC
Xu L, Li H, Vuong C, et al. Role of the luxS Quorum-Sensing System in Biofilm Formation and Virulence of Staphylococcus epidermidis. Infect Immun. 2006;74(1):488–496. doi: 10.1128/IAI.74.1.488-496.2006 PubMed DOI PMC
Zhang B, Ku X, Zhang X, et al. The AI-2/luxS quorum sensing system affects the growth characteristics, biofilm formation, and virulence of haemophilus parasuis. Front Cell Infect Microbiol. 2019;9:62. doi: 10.3389/fcimb.2019.00062 PubMed DOI PMC
Taga ME, Bassler BL. Chemical communication among bacteria. Proc Natl Acad Sci U S A. 2003;100(2):14549–14554. doi: 10.1073/pnas.1934514100 PubMed DOI PMC
Stevenson B, von Lackum K, Wattier RL, et al. Quorum sensing by the Lyme disease spirochete. Microbes Infect. 2003;5(11):991–997. doi: 10.1016/S1286-4579(03)00184-9 PubMed DOI
Blevins JS, Revel AT, Caimano MJ, et al. The luxS gene is not required for Borrelia burgdorferi tick colonization, transmission to a mammalian host, or induction of disease. Infect Immun. 2004;72(8):4864–4867. doi: 10.1128/IAI.72.8.4864-4867.2004 PubMed DOI PMC
Arnold WK, Savage CR, Antonicello AD, et al. Apparent Role for Borrelia burgdorferi LuxS during Mammalian Infection. Infect Immun. 2015;83(4):1347–1353. doi: 10.1128/IAI.00032-15 PubMed DOI PMC
Strnad M, Hönig V, Růžek D, et al. Europe-wide meta-analysis of Borrelia burgdorferi Sensu Lato prevalence in questing Ixodes ricinus ticks. Appl Environ Microbiol. 2017;83(15). doi: 10.1128/AEM.00609-17 PubMed DOI PMC
van Duijvendijk G, Coipan C, Wagemakers A, et al. Larvae of Ixodes ricinus transmit Borrelia afzelii and B. miyamotoi to vertebrate hosts. Parasites Vectors. 2016;9(1):97. doi: 10.1186/s13071-016-1389-5 PubMed DOI PMC
Tonk M, Cabezas-Cruz A, Valdés JJ, et al. Defensins from the tick Ixodes scapularis are effective against phytopathogenic fungi and the human bacterial pathogen Listeria grayi. Parasites Vectors. 2014;7(1):554. doi: 10.1186/s13071-014-0554-y PubMed DOI PMC
Cruz CE, Fogaça AC, Nakayasu ES, et al. Characterization of proteinases from the midgut of rhipicephalus (boophilus) microplus involved in the generation of antimicrobial peptides. Parasites Vectors. 2010;3(1):63. doi: 10.1186/1756-3305-3-63 PubMed DOI PMC
Pereira LS, Oliveira PL, Barja-Fidalgo C, et al. Production of reactive oxygen species by hemocytes from the cattle tick boophilus microplus. Exp Parasitol. 2001;99(2):66–72. doi: 10.1006/expr.2001.4657 PubMed DOI
Eggenberger LR, Lamoreaux WJ, Coons LB. Hemocytic encapsulation of implants in the tick dermacentor variabilis. Exp Appl Acarol. 1990;9(3–4):279–287. doi: 10.1007/BF01193434 PubMed DOI
Fogaça AC, Sousa G, Pavanelo DB, et al. Tick immune system: what is known, the interconnections, the gaps, and the challenges. Front Immunol. 2021;12:628054. doi: 10.3389/fimmu.2021.628054 PubMed DOI PMC
Tanaka T, Kawano S, Nakao S, et al. The identification and characterization of lysozyme from the hard tick haemaphysalis longicornis. Ticks Tick Borne Dis. 2010;1(4):178–185. doi: 10.1016/j.ttbdis.2010.09.001 PubMed DOI
De Silva AM, Fikrig E. Growth and migration of Borrelia burgdorferi in Ixodes ticks during blood feeding. Am J Trop Med Hyg. 1995;53(4):397–404. doi: 10.4269/ajtmh.1995.53.397 PubMed DOI
Ribeiro JM, Mather TN, Piesman J, et al. Dissemination and salivary delivery of Lyme disease spirochetes in vector ticks (Acari: ixodidae). J Med Entomol. 1987;24(2):201–205. doi: 10.1093/jmedent/24.2.201 PubMed DOI
Pospisilova T, Urbanova V, Hes O, et al. Tracking of Borrelia afzelii transmission from infected Ixodes ricinus Nymphs to mice. Infect Immun. 2019;87(6):e00896–18. doi: 10.1128/IAI.00896-18 PubMed DOI PMC
Lejal E, Moutailler S, Šimo L, et al. Tick-borne pathogen detection in midgut and salivary glands of adult Ixodes ricinus. Parasites Vectors. 2019;12(1):152. doi: 10.1186/s13071-019-3418-7 PubMed DOI PMC
Yang XF, Pal U, Alani SM, et al. Essential role for OspA/B in the life cycle of the Lyme disease spirochete. J Exp Med. 2004;199(5):641–648. doi: 10.1084/jem.20031960 PubMed DOI PMC
Pal U, de Silva AM, Montgomery RR, et al. Attachment of Borrelia burgdorferi within Ixodes scapularis mediated by outer surface protein a. J Clin Invest. 2000;106(4):561–569. doi: 10.1172/JCI9427 PubMed DOI PMC
Pal U, Li X, Wang T, et al. TROSPA, an Ixodes scapularis receptor for Borrelia burgdorferi. Cell. 2004;119(4):457–468. doi: 10.1016/j.cell.2004.10.027 PubMed DOI
Zhang L, Zhang Y, Adusumilli S, et al. Molecular interactions that enable movement of the Lyme disease agent from the tick gut into the hemolymph. PLOS Pathog. 2011;7(6):e1002079. doi: 10.1371/journal.ppat.1002079 PubMed DOI PMC
Neelakanta G, Li X, Pal U, et al. Outer surface protein B is critical for Borrelia burgdorferi adherence and survival within Ixodes ticks. PLOS Pathogens. 2007;3(3):e33. doi: 10.1371/journal.ppat.0030033 PubMed DOI PMC
Revel AT, Blevins JS, Almazán C, et al. bptA (bbe16) is essential for the persistence of the Lyme disease spirochete, Borrelia burgdorferi, in its natural tick vector. Proc Natl Acad Sci U S A. 2005;102(19):6972–6977. doi: 10.1073/pnas.0502565102 PubMed DOI PMC
Mason C, Thompson C, Ouyang Z. DksA plays an essential role in regulating the virulence of Borrelia burgdorferi. Mol Microbiol. 2020;114(1):172–183. doi: 10.1111/mmi.14504 PubMed DOI PMC
Boyle WK, Groshong AM, Drecktrah D, et al. DksA controls the response of the Lyme disease spirochete Borrelia burgdorferi to starvation. J Bacteriol. 2019;201(4):e00582–18. doi: 10.1128/JB.00582-18 PubMed DOI PMC
Kumar M, Yang X, Coleman AS, et al. BBA52 facilitates Borrelia burgdorferi transmission from feeding ticks to murine hosts. J Infect Dis. 2010;201(7):1084–1095. doi: 10.1086/651172 PubMed DOI PMC
Narasimhan S, Coumou J, Schuijt TJ, et al. A tick gut protein with fibronectin III domains aids Borrelia burgdorferi congregation to the gut during transmission. PLOS Pathogens. 2014;10(8):e1004278. doi: 10.1371/journal.ppat.1004278 PubMed DOI PMC
Coumou J, Narasimhan S, Trentelman JJ, et al. Ixodes scapularis dystroglycan-like protein promotes Borrelia burgdorferi migration from the gut. J Mol Med (Berl). 2016;94(3):361–370. doi: 10.1007/s00109-015-1365-0 PubMed DOI PMC
Pal U, Yang X, Chen M, et al. OspC facilitates Borrelia burgdorferi invasion of Ixodes scapularis salivary glands. J Clin Invest. 2004;113(2):220–230. doi: 10.1172/JCI200419894 PubMed DOI PMC
Tilly K, Krum JG, Bestor A, et al. Borrelia burgdorferi OspC protein required exclusively in a crucial early stage of mammalian infection. Infect Immun. 2006;74(6):3554–3564. doi: 10.1128/IAI.01950-05 PubMed DOI PMC
Ramamoorthi N, Narasimhan S, Pal U, et al. The Lyme disease agent exploits a tick protein to infect the mammalian host. Nature. 2005;436(7050):573–577. doi: 10.1038/nature03812 PubMed DOI PMC
Bierwagen P, Sliwiak J, Jaskolski M, et al. Strong interactions between Salp15 homologues from the tick I. ricinus and distinct types of the outer surface OspC protein from Borrelia. Ticks Tick Borne Dis. 2021;12(2):101630. doi: 10.1016/j.ttbdis.2020.101630 PubMed DOI
Kotál J, Langhansová H, Lieskovská J, et al. Modulation of host immunity by tick saliva. J Proteomics. 2015;128:58–68. doi: 10.1016/j.jprot.2015.07.005 PubMed DOI PMC
Murfin KE, Kleinbard R, Aydin M, et al. Borrelia burgdorferi chemotaxis toward tick protein Salp12 contributes to acquisition. Ticks Tick Borne Dis. 2019;10(5):1124–1134. doi: 10.1016/j.ttbdis.2019.06.002 PubMed DOI PMC
Narasimhan S, Sukumaran B, Bozdogan U, et al. A tick antioxidant facilitates the Lyme disease agent’s successful migration from the mammalian host to the arthropod vector. Cell Host Microbe. 2007;2(1):7–18. doi: 10.1016/j.chom.2007.06.001 PubMed DOI PMC
Coleman JL, Crowley JT, Toledo AM, et al. The HtrA protease of Borrelia burgdorferi degrades outer membrane protein BmpD and chemotaxis phosphatase CheX. Mol Microbiol. 2013;88(3):619–633. doi: 10.1111/mmi.12213 PubMed DOI PMC
Boylan JA, Lawrence KA, Downey JS, et al. Borrelia burgdorferi membranes are the primary targets of reactive oxygen species. Mol Microbiol. 2008;68(3):786–799. doi: 10.1111/j.1365-2958.2008.06204.x PubMed DOI PMC
Radolf JD, Caimano MJ, Stevenson B, et al. Of ticks, mice and men: understanding the dual-host lifestyle of Lyme disease spirochaetes. Nat Rev Microbiol. 2012;10(2):87–99. doi: 10.1038/nrmicro2714 PubMed DOI PMC
Tracy KE, Baumgarth N. Borrelia burgdorferi manipulates innate and adaptive immunity to establish persistence in rodent reservoir hosts. Front Immunol. 2017;8:116. doi: 10.3389/fimmu.2017.00116 PubMed DOI PMC
Bruch-Gerharz D, Ruzicka T, Kolb-Bachofen V. Nitric oxide in human skin: current status and future prospects. J Invest Dermatol. 1998;110(1):1–7. doi: 10.1046/j.1523-1747.1998.00084.x PubMed DOI
Ma Y, Seiler KP, Tai KF, et al. Outer surface lipoproteins of Borrelia burgdorferi stimulate nitric oxide production by the cytokine-inducible pathway. Infect Immun. 1994;62(9):3663–3671. doi: 10.1128/iai.62.9.3663-3671.1994 PubMed DOI PMC
Seiler KP, Vavrin Z, Eichwald E, et al. Nitric oxide production during murine Lyme disease: lack of involvement in host resistance or pathology. Infect Immun. 1995;63(10):3886–3895. doi: 10.1128/iai.63.10.3886-3895.1995 PubMed DOI PMC
Kerstholt M, Vrijmoeth H, Lachmandas E, et al. Role of glutathione metabolism in host defense against Borrelia burgdorferi infection. Proc Natl Acad Sci U S A. 2018;115(10):E2320–8. doi: 10.1073/pnas.1720833115 PubMed DOI PMC
Kerstholt M, Brouwer M, Te Vrugt M, et al. Borrelia burgdorferi inhibits NADPH-mediated reactive oxygen species production through the mTOR pathway. Ticks Tick Borne Dis. 2022;13(4):101943. doi: 10.1016/j.ttbdis.2022.101943 PubMed DOI
Ouyang Z, He M, Oman T, et al. A manganese transporter, BB0219 (BmtA), is required for virulence by the Lyme disease spirochete, Borrelia burgdorferi. Proc Natl Acad Sci U S A. 2009;106(9):3449–3454. doi: 10.1073/pnas.0812999106 PubMed DOI PMC
Esteve-Gassent MD, Elliott NL, Seshu J. sodA is essential for virulence of Borrelia burgdorferi in the murine model of Lyme disease. Mol Microbiol. 2009;71(3):594–612. doi: 10.1111/j.1365-2958.2008.06549.x PubMed DOI
Phelan JP, Bourgeois JS, McCarthy JE, et al. A putative xanthine dehydrogenase is critical for Borrelia burgdorferi survival in ticks and mice. Microbiology (Reading). 2023;169(1):001286. doi: 10.1099/mic.0.001286 PubMed DOI PMC
Ramsey ME, Hyde JA, Medina-Perez DN, et al. A high-throughput genetic screen identifies previously uncharacterized Borrelia burgdorferi genes important for resistance against reactive oxygen and nitrogen species. PLOS Pathog. 2017;13(2):e1006225. doi: 10.1371/journal.ppat.1006225 PubMed DOI PMC
Lusitani D, Malawista SE, Montgomery RR. Borrelia burgdorferi are susceptible to killing by a variety of human polymorphonuclear leukocyte components. J Infect Dis. 2002;185(6):797–804. doi: 10.1086/339341 PubMed DOI
Dunkelberger JR, Song W-C. Complement and its role in innate and adaptive immune responses. Cell Res. 2010;20(1):34–50. doi: 10.1038/cr.2009.139 PubMed DOI
Kurtenbach K, De Michelis S, Etti S, et al. Host association of Borrelia burgdorferi sensu lato–the key role of host complement. Trends Microbiol. 2002;10(2):74–79. doi: 10.1016/S0966-842X(01)02298-3 PubMed DOI
Stevenson B, El-Hage N, Hines MA, et al. Differential binding of host complement inhibitor factor H by Borrelia burgdorferi Erp surface proteins: a possible mechanism underlying the expansive host range of Lyme disease spirochetes. Infect Immun. 2002;70(2):491–497. doi: 10.1128/IAI.70.2.491-497.2002 PubMed DOI PMC
van Dam AP, Oei A, Jaspars R, et al. Complement-mediated serum sensitivity among spirochetes that cause Lyme disease. Infect Immun. 1997;65:1228–1236. doi: 10.1128/iai.65.4.1228-1236.1997 PubMed DOI PMC
Kurtenbach K, Peacey M, Rijpkema SG, et al. Differential transmission of the genospecies of Borrelia burgdorferi sensu lato by game birds and small rodents in England. Appl Environ Microbiol. 1998;64(4):1169–1174. doi: 10.1128/AEM.64.4.1169-1174.1998 PubMed DOI PMC
Skare JT, Garcia BL. Complement evasion by Lyme disease spirochetes. Trends Microbiol. 2020;28(11):889–899. doi: 10.1016/j.tim.2020.05.004 PubMed DOI PMC
Garcia BL, Zhi H, Wager B, et al. Borrelia burgdorferi BBK32 inhibits the classical pathway by blocking activation of the C1 complement complex. PLOS Pathog. 2016;12(1):e1005404. doi: 10.1371/journal.ppat.1005404 PubMed DOI PMC
Caine JA, Lin Y-P, Kessler JR, et al. Borrelia burgdorferi outer surface protein C (OspC) binds complement component C4b and confers bloodstream survival. Cell Microbiol. 2017;19(12):e12786. doi: 10.1111/cmi.12786 PubMed DOI PMC
Barthel D, Schindler S, Zipfel PF. Plasminogen Is a Complement Inhibitor. J Biol Chem. 2012;287(22):18831–18842. doi: 10.1074/jbc.M111.323287 PubMed DOI PMC
Hammerschmidt C, Koenigs A, Siegel C, et al. Versatile roles of CspA orthologs in complement Inactivation of serum-resistant Lyme disease spirochetes. Infect Immun. 2014;82(1):380–392. doi: 10.1128/IAI.01094-13 PubMed DOI PMC
Koenigs A, Hammerschmidt C, Jutras BL, et al. BBA70 of Borrelia burgdorferi is a novel plasminogen-binding protein. J Biol Chem. 2013;288(35):25229–25243. doi: 10.1074/jbc.M112.413872 PubMed DOI PMC
Önder Ö, Humphrey PT, McOmber B, et al. OspC Is Potent Plasminogen Receptor on Surface of Borrelia burgdorferi. J Biol Chem. 2012;287(20):16860–16868. doi: 10.1074/jbc.M111.290775 PubMed DOI PMC
Fuchs H, Wallich R, Simon MM, et al. The outer surface protein a of the spirochete Borrelia burgdorferi is a plasmin(ogen) receptor. Proc Natil Acad Sci. 1994;91:12594–12598. PubMed PMC
Brissette CA, Haupt K, Barthel D, et al. Borrelia burgdorferi Infection-Associated Surface Proteins ErpP, ErpA, and ErpC Bind Human Plasminogen. Infect Immun. 2009;77(1):300–306. doi: 10.1128/IAI.01133-08 PubMed DOI PMC
Haupt K, Kraiczy P, Wallich R, et al. FHR-1, an additional human plasma protein, binds to complement regulator-acquiring surface proteins of Borrelia burgdorferi. Int J Med Microbiol. 2008;298:287–291. doi: 10.1016/j.ijmm.2007.11.010 PubMed DOI PMC
Kraiczy P, Rossmann E, Brade V, et al. Binding of human complement regulators FHL-1 and factor H to CRASP-1 orthologs of Borrelia burgdorferi. Wien Klin Wochenschr. 2006;118(21–22):669–676. doi: 10.1007/s00508-006-0691-1 PubMed DOI
Hallström T, Siegel C, Mörgelin M, et al. CspA from Borrelia burgdorferi inhibits the terminal complement pathway. MBio. 2013;4(4):4. doi: 10.1128/mBio.00481-13 PubMed DOI PMC
Hammerschmidt C, Klevenhaus Y, Koenigs A, et al. BGA66 and BGA71 facilitate complement resistance of Borrelia bavariensis by inhibiting assembly of the membrane attack complex. Mol Microbiol. 2016;99(2):407–424. doi: 10.1111/mmi.13239 PubMed DOI
Hellwage J, Meri T, Heikkilä T, et al. The complement regulator factor H binds to the surface protein OspE of Borrelia burgdorferi. J Biol Chem. 2001;276(11):8427–8435. doi: 10.1074/jbc.M007994200 PubMed DOI
Kraiczy P, Hellwage J, Skerka C, et al. Immune evasion of Borrelia burgdorferi: mapping of a complement-inhibitor factor H-binding site of BbCRASP-3, a novel member of the Erp protein family. Eur J Immunol. 2003;33(3):697–707. doi: 10.1002/eji.200323571 PubMed DOI
Zhang J-R, Norris SJ. Genetic variation of the Borrelia burgdorferi gene vlsE involves cassette-specific, segmental gene conversion. Infect Immun. 1998;66(8):3698–3704. doi: 10.1128/IAI.66.8.3698-3704.1998 PubMed DOI PMC
Frank SA Benefits of antigenic variation [Internet]. Immunology and Evolution of infectious disease. Princeton University Press; 2002. [cited 2022 Oct 12]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK2405/ PubMed
Tilly K, Bestor A, Rosa PA. Lipoprotein succession in Borrelia burgdorferi: similar but distinct roles for OspC and VlsE at different stages of mammalian infection. Mol Microbiol. 2013;89(2):216–227. doi: 10.1111/mmi.12271 PubMed DOI PMC
Brisson D, DE D. ospC diversity in Borrelia burgdorferi: different hosts are different niches. Genetics. 2004;168(2):713–722. doi: 10.1534/genetics.104.028738 PubMed DOI PMC
Brisson D, Baxamusa N, Schwartz I, et al. Biodiversity of Borrelia burgdorferi strains in tissues of Lyme disease patients. PLoS One. 2011;6(8):e22926. doi: 10.1371/journal.pone.0022926 PubMed DOI PMC
Ivanova L, Christova I, Neves V, et al. Comprehensive seroprofiling of sixteen B. burgdorferi OspC: implications for Lyme disease diagnostics design. Clin Immunol. 2009;132(3):393–400. doi: 10.1016/j.clim.2009.05.017 PubMed DOI PMC
Dykhuizen DE, Brisson D, Sandigursky S, et al. The propensity of different Borrelia burgdorferi sensu stricto genotypes to cause disseminated infections in humans. Am J Trop Med Hyg. 2008;78(5):806–810. doi: 10.4269/ajtmh.2008.78.806 PubMed DOI PMC
Sadziene A, Wilske B, Ferdows MS, et al. The cryptic ospC gene of Borrelia burgdorferi B31 is located on a circular plasmid. Infect Immun. 1993;61(5):2192–2195. doi: 10.1128/iai.61.5.2192-2195.1993 PubMed DOI PMC
Gilmore RD, Kappel KJ, Dolan MC, et al. Outer surface protein C (OspC), but not P39, is a protective immunogen against a tick-transmitted Borrelia burgdorferi challenge: evidence for a conformational protective epitope in OspC. Infect Immun. 1996;64(6):2234–2239. doi: 10.1128/iai.64.6.2234-2239.1996 PubMed DOI PMC
Bockenstedt LK, Hodzic E, Feng S, et al. Borrelia burgdorferi strain-specific Osp C-mediated immunity in mice. Infect Immun. 1997;65(11):4661–4667. doi: 10.1128/iai.65.11.4661-4667.1997 PubMed DOI PMC
Rudenko N, Golovchenko M, Hönig V, et al. Detection of Borrelia burgdorferi sensu stricto ospC alleles associated with human lyme borreliosis worldwide in non-human-biting tick Ixodes affinis and rodent hosts in Southeastern United States. Appl Environ Microbiol. 2013;79(5):1444–1453. doi: 10.1128/AEM.02749-12 PubMed DOI PMC
Lagal V, Portnoï D, Faure G, et al. Borrelia burgdorferi sensu stricto invasiveness is correlated with OspC–plasminogen affinity. Microbes Infect. 2006;8(3):645–652. doi: 10.1016/j.micinf.2005.08.017 PubMed DOI
Seemanapalli SV, Xu Q, McShan K, et al. Outer surface protein C is a dissemination-facilitating factor of Borrelia burgdorferi during mammalian infection. PLoS One. 2010;5(12):e15830. doi: 10.1371/journal.pone.0015830 PubMed DOI PMC
Xu Q, McShan K, Liang FT. Essential protective role attributed to the surface lipoproteins of Borrelia burgdorferi against innate defences. Mol Microbiol. 2008;69(1):15–29. doi: 10.1111/j.1365-2958.2008.06264.x PubMed DOI PMC
Hovius JW, Schuijt TJ, de Groot KA, et al. Preferential protection of Borrelia burgdorferi Sensu Stricto by a Salp15 homologue in Ixodes ricinus Saliva. J Infect Dis. 2008;198(8):1189–1197. doi: 10.1086/591917 PubMed DOI PMC
Caine JA, Coburn J, Morrison RP. A short-term Borrelia burgdorferi infection model identifies tissue tropisms and bloodstream survival conferred by adhesion proteins. Infect Immun. 2015;83(8):3184–3194. doi: 10.1128/IAI.00349-15 PubMed DOI PMC
Lin Y-P, Tan X, Caine JA, et al. Strain-specific joint invasion and colonization by Lyme disease spirochetes is promoted by outer surface protein C. PLOS Pathogens. 2020;16(5):e1008516. doi: 10.1371/journal.ppat.1008516 PubMed DOI PMC
Carrasco SE, Troxell B, Yang Y, et al. Outer surface protein OspC is an antiphagocytic factor that protects Borrelia burgdorferi from phagocytosis by macrophages. Infect Immun. 2015;83(12):4848–4860. doi: 10.1128/IAI.01215-15 PubMed DOI PMC
Salo J, Jaatinen A, Söderström M, et al. Decorin binding proteins of Borrelia burgdorferi promote arthritis development and joint specific post-treatment DNA persistence in mice. PLoS One. 2015;10(3):e0121512. doi: 10.1371/journal.pone.0121512 PubMed DOI PMC
Shi Y, Xu Q, McShan K, et al. Both decorin-binding proteins a and B are critical for the overall virulence of Borrelia burgdorferi. Infect Immun. 2008;76(3):1239–1246. doi: 10.1128/IAI.00897-07 PubMed DOI PMC
Imai DM, Samuels DS, Feng S, et al. The early dissemination defect attributed to disruption of decorin-binding proteins is abolished in chronic murine Lyme borreliosis. Infect Immun. 2013;81(5):1663–1673. doi: 10.1128/IAI.01359-12 PubMed DOI PMC
Weening EH, Parveen N, Trzeciakowski JP, et al. Borrelia burgdorferi lacking DbpBA exhibits an early survival defect during experimental infection. Infect Immun. 2008;76(12):5694–5705. doi: 10.1128/IAI.00690-08 PubMed DOI PMC
Benoit VM, Fischer JR, Lin Y-P, et al. Allelic variation of the Lyme disease spirochete adhesin DbpA influences spirochetal binding to Decorin, dermatan sulfate, and mammalian cells. Infect Immun. 2011;79(9):3501–3509. doi: 10.1128/IAI.00163-11 PubMed DOI PMC
Salo J, Loimaranta V, Lahdenne P, et al. Decorin binding by DbpA and B of Borrelia garinii, Borrelia afzelii, and Borrelia burgdorferi sensu stricto. J Infect Dis. 2011;204(1):65–73. doi: 10.1093/infdis/jir207 PubMed DOI PMC
Lin Y-P, Benoit V, Yang X, et al. Strain-specific variation of the decorin-binding adhesin DbpA influences the tissue tropism of the lyme disease spirochete. PLOS Pathog. 2014;10(7):e1004238. doi: 10.1371/journal.ppat.1004238 PubMed DOI PMC
Crother TR, Champion CI, Wu X-Y, et al. Antigenic composition of Borrelia burgdorferi during infection of SCID mice. Infect Immun. 2003;71(6):3419–3428. doi: 10.1128/IAI.71.6.3419-3428.2003 PubMed DOI PMC
Crother TR, Champion CI, Whitelegge JP, et al. Temporal analysis of the antigenic composition of Borrelia burgdorferi during infection in rabbit skin. Infect Immun. 2004;72(9):5063–5072. doi: 10.1128/IAI.72.9.5063-5072.2004 PubMed DOI PMC
Coutte L, Botkin DJ, Gao L, et al. Detailed analysis of sequence changes occurring during vlsE antigenic variation in the mouse model of Borrelia burgdorferi infection. PLOS Pathog. 2009;5(2):e1000293. doi: 10.1371/journal.ppat.1000293 PubMed DOI PMC
Bankhead T, Chaconas G. The role of VlsE antigenic variation in the Lyme disease spirochete: persistence through a mechanism that differs from other pathogens. Mol Microbiol. 2007;65(6):1547–1558. doi: 10.1111/j.1365-2958.2007.05895.x PubMed DOI
Glöckner G, Schulte-Spechtel U, Schilhabel M, et al. Comparative genome analysis: selection pressure on the Borrelia vls cassettes is essential for infectivity. BMC Genomics. 2006;7(1):211. doi: 10.1186/1471-2164-7-211 PubMed DOI PMC
Zhang JR, Hardham JM, Barbour AG, et al. Antigenic variation in Lyme disease borreliae by promiscuous recombination of VMP-like sequence cassettes. Cell. 1997;89(2):275–285. doi: 10.1016/S0092-8674(00)80206-8 PubMed DOI
Wang D, Botkin DJ, Norris SJ. Characterization of the vls antigenic variation loci of the Lyme disease spirochaetes Borrelia garinii Ip90 and Borrelia afzelii ACAI. Mol Microbiol. 2003;47(5):1407–1417. doi: 10.1046/j.1365-2958.2003.03386.x PubMed DOI
Verhey TB, Castellanos M, Chaconas G. Antigenic variation in the Lyme spirochete: insights into recombinational switching with a suggested role for error-prone repair. Cell Rep. 2018;23(9):2595–2605. doi: 10.1016/j.celrep.2018.04.117 PubMed DOI
Lin T, Gao L, Edmondson DG, et al. Central role of the holliday junction helicase RuvAB in vlsE recombination and infectivity of Borrelia burgdorferi. PLOS Pathog. 2009;5(12):e1000679. doi: 10.1371/journal.ppat.1000679 PubMed DOI PMC
Lone AG, Bankhead T. The Borrelia burgdorferi VlsE lipoprotein prevents antibody binding to an arthritis-related surface Antigen. Cell Rep. 2020;30(11):3663–3670.e5. doi: 10.1016/j.celrep.2020.02.081 PubMed DOI PMC
Kumar D, Ristow LC, Shi M, et al. Intravital imaging of vascular transmigration by the Lyme spirochete: requirement for the integrin binding residues of the B. burgdorferi P66 protein. PLOS Pathog. 2015;11(12):e1005333. doi: 10.1371/journal.ppat.1005333 PubMed DOI PMC
Ebady R, Niddam AF, Boczula AE, et al. Biomechanics of Borrelia burgdorferi Vascular Interactions. Cell Rep. 2016;16(10):2593–2604. doi: 10.1016/j.celrep.2016.08.013 PubMed DOI PMC
Tan X, Lin Y-P, Pereira MJ, et al. VlsE, the nexus for antigenic variation of the Lyme disease spirochete, also mediates early bacterial attachment to the host microvasculature under shear force. PLOS Pathog. 2022;18(5):e1010511. doi: 10.1371/journal.ppat.1010511 PubMed DOI PMC
Tan X, Castellanos M, Chaconas G, et al. Choreography of Lyme disease spirochete adhesins to promote vascular escape. Microbiol Spectr. 2023;11(4):e0125423. doi: 10.1128/spectrum.01254-23 PubMed DOI PMC
Sultan SZ, Manne A, Stewart PE, et al. Motility is crucial for the infectious life cycle of Borrelia burgdorferi. Infect Immun. 2013;81(6):2012–2021. doi: 10.1128/IAI.01228-12 PubMed DOI PMC
Ge Y, Old I, Saint Girons I, et al. FliH and fliI of Borrelia burgdorferi are similar to flagellar and virulence factor export proteins of other bacteria. Gene. 1996;168(1):73–75. doi: 10.1016/0378-1119(95)00743-1 PubMed DOI
Li C, Xu H, Zhang K, et al. Inactivation of a putative flagellar motor switch protein FliG1 prevents Borrelia burgdorferi from swimming in highly viscous media and blocks its infectivity. Mol Microbiol. 2010;75(6):1563–1576. doi: 10.1111/j.1365-2958.2010.07078.x PubMed DOI PMC
Charon NW, Goldstein SF. Genetics of motility and chemotaxis of a fascinating group of bacteria: the spirochetes. Ann Rev Genet. 2002;36(1):47–73. doi: 10.1146/annurev.genet.36.041602.134359 PubMed DOI
Motaleb MA, Corum L, Bono JL, et al. Borrelia burgdorferi periplasmic flagella have both skeletal and motility functions. Proc Natl Acad Sci, USA. 2000;97(20):10899–10904. doi: 10.1073/pnas.200221797 PubMed DOI PMC
DeHart TG, Kushelman MR, Hildreth SB, et al. The unusual cell wall of the Lyme disease spirochaete Borrelia burgdorferi is shaped by a tick sugar. Nat Microbiol. 2021;6(12):1583–1592. doi: 10.1038/s41564-021-01003-w PubMed DOI PMC
Chen Y, Vargas SM, Smith TC, et al. Borrelia peptidoglycan interacting protein (BpiP) contributes to the fitness of Borrelia burgdorferi against host-derived factors and influences virulence in mouse models of Lyme disease. PLOS Pathog. 2021;17(4):e1009535. doi: 10.1371/journal.ppat.1009535 PubMed DOI PMC
Liang L, Wang J, Schorter L, et al. Rapid clearance of Borrelia burgdorferi from the blood circulation. Parasites Vectors. 2020;13(1):191. doi: 10.1186/s13071-020-04060-y PubMed DOI PMC
Hodzic E, Feng S, Freet KJ, et al. Borrelia burgdorferi population dynamics and prototype gene expression during infection of immunocompetent and immunodeficient mice. Infect Immun. 2003;71(9):5042–5055. doi: 10.1128/IAI.71.9.5042-5055.2003 PubMed DOI PMC
Tilly K, Rosa PA, Stewart PE. Biology of infection with Borrelia burgdorferi. Infect Dis Clin North Am. 2008;22(2):217–234. doi: 10.1016/j.idc.2007.12.013 PubMed DOI PMC
Cabello FC, Godfrey HP, Newman SA. Hidden in plain sight: borrelia burgdorferi and the extracellular matrix. Trends Microbiol. 2007;15(8):350–354. doi: 10.1016/j.tim.2007.06.003 PubMed DOI
Paulsen F, Tillmann B. Composition of the extracellular matrix in human cricoarytenoid joint articular cartilage. Arch Histol Cytol. 1999;62(2):149–163. doi: 10.1679/aohc.62.149 PubMed DOI
Vechtova P, Sterbova J, Sterba J, et al. A bite so sweet: the glycobiology interface of tick-host-pathogen interactions. Parasites Vectors. 2018;11(1):594. doi: 10.1186/s13071-018-3062-7 PubMed DOI PMC
Salo J, Pietikäinen A, Söderström M, et al. Flow-tolerant adhesion of a bacterial pathogen to human endothelial cells through interaction with biglycan. J Infect Dis. 2016;213(10):1623–1631. doi: 10.1093/infdis/jiw003 PubMed DOI
Brissette CA, Bykowski T, Cooley AE, et al. Borrelia burgdorferi RevA antigen binds host fibronectin. Infect Immun. 2009;77(7):2802–2812. doi: 10.1128/IAI.00227-09 PubMed DOI PMC
Hallström T, Haupt K, Kraiczy P, et al. Complement Regulator–Acquiring Surface Protein 1 of Borrelia burgdorferi Binds to Human Bone Morphogenic Protein 2, Several Extracellular Matrix Proteins, and Plasminogen. J Infect Dis. 2010;202(3):490–498. doi: 10.1086/653825 PubMed DOI
Zhi H, Weening EH, Barbu EM, et al. The BBA33 lipoprotein binds collagen and impacts Borrelia burgdorferi pathogenesis. Mol Microbiol. 2015;96(1):68–83. doi: 10.1111/mmi.12921 PubMed DOI PMC
Guo BP, Norris SJ, Rosenberg LC, et al. Adherence of Borrelia burgdorferi to the proteoglycan decorin. Infect Immun. 1995;63(9):3467–3472. doi: 10.1128/iai.63.9.3467-3472.1995 PubMed DOI PMC
Guo BP, Brown EL, Dorward DW, et al. Decorin-binding adhesins from Borrelia burgdorferi. Mol Microbiol. 1998;30(4):711–723. doi: 10.1046/j.1365-2958.1998.01103.x PubMed DOI
Fischer JR, LeBlanc KT, Leong JM. Fibronectin binding protein BBK32 of the Lyme disease spirochete promotes bacterial attachment to glycosaminoglycans. Infect Immun. 2006;74(1):435–441. doi: 10.1128/IAI.74.1.435-441.2006 PubMed DOI PMC
Moriarty TJ, Shi M, Lin Y-P, et al. Vascular binding of a pathogen under shear force through mechanistically distinct sequential interactions with host macromolecules. Mol Microbiol. 2012;86(5):1116–1131. doi: 10.1111/mmi.12045 PubMed DOI PMC
Gaultney RA, Gonzalez T, Floden AM, et al. BB0347, from the lyme disease spirochete Borrelia burgdorferi, is surface exposed and interacts with the CS1 heparin-binding domain of human fibronectin. PLoS One. 2013;8(9):e75643. doi: 10.1371/journal.pone.0075643 PubMed DOI PMC
Coburn J, Magoun L, Bodary SC, et al. Integrins αvβ3 and α5β1 mediate attachment of Lyme disease spirochetes to human cells. Infect Immun. 1998;66(5):1946–1952. doi: 10.1128/IAI.66.5.1946-1952.1998 PubMed DOI PMC
Behera AK, Durand E, Cugini C, et al. Borrelia burgdorferi BBB07 interaction with integrin alpha3beta1 stimulates production of pro-inflammatory mediators in primary human chondrocytes. Cell Microbiol. 2008;10:320–331. doi: 10.1111/j.1462-5822.2007.01043.x PubMed DOI PMC
Ristow LC, Bonde M, Lin Y, et al. Integrin binding by B orrelia burgdorferi P66 facilitates dissemination but is not required for infectivity. Cell Microbiol. 2015;17:1021–1036. doi: 10.1111/cmi.12418 PubMed DOI PMC
Wood E, Tamborero S, Mingarro I, et al. BB0172, a Borrelia burgdorferi Outer Membrane Protein That Binds Integrin α3β1. J Bacteriol. 2013;195(15):3320–3330. doi: 10.1128/JB.00187-13 PubMed DOI PMC
Verma A, Brissette CA, Bowman A, et al. Borrelia burgdorferi BmpA is a laminin-binding protein. Infect Immun. 2009;77(11):4940–4946. doi: 10.1128/IAI.01420-08 PubMed DOI PMC
Brissette CA, Verma A, Bowman A, et al. The Borrelia burgdorferi outer-surface protein ErpX binds mammalian laminin. Microbiol (Reading). 2009;55:863–872. PubMed PMC
Bista S, Singh P, Bernard Q, et al. A novel laminin-binding protein mediates microbial-endothelial cell interactions and facilitates dissemination of Lyme disease pathogens. J Infect Dis. 2020;221(9):1438–1447. doi: 10.1093/infdis/jiz626 PubMed DOI PMC
Lin Y-P, Chen Q, Ritchie JA, et al. Glycosaminoglycan binding by Borrelia burgdorferi adhesin BBK32 specifically and uniquely promotes joint colonization. Cell Microbiol. 2015;17(6):860–875. doi: 10.1111/cmi.12407 PubMed DOI PMC
Parveen N, Leong JM. Identification of a candidate glycosaminoglycan-binding adhesin of the Lyme disease spirochete Borrelia burgdorferi. Mol Microbiol. 2000;35(5):1220–1234. doi: 10.1046/j.1365-2958.2000.01792.x PubMed DOI
Fischer JR, Parveen N, Magoun L, et al. Decorin-binding proteins a and B confer distinct mammalian cell type-specific attachment by Borrelia burgdorferi, the Lyme disease spirochete. Proc Natl Acad Sci U S A. 2003;100(12):7307–7312. doi: 10.1073/pnas.1231043100 PubMed DOI PMC
Yang X, Lin Y-P, Heselpoth RD, et al. Middle region of the Borrelia burgdorferi surface-located protein 1 (Lmp1) interacts with host chondroitin-6-sulfate and independently facilitates infection. Cell Microbiol. 2016;18(1):97–110. doi: 10.1111/cmi.12487 PubMed DOI PMC
Dowdell AS, Murphy MD, Azodi C, et al. Comprehensive spatial analysis of the Borrelia burgdorferi lipoproteome reveals a Compartmentalization Bias toward the bacterial surface. J Bacteriol. 2017;199(6):e00658–16. doi: 10.1128/JB.00658-16 PubMed DOI PMC
Setubal JC, Reis M, Matsunaga J, et al. Lipoprotein computational prediction in spirochaetal genomes. Microbiology (Reading). 2006;152(1):113–121. doi: 10.1099/mic.0.28317-0 PubMed DOI PMC
Leong JM, Robbins D, Rosenfeld L, et al. Structural requirements for glycosaminoglycan recognition by the Lyme disease spirochete, Borrelia burgdorferi. Infect Immun. 1998;66(12):6045–6048. doi: 10.1128/IAI.66.12.6045-6048.1998 PubMed DOI PMC
Seshu J, Esteve‐Gassent MD, Labandeira‐Rey M, et al. Inactivation of the fibronectin-binding adhesin gene bbk32 significantly attenuates the infectivity potential of Borrelia burgdorferi. Mol Microbiol. 2006;59(5):1591–1601. doi: 10.1111/j.1365-2958.2005.05042.x PubMed DOI
Li X, Liu X, Beck DS, et al. Borrelia burgdorferi lacking BBK32, a fibronectin-binding protein, retains full pathogenicity. Infect Immun. 2006;74(6):3305–3313. doi: 10.1128/IAI.02035-05 PubMed DOI PMC
Byram R, Gaultney RA, Floden AM, et al. Borrelia burgdorferi RevA significantly affects pathogenicity and host response in the mouse model of Lyme disease. Infect Immun. 2015;83(9):3675–3683. doi: 10.1128/IAI.00530-15 PubMed DOI PMC
Norman MU, Moriarty TJ, Dresser AR, et al. Molecular mechanisms involved in vascular interactions of the Lyme disease pathogen in a living host. PLOS Pathog. 2008;4(10):e1000169. doi: 10.1371/journal.ppat.1000169 PubMed DOI PMC
Meriläinen L, Brander H, Herranen A, et al. Pleomorphic forms of Borrelia burgdorferi induce distinct immune responses. Microbes Infect. 2016;18(7–8):484–495. doi: 10.1016/j.micinf.2016.04.002 PubMed DOI
Vancová M, Rudenko N, Vaněček J, et al. Pleomorphism and viability of the Lyme disease pathogen Borrelia burgdorferi exposed to physiological stress conditions: a correlative cryo-fluorescence and cryo-scanning electron microscopy study. Front Microbiol. 2017;8:596. doi: 10.3389/fmicb.2017.00596 PubMed DOI PMC
Brorson O, Brorson SH. Transformation of cystic forms of Borrelia burgdorferi to normal, mobile spirochetes. Infection. 1997;25(4):240–246. doi: 10.1007/BF01713153 PubMed DOI
Brorson O, Brorson SH. In vitro conversion of Borrelia burgdorferi to cystic forms in spinal fluid, and transformation to mobile spirochetes by incubation in BSK-H medium. Infection. 1998;26(3):144–150. doi: 10.1007/BF02771839 PubMed DOI
Dunham-Ems SM, Caimano MJ, Eggers CH, et al. Borrelia burgdorferi requires the alternative sigma factor RpoS for dissemination within the vector during tick-to-Mammal transmission. PLOS Pathog. 2012;8(2):e1002532. doi: 10.1371/journal.ppat.1002532 PubMed DOI PMC
Lantos PM, Auwaerter PG, Wormser GP. A systematic review of Borrelia burgdorferi morphologic variants does not support a role in chronic Lyme disease. Clin Infect Dis. 2014;58(5):663. doi: 10.1093/cid/cit810 PubMed DOI PMC
Torres JP, Senejani AG, Gaur G, et al. Ex Vivo Murine Skin Model for B. burgdorferi Biofilm. Antibiotics. 2020;9(9):528. doi: 10.3390/antibiotics9090528 PubMed DOI PMC
Sapi E, Bastian SL, Mpoy CM, et al. Characterization of biofilm formation by Borrelia burgdorferi in vitro. PLoS One. 2012;7(10):e48277. doi: 10.1371/journal.pone.0048277 PubMed DOI PMC
Wu J, Weening EH, Faske JB, et al. Invasion of Eukaryotic cells by Borrelia burgdorferi requires β1 Integrins and src kinase activity. Infect Immun. 2011;79(3):1338–1348. doi: 10.1128/IAI.01188-10 PubMed DOI PMC
Klempner MS, Noring R, Rogers RA. Invasion of human skin fibroblasts by the Lyme disease spirochete, Borrelia burgdorferi. J Infect Dis. 1993;167(5):1074–1081. doi: 10.1093/infdis/167.5.1074 PubMed DOI
Aberer E, Surtov-Pudar M, Wilfinger D, et al. Co-culture of human fibroblasts and Borrelia burgdorferi enhances collagen and growth factor mRNA. Arch Dermatol Res. 2018;310(2):117–126. doi: 10.1007/s00403-017-1797-1 PubMed DOI PMC
Girschick HJ, Huppertz HI, Rüssmann H, et al. Intracellular persistence of Borrelia burgdorferi in human synovial cells. Rheumatol Int. 1996;16(3):125–132. doi: 10.1007/BF01409985 PubMed DOI
Ma Y, Sturrock A, Weis JJ. Intracellular localization of Borrelia burgdorferi within human endothelial cells. Infect Immun. 1991;59(2):671–678. doi: 10.1128/iai.59.2.671-678.1991 PubMed DOI PMC
Livengood JA, Gilmore RD. Invasion of human neuronal and glial cells by an infectious strain of Borrelia burgdorferi. Microbes Infect. 2006;8(14–15):2832–2840. doi: 10.1016/j.micinf.2006.08.014 PubMed DOI
Kerstholt M, Netea MG, Joosten LAB. Borrelia burgdorferi hijacks cellular metabolism of immune cells: Consequences for host defense. Ticks Tick Borne Dis. 2020;11(3):101386. doi: 10.1016/j.ttbdis.2020.101386 PubMed DOI
Mayer KA, Stöckl J, Zlabinger GJ, et al. Hijacking the supplies: metabolism as a novel facet of virus-host interaction. Front Immunol. 2019;10:1533. doi: 10.3389/fimmu.2019.01533 PubMed DOI PMC
Eisenreich W, Rudel T, Heesemann J, et al. How viral and intracellular bacterial pathogens reprogram the metabolism of host cells to allow their intracellular replication. Front Cell Infect Microbiol. 2019;9:42. doi: 10.3389/fcimb.2019.00042 PubMed DOI PMC
Gehre L, Gorgette O, Perrinet S, et al. Sequestration of host metabolism by an intracellular pathogen. Elife. 2016;5:e12552. doi: 10.7554/eLife.12552 PubMed DOI PMC
Linder S, Heimerl C, Fingerle V, et al. Coiling phagocytosis of Borrelia burgdorferi by primary human macrophages is controlled by CDC42Hs and Rac1 and involves recruitment of wiskott-aldrich syndrome protein and Arp2/3 complex. Infect Immun. 2001;69(3):1739–1746. doi: 10.1128/IAI.69.3.1739-1746.2001 PubMed DOI PMC
Siryaporn A, Kuchma SL, O’Toole GA, et al. Surface attachment induces Pseudomonas aeruginosa virulence. Proc Natl Acad Sci U S A. 2014;111(47):16860–16865. doi: 10.1073/pnas.1415712111 PubMed DOI PMC
Carapeto AP, Vitorino MV, Santos JD, et al. Mechanical properties of human bronchial epithelial cells expressing wt- and mutant CFTR. Int J Mol Sci. 2020;21(8):E2916. doi: 10.3390/ijms21082916 PubMed DOI PMC
Patel NR, Bole M, Chen C, et al. Cell Elasticity Determines Macrophage Function. PLoS One. 2012;7(9):e41024. doi: 10.1371/journal.pone.0041024 PubMed DOI PMC
Costa TRD, Felisberto-Rodrigues C, Meir A, et al. Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nat Rev Microbiol. 2015;13(6):343–359. doi: 10.1038/nrmicro3456 PubMed DOI
Schulze RJ, Zückert WR. Borrelia burgdorferi lipoproteins are secreted to the outer surface by default. Mol Microbiol. 2006;59(5):1473–1484. doi: 10.1111/j.1365-2958.2006.05039.x PubMed DOI
Jan AT. Outer membrane vesicles (OMVs) of gram-negative bacteria: a perspective update. Front Microbiol. 2017;8:1053. doi: 10.3389/fmicb.2017.01053 PubMed DOI PMC
Anand D, Chaudhuri A. Bacterial outer membrane vesicles: new insights and applications. Mol Membr Biol. 2016;33(6–8):125–137. doi: 10.1080/09687688.2017.1400602 PubMed DOI
Kuehn MJ, Kesty NC. Bacterial outer membrane vesicles and the host-pathogen interaction. Genes Dev. 2005;19:2645–2655. doi: 10.1101/gad.1299905 PubMed DOI
Kudryashev M, Cyrklaff M, Baumeister W, et al. Comparative cryo-electron tomography of pathogenic Lyme disease spirochetes. Mol Microbiol. 2009;71(6):1415–1434. doi: 10.1111/j.1365-2958.2009.06613.x PubMed DOI
Karvonen K Mechanisms and elimination of Borrelia burgdorferi persistence in vitro. JYU Dissertations [Internet]. 2022. [cited 2022 Oct 11]. Available from: https://jyx.jyu.fi/handle/123456789/79467
Davis MM, Brock AM, DeHart TG, et al. The peptidoglycan-associated protein NapA plays an important role in the envelope integrity and in the pathogenesis of the lyme disease spirochete. PLOS Pathog. 2021;17(5):e1009546. doi: 10.1371/journal.ppat.1009546 PubMed DOI PMC
Cluss RG, Silverman DA, Stafford TR. Extracellular secretion of the Borrelia burgdorferi Oms28 porin and Bgp, a glycosaminoglycan binding protein. Infect Immun. 2004;72(11):6279–6286. doi: 10.1128/IAI.72.11.6279-6286.2004 PubMed DOI PMC
Skare JT, Shang ES, Foley DM, et al. Virulent strain associated outer membrane proteins of Borrelia burgdorferi. J Clin Invest. 1995;96(5):2380–2392. doi: 10.1172/JCI118295 PubMed DOI PMC
Parveen N, Cornell KA, Bono JL, et al. Bgp, a secreted glycosaminoglycan-binding protein of Borrelia burgdorferi strain N40, displays nucleosidase activity and is not essential for infection of immunodeficient mice. Infect Immun. 2006;74(5):3016–3020. doi: 10.1128/IAI.74.5.3016-3020.2006 PubMed DOI PMC
Garon CF, Dorward DW, Corwin MD. Structural features of Borrelia burgdorferi–the Lyme disease spirochete: silver staining for nucleic acids. Scanning Microsc Suppl. 1989;3:109–115. PubMed
Crowley JT, Toledo AM, LaRocca TJ, et al. Lipid Exchange between Borrelia burgdorferi and Host Cells. PLOS Pathog. 2013;9(1):e1003109. doi: 10.1371/journal.ppat.1003109 PubMed DOI PMC
Groshong AM, McLain MA, Radolf JD, et al. Host-specific functional compartmentalization within the oligopeptide transporter during the Borrelia burgdorferi enzootic cycle. PLOS Pathogens. 2021;17(1):e1009180. doi: 10.1371/journal.ppat.1009180 PubMed DOI PMC
LaRocca TJ, Crowley JT, Cusack BJ, et al. Cholesterol lipids of Borrelia burgdorferi form lipid rafts and are required for the bactericidal mechanism of a complement-independent antibody. Cell Host Microbe. 2010;8(4):331–342. doi: 10.1016/j.chom.2010.09.001 PubMed DOI PMC
Jain S, Showman AC, Jewett MW, et al. Molecular Dissection of a Borrelia burgdorferi In Vivo Essential Purine Transport System. Infect Immun. 2015;83(6):2224–2233. doi: 10.1128/IAI.02859-14 PubMed DOI PMC
Pappas CJ, Iyer R, Petzke MM, et al. Borrelia burgdorferi requires glycerol for maximum fitness during the tick phase of the enzootic cycle. PLOS Pathog. 2011;7(7):e1002102. doi: 10.1371/journal.ppat.1002102 PubMed DOI PMC
Corona A, Schwartz I, Conway T, et al. Borrelia burgdorferi: Carbon metabolism and the tick-Mammal enzootic cycle. Microbiol Spectr. 2015;3(3):10.1128/microbiolspec.MBP-0011-2014. doi: 10.1128/microbiolspec.MBP-0011-2014 PubMed DOI PMC
Skare JT, Mirzabekov TA, Shang ES, et al. The Oms66 (p66) protein is a Borrelia burgdorferi porin. Infect Immun. 1997;65(9):3654–3661. doi: 10.1128/iai.65.9.3654-3661.1997 PubMed DOI PMC
Skare JT, Champion CI, Mirzabekov TA, et al. Porin activity of the native and recombinant outer membrane protein Oms28 of Borrelia burgdorferi. J Bacteriol. 1996;178(16):4909–4918. doi: 10.1128/jb.178.16.4909-4918.1996 PubMed DOI PMC
von Lackum K, Stevenson B. Carbohydrate utilization by the Lyme borreliosis spirochete, Borrelia burgdorferi. FEMS Microbiol Lett. 2005;243(1):173–179. doi: 10.1016/j.femsle.2004.12.002 PubMed DOI
Hoon-Hanks LL, Morton EA, Lybecker MC, et al. Borrelia burgdorferi malQ mutants utilize disaccharides and traverse the enzootic cycle. FEMS Immunol Med Microbiol. 2012;66(2):157–165. doi: 10.1111/j.1574-695X.2012.00996.x PubMed DOI PMC
Görke B, Stülke J. Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol. 2008;6(8):613–624. doi: 10.1038/nrmicro1932 PubMed DOI
Zhang J-J, Ranghunandanan S, Wang Q, et al. Mechanism of repression of the glycerol utilization operon in Borrelia burgdorferi Internet]. bioRxivAvailable from. 2022. cited 2023 Jun 12:2022.11.01.514788. 10.1101/2022.11.01.514788v1. DOI
Shaw DK, Hyde JA, Skare JT. The BB0646 protein demonstrates lipase and hemolytic activity associated with Borrelia burgdorferi, the aetiological agent of Lyme disease. Mol Microbiol. 2012;83:319–334. doi: 10.1111/j.1365-2958.2011.07932.x PubMed DOI PMC
Wang X-G, Scagliotti JP, Hu LT. Phospholipid synthesis in Borrelia burgdorferi: BB0249 and BB0721 encode functional phosphatidylcholine synthase and phosphatidylglycerolphosphate synthase proteins. Microbiology (Reading). 2004;150(2):391–397. doi: 10.1099/mic.0.26752-0 PubMed DOI
Belisle JT, Brandt ME, Radolf JD, et al. Fatty acids of Treponema pallidum and Borrelia burgdorferi lipoproteins. J Bacteriol. 1994;176(8):2151–2157. doi: 10.1128/jb.176.8.2151-2157.1994 PubMed DOI PMC
Drecktrah D, Hall LS, Crouse B, et al. The glycerol-3-phosphate dehydrogenases GpsA and GlpD constitute the oxidoreductive metabolic linchpin for Lyme disease spirochete host infectivity and persistence in the tick. PLOS Pathog. 2022;18(3):e1010385. doi: 10.1371/journal.ppat.1010385 PubMed DOI PMC
Purser JE, Lawrenz MB, Caimano MJ, et al. A plasmid-encoded nicotinamidase (PncA) is essential for infectivity of Borrelia burgdorferi in a mammalian host. Mol Microbiol. 2003;48(3):753–764. doi: 10.1046/j.1365-2958.2003.03452.x PubMed DOI
Schüler W, Bunikis I, Weber-Lehman J, et al. Complete genome sequence of Borrelia afzelii K78 and comparative genome analysis. PLoS One. 2015;10(3):e0120548. doi: 10.1371/journal.pone.0120548 PubMed DOI PMC
Schutzer SE, Fraser-Liggett CM, Qiu W-G, et al. Whole-Genome Sequences of Borrelia bissettii, Borrelia valaisiana, and Borrelia spielmanii. J Bacteriol. 2012;194(2):545–546. doi: 10.1128/JB.06263-11 PubMed DOI PMC
Kingry LC, Batra D, Replogle A, et al. Whole genome sequence and Comparative genomics of the novel Lyme borreliosis causing pathogen, Borrelia mayonii. PLoS One. 2016;11(12):e0168994. doi: 10.1371/journal.pone.0168994 PubMed DOI PMC
Rego ROM, Trentelman JJA, Anguita J, et al. Counterattacking the tick bite: towards a rational design of anti-tick vaccines targeting pathogen transmission. Parasites Vectors. 2019;12(1):229. doi: 10.1186/s13071-019-3468-x PubMed DOI PMC