Counterattacking the tick bite: towards a rational design of anti-tick vaccines targeting pathogen transmission

. 2019 May 14 ; 12 (1) : 229. [epub] 20190514

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid31088506

Grantová podpora
602272-2 FP7 Health
17-21244S Grantová Agentura České Republiky
17-27386S Grantová Agentura České Republiky
17-27393S Grantová Agentura České Republiky
2/0191/17 Slovenská Akadémia Vied
522003007 ZonMW

Odkazy

PubMed 31088506
PubMed Central PMC6518728
DOI 10.1186/s13071-019-3468-x
PII: 10.1186/s13071-019-3468-x
Knihovny.cz E-zdroje

Hematophagous arthropods are responsible for the transmission of a variety of pathogens that cause disease in humans and animals. Ticks of the Ixodes ricinus complex are vectors for some of the most frequently occurring human tick-borne diseases, particularly Lyme borreliosis and tick-borne encephalitis virus (TBEV). The search for vaccines against these diseases is ongoing. Efforts during the last few decades have primarily focused on understanding the biology of the transmitted viruses, bacteria and protozoans, with the goal of identifying targets for intervention. Successful vaccines have been developed against TBEV and Lyme borreliosis, although the latter is no longer available for humans. More recently, the focus of intervention has shifted back to where it was initially being studied which is the vector. State of the art technologies are being used for the identification of potential vaccine candidates for anti-tick vaccines that could be used either in humans or animals. The study of the interrelationship between ticks and the pathogens they transmit, including mechanisms of acquisition, persistence and transmission have come to the fore, as this knowledge may lead to the identification of critical elements of the pathogens' life-cycle that could be targeted by vaccines. Here, we review the status of our current knowledge on the triangular relationships between ticks, the pathogens they carry and the mammalian hosts, as well as methods that are being used to identify anti-tick vaccine candidates that can prevent the transmission of tick-borne pathogens.

Zobrazit více v PubMed

Rosenberg Ronald, Lindsey Nicole P., Fischer Marc, Gregory Christopher J., Hinckley Alison F., Mead Paul S., Paz-Bailey Gabriela, Waterman Stephen H., Drexler Naomi A., Kersh Gilbert J., Hooks Holley, Partridge Susanna K., Visser Susanna N., Beard Charles B., Petersen Lyle R. Vital Signs: Trends in Reported Vectorborne Disease Cases — United States and Territories, 2004–2016. MMWR. Morbidity and Mortality Weekly Report. 2018;67(17):496–501. doi: 10.15585/mmwr.mm6717e1. PubMed DOI PMC

Sprong H, Azagi T, Hoornstra D, Nijhof AM, Knorr S, Baarsma ME, et al. Control of Lyme borreliosis and other Ixodes ricinus-borne diseases. Parasites Vectors. 2018;11:145. doi: 10.1186/s13071-018-2744-5. PubMed DOI PMC

European Parliament. Parliament calls for “alarming” spread of Lyme disease to be tackled. 2018. http://www.europarl.europa.eu/news/en/press-room/20181106IPR18328/parliament-calls-for-alarming-spread-of-lyme-disease-to-be-tackled. Accessed 22 Oct 2018.

Paules CI, Marston HD, Bloom ME, Fauci AS. Tickborne diseases—confronting a growing threat. N Engl J Med. 2018;379:701–703. doi: 10.1056/NEJMp1807870. PubMed DOI

Lehrer AT, Holbrook MR. Tick-borne encephalitis vaccines. J Bioterrorism Biodefense. 2011;2011:003. PubMed PMC

de la Fuente J, Antunes S, Bonnet S, Cabezas-Cruz A, Domingos AG, Estrada-Peña A, et al. Tick-pathogen interactions and vector competence: identification of molecular drivers for tick-borne diseases. Front Cell Infect Microbiol. 2017;7:114. PubMed PMC

Vayssier-Taussat M, Kazimirova M, Hubalek Z, Hornok S, Farkas R, Cosson J-F, et al. Emerging horizons for tick-borne pathogens: from the “one pathogen-one disease” vision to the pathobiome paradigm. Future Microbiol. 2015;10:2033–2043. doi: 10.2217/fmb.15.114. PubMed DOI PMC

de la Fuente J, Contreras M, Estrada-Peña A, Cabezas-Cruz A. Targeting a global health problem: vaccine design and challenges for the control of tick-borne diseases. Vaccine. 2017;35:5089–5094. doi: 10.1016/j.vaccine.2017.07.097. PubMed DOI

Fischhoff IR, Keesing F, Ostfeld RS. The tick biocontrol agent Metarhizium brunneum (= M. anisopliae) (strain F52) does not reduce non-target arthropods. PLoS ONE. 2017;12:e0187675. doi: 10.1371/journal.pone.0187675. PubMed DOI PMC

Schorderet-Weber S, Noack S, Selzer PM, Kaminsky R. Blocking transmission of vector-borne diseases. Int J Parasitol Drugs Drug Resist. 2017;7:90–109. doi: 10.1016/j.ijpddr.2017.01.004. PubMed DOI PMC

de la Fuente J, Contreras M. Tick vaccines: current status and future directions. Expert Rev Vaccines. 2015;14:1367–1376. doi: 10.1586/14760584.2015.1076339. PubMed DOI

Trager W. Acquired immunity to ticks. J Parasitol. 1939;25:57–81. doi: 10.2307/3272160. DOI

Wikel SK. Host immunity to ticks. Annu Rev Entomol. 1996;41:1–22. doi: 10.1146/annurev.en.41.010196.000245. PubMed DOI

Ribeiro JM. Role of saliva in tick/host interactions. Exp Appl Acarol. 1989;7:15–20. doi: 10.1007/BF01200449. PubMed DOI

Paine SH, Kemp DH, Allen JR. In vitro feeding of Dermacentor andersoni (Stiles): effects of histamine and other mediators. Parasitology. 1983;86:419–428. doi: 10.1017/S0031182000050617. PubMed DOI

Wada T, Ishiwata K, Koseki H, Ishikura T, Ugajin T, Ohnuma N, et al. Selective ablation of basophils in mice reveals their nonredundant role in acquired immunity against ticks. J Clin Investig. 2010;120:2867–2875. doi: 10.1172/JCI42680. PubMed DOI PMC

Anderson JM, Moore IN, Nagata BM, Ribeiro JMC, Valenzuela JG, Sonenshine DE. Ticks, Ixodes scapularis, feed repeatedly on white-footed mice despite strong inflammatory response: an expanding paradigm for understanding tick–host interactions. Front Immunol. 2017;8:1784. doi: 10.3389/fimmu.2017.01784. PubMed DOI PMC

Ribeiro JMC, Alarcon-Chaidez F, Francischetti IMB, Mans BJ, Mather TN, Valenzuela JG, et al. An annotated catalog of salivary gland transcripts from Ixodes scapularis ticks. Insect Biochem Mol Biol. 2006;36:111–129. doi: 10.1016/j.ibmb.2005.11.005. PubMed DOI

Francischetti IMB, Sa-Nunes A, Mans BJ, Santos IM, Ribeiro JMC. The role of saliva in tick feeding. Front Biosci Landmark Ed. 2009;14:2051–2088. doi: 10.2741/3363. PubMed DOI PMC

Brossard M, Girardin P. Passive transfer of resistance in rabbits infested with adult Ixodes ricinus L: humoral factors influence feeding and egg laying. Experientia. 1979;35:1395–1397. doi: 10.1007/BF01964030. PubMed DOI

Roberts JA, Kerr JD. Boophilus microplus: passive transfer of resistance in cattle. J Parasitol. 1976;62:485–488. doi: 10.2307/3279162. PubMed DOI

Wikel SK, Allen JR. Acquired resistance to ticks. I. Passive transfer of resistance. Immunology. 1976;30:311–316. PubMed PMC

Rueckert C, Guzmán CA. Vaccines: from empirical development to rational design. PLoS Pathog. 2012;8:e1003001. doi: 10.1371/journal.ppat.1003001. PubMed DOI PMC

Carreón D, de la Lastra JMP, Almazán C, Canales M, Ruiz-Fons F, Boadella M, et al. Vaccination with BM86, subolesin and akirin protective antigens for the control of tick infestations in white tailed deer and red deer. Vaccine. 2012;30:273–279. doi: 10.1016/j.vaccine.2011.10.099. PubMed DOI

Pal U, Li X, Wang T, Montgomery RR, Ramamoorthi N, Desilva AM, et al. TROSPA, an Ixodes scapularis receptor for Borrelia burgdorferi. Cell. 2004;119:457–468. doi: 10.1016/j.cell.2004.10.027. PubMed DOI

de la Fuente J, Almazán C, Canales M, Pérez de la Lastra JM, Kocan KM, Willadsen P. A ten-year review of commercial vaccine performance for control of tick infestations on cattle. Anim Health Res Rev. 2007;8:23–28. doi: 10.1017/S1466252307001193. PubMed DOI

Jonsson NN, Matschoss AL, Pepper P, Green PE, Albrecht MS, Hungerford J, et al. Evaluation of tickGARD(PLUS), a novel vaccine against Boophilus microplus, in lactating Holstein-Friesian cows. Vet Parasitol. 2000;88:275–285. doi: 10.1016/S0304-4017(99)00213-7. PubMed DOI

de la Fuente J, Rodríguez M, Montero C, Redondo M, García-García JC, Méndez L, et al. Vaccination against ticks (Boophilus spp.): the experience with the Bm86-based vaccine Gavac. Genet Anal Biomol Eng. 1999;15:143–148. doi: 10.1016/S1050-3862(99)00018-2. PubMed DOI

Coumou J, Wagemakers A, Trentelman JJ, Nijhof AM, Hovius JW. Vaccination against Bm86 homologues in rabbits does not impair Ixodes ricinus feeding or oviposition. PLoS ONE. 2014;10:e0123495. doi: 10.1371/journal.pone.0123495. PubMed DOI PMC

Narasimhan S, Deponte K, Marcantonio N, Liang X, Royce TE, Nelson KF, et al. Immunity against Ixodes scapularis salivary proteins expressed within 24 hours of attachment thwarts tick feeding and impairs Borrelia transmission. PLoS ONE. 2007;2:e451. doi: 10.1371/journal.pone.0000451. PubMed DOI PMC

Sprong H, Trentelman J, Seemann I, Grubhoffer L, Rego RO, Hajdušek O, et al. ANTIDotE: anti-tick vaccines to prevent tick-borne diseases in Europe. Parasites Vectors. 2014;7:77. doi: 10.1186/1756-3305-7-77. PubMed DOI PMC

Rizzoli A, Hauffe H, Carpi G, Vourc HG, Neteler M, Rosa R. Lyme borreliosis in Europe. Eurosurveillance. 2011;16:27. PubMed

Olson CM, Jr, Fikrig E, Anguita J. Host defenses to spirochetes. In: Rich RR, Fleisher TA, Shearer WT, Schroeder HW, Frew AJ, Weyand CM, editors. Clinical immunology: principles and practice. 4. London: Sounders; 2013. pp. 338–345.

Kuehn BM. CDC estimates 300,000 US cases of Lyme disease annually. JAMA. 2013;310:1110. doi: 10.1001/jama.2013.278331. PubMed DOI

Hahn MB, Jarnevich CS, Monaghan AJ, Eisen RJ. Modeling the geographic distribution of Ixodes scapularis and Ixodes pacificus (Acari: Ixodidae) in the Contiguous United States. J Med Entomol. 2016;53:5. doi: 10.1093/jme/tjv233. PubMed DOI PMC

Hofhuis A, van de Kassteele J, Sprong H, van den Wijngaard CC, Harms MG, Fonville M, et al. Predicting the risk of Lyme borreliosis after a tick bite, using a structural equation model. PLoS ONE. 2017;12:e0181807. doi: 10.1371/journal.pone.0181807. PubMed DOI PMC

Medlock JM, Hansford KM, Bormane A, Derdakova M, Estrada-Peña A, George J-C, et al. Driving forces for changes in geographical distribution of Ixodes ricinus ticks in Europe. Parasites Vectors. 2013;6:1. doi: 10.1186/1756-3305-6-1. PubMed DOI PMC

Rumer L, Sheshukova O, Dautel H, Donoso Mantke O, Niedrig M. Differentiation of medically important Euro-Asian tick species Ixodes ricinus, Ixodes persulcatus, Ixodes hexagonus, and Dermacentor reticulatus by polymerase chain reaction. Vector Borne Zoonotic Dis. 2011;11:899–905. doi: 10.1089/vbz.2009.0191. PubMed DOI

van Duijvendijk G, Coipan C, Wagemakers A, Fonville M, Ersöz J, Oei A, et al. Larvae of Ixodes ricinus transmit Borrelia afzelii and B. miyamotoi to vertebrate hosts. Parasites Vectors. 2016;9:97. doi: 10.1186/s13071-016-1389-5. PubMed DOI PMC

Strnad M, Hönig V, Růžek D, Grubhoffer L, Rego ROM. Europe-wide meta-analysis of Borrelia burgdorferi sensu lato prevalence in questing Ixodes ricinus ticks. Appl Environ Microbiol. 2017;83:15. doi: 10.1128/AEM.00609-17. PubMed DOI PMC

Hofmeester TR, Coipan EC, van Wieren SE, Prins HHT, Takken W, Sprong H. Few vertebrate species dominate the Borrelia burgdorferi s.l. life cycle. Environ Res Lett. 2016;11:043001. doi: 10.1088/1748-9326/11/4/043001. DOI

Dunham-Ems SM, Caimano MJ, Pal U, Wolgemuth CW, Eggers CH, Balic A, et al. Live imaging reveals a biphasic mode of dissemination of Borrelia burgdorferi within ticks. J Clin Investig. 2009;119:3652–3665. doi: 10.1172/JCI39401. PubMed DOI PMC

Fikrig E, Barthold SW, Kantor FS, Flavell RA. Protection of mice against the Lyme disease agent by immunizing with recombinant OspA. Science. 1990;250:553–556. doi: 10.1126/science.2237407. PubMed DOI

Zhang L, Zhang Y, Adusumilli S, Liu L, Narasimhan S, Dai J, et al. Molecular interactions that enable movement of the Lyme disease agent from the tick gut into the hemolymph. PLoS Pathog. 2011;7:e1002079. doi: 10.1371/journal.ppat.1002079. PubMed DOI PMC

Pospisilova T, Urbanova V, Hes O, Kopacek P, Hajdusek O, Sima R. Tracking Borrelia afzelii from infected Ixodes ricinus nymphs to mice suggests a direct ‘gut-to-mouth’ route of Lyme disease transmission. BioRxiv. 2018;67:78.

Steere AC, Sikand VK, Meurice F, Parenti DL, Fikrig E, Schoen RT, et al. Vaccination against Lyme disease with recombinant Borrelia burgdorferi outer-surface lipoprotein A with adjuvant. N Engl J Med. 1998;339:209–215. doi: 10.1056/NEJM199807233390401. PubMed DOI

Nigrovic LE, Thompson KM. The Lyme vaccine: a cautionary tale. Epidemiol Infect. 2007;135:1–8. doi: 10.1017/S0950268806007096. PubMed DOI PMC

Comstedt P, Schüler W, Meinke A, Lundberg U. The novel Lyme borreliosis vaccine VLA15 shows broad protection against Borrelia species expressing six different OspA serotypes. PLoS ONE. 2017;12:e0184357. doi: 10.1371/journal.pone.0184357. PubMed DOI PMC

Kotsyfakis M, Sá-Nunes A, Francischetti IMB, Mather TN, Andersen JF, Ribeiro JMC. Antiinflammatory and immunosuppressive activity of sialostatin L, a salivary cystatin from the tick Ixodes scapularis. J Biol Chem. 2006;281:26298–26307. doi: 10.1074/jbc.M513010200. PubMed DOI

Schuijt TJ, Narasimhan S, Daffre S, DePonte K, Hovius JWR, Van’t Veer C, et al. Identification and characterization of Ixodes scapularis antigens that elicit tick immunity using yeast surface display. PLoS ONE. 2011;6:e15926. doi: 10.1371/journal.pone.0015926. PubMed DOI PMC

Wagemakers A, Coumou J, Schuijt TJ, Oei A, Nijhof AM, van ’t Veer C, et al. An Ixodes ricinus tick salivary lectin pathway inhibitor protects Borrelia burgdorferi sensu lato from human complement. Vector Borne Zoonotic Dis. 2016;16:223–228. doi: 10.1089/vbz.2015.1901. PubMed DOI

Schuijt TJ, Bakhtiari K, Daffre S, Deponte K, Wielders SJH, Marquart JA, et al. Factor Xa activation of factor V is of paramount importance in initiating the coagulation system: lessons from a tick salivary protein. Circulation. 2013;128:254–266. doi: 10.1161/CIRCULATIONAHA.113.003191. PubMed DOI PMC

Schuijt TJ, Coumou J, Narasimhan S, Dai J, Deponte K, Wouters D, et al. A tick mannose-binding lectin inhibitor interferes with the vertebrate complement cascade to enhance transmission of the lyme disease agent. Cell Host Microbe. 2011;10:136–146. doi: 10.1016/j.chom.2011.06.010. PubMed DOI PMC

Ramamoorthi N, Narasimhan S, Pal U, Bao F, Yang XF, Fish D, et al. The Lyme disease agent exploits a tick protein to infect the mammalian host. Nature. 2005;436:573–577. doi: 10.1038/nature03812. PubMed DOI PMC

Cotté V, Sabatier L, Schnell G, Carmi-Leroy A, Rousselle J-C, Arsène-Ploetze F, et al. Differential expression of Ixodes ricinus salivary gland proteins in the presence of the Borrelia burgdorferi sensu lato complex. J Proteomics. 2014;96:29–43. doi: 10.1016/j.jprot.2013.10.033. PubMed DOI

Dai J, Narasimhan S, Zhang L, Liu L, Wang P, Fikrig E. Tick histamine release factor is critical for Ixodes scapularis engorgement and transmission of the Lyme disease agent. PLoS Pathog. 2010;6:e1001205. doi: 10.1371/journal.ppat.1001205. PubMed DOI PMC

Narasimhan S, Coumou J, Schuijt TJ, Boder E, Hovius JW, Fikrig E. A tick gut protein with fibronectin III domains aids Borrelia burgdorferi congregation to the gut during transmission. PLoS Pathog. 2014;10:e1004278. doi: 10.1371/journal.ppat.1004278. PubMed DOI PMC

Coumou J, Narasimhan S, Trentelman JJ, Wagemakers A, Koetsveld J, Ersoz JI, et al. Ixodes scapularis dystroglycan-like protein promotes Borrelia burgdorferi migration from the gut. J Mol Med. 2016;94:361–370. doi: 10.1007/s00109-015-1365-0. PubMed DOI PMC

Embers ME, Narasimhan S. Vaccination against Lyme disease: past, present, and future. Front Cell Infect Microbiol. 2013;3:6. doi: 10.3389/fcimb.2013.00006. PubMed DOI PMC

Hovius JWR, van Dam AP, Fikrig E. Tick–host–pathogen interactions in Lyme borreliosis. Trends Parasitol. 2007;23:434–438. doi: 10.1016/j.pt.2007.07.001. PubMed DOI

Klouwens MJ, Trentelman JJ, Hovius JWR. Anti-tick vaccines to prevent tick-borne diseases: an overview and a glance at the future. In: Ecol Prev Lyme Borreliosis. Wageningen: Wageningen Academic Publishers; 2016. p. 295–316.

Merino O, Alberdi P, Pérez de la Lastra JM, de la Fuente J. Tick vaccines and the control of tick-borne pathogens. Front Cell Infect Microbiol. 2013;3:30. doi: 10.3389/fcimb.2013.00030. PubMed DOI PMC

Brossard M, Fivaz V. Ixodes ricinus L.: mast cells, basophils and eosinophils in the sequence of cellular events in the skin of infested or re-infested rabbits. Parasitology. 1982;85:583–592. doi: 10.1017/S0031182000056365. PubMed DOI

Monteiro GER, Bechara GH. Cutaneous basophilia in the resistance of goats to Amblyomma cajennense nymphs after repeated infestations. Ann N Y Acad Sci. 2008;1149:221–225. doi: 10.1196/annals.1428.026. PubMed DOI

Kemp DH, Bourne A. Boophilus microplus: the effect of histamine on the attachment of cattle-tick larvae—studies in vivo and in vitro. Parasitology. 1980;80:487–496. doi: 10.1017/S0031182000000950. PubMed DOI

Das S, Banerjee G, DePonte K, Marcantonio N, Kantor FS, Fikrig E. Salp25D, an Ixodes scapularis antioxidant, is 1 of 14 immunodominant antigens in engorged tick salivary glands. J Infect Dis. 2001;184:1056–1064. doi: 10.1086/323351. PubMed DOI

Dai J, Wang P, Adusumilli S, Booth CJ, Narasimhan S, Anguita J, et al. Antibodies against a tick protein, Salp15, protect mice from the Lyme disease agent. Cell Host Microbe. 2009;6:482–492. doi: 10.1016/j.chom.2009.10.006. PubMed DOI PMC

Anguita J, Ramamoorthi N, Hovius JWR, Das S, Thomas V, Persinski R, et al. Salp15, an ixodes scapularis salivary protein, inhibits CD4(+) T cell activation. Immunity. 2002;16:849–859. doi: 10.1016/S1074-7613(02)00325-4. PubMed DOI

Garg R, Juncadella IJ, Ramamoorthi N, Ananthanarayanan SK, Thomas V, et al. Cutting edge: CD4 is the receptor for the tick saliva immunosuppressor, Salp15. J Immunol. 1950;2006(177):6579–6583. PubMed PMC

Juncadella IJ, Garg R, Boone CD, Anguita J, Krueger JK. Conformational rearrangement within the soluble domains of the CD4 receptor is ligand-specific. J Biol Chem. 2008;283:2761–2772. doi: 10.1074/jbc.M708325200. PubMed DOI

Juncadella IJ, Garg R, Ananthnarayanan SK, Yengo CM, Anguita J. T-cell signaling pathways inhibited by the tick saliva immunosuppressor, Salp15. FEMS Immunol Med Microbiol. 2007;49:433–438. doi: 10.1111/j.1574-695X.2007.00223.x. PubMed DOI

Hovius JWR, de Jong MAWP, den Dunnen J, Litjens M, Fikrig E, van der Poll T, et al. Salp15 binding to DC-SIGN inhibits cytokine expression by impairing both nucleosome remodeling and mRNA stabilization. PLoS Pathog. 2008;4:e31. doi: 10.1371/journal.ppat.0040031. PubMed DOI PMC

Schuijt TJ, Hovius JWR, van Burgel ND, Ramamoorthi N, Fikrig E, van Dam AP. The tick salivary protein Salp15 inhibits the killing of serum-sensitive Borrelia burgdorferi sensu lato isolates. Infect Immun. 2008;76:2888–2894. doi: 10.1128/IAI.00232-08. PubMed DOI PMC

Hovius JWR, Levi M, Fikrig E. Salivating for knowledge: potential pharmacological agents in tick saliva. PLoS Med. 2008;5:e43. doi: 10.1371/journal.pmed.0050043. PubMed DOI PMC

Paveglio SA, Allard J, Mayette J, Whittaker LA, Juncadella I, Anguita J, et al. The tick salivary protein, Salp15, inhibits the development of experimental asthma. J Immunol. 2007;178:7064–7071. doi: 10.4049/jimmunol.178.11.7064. PubMed DOI PMC

Juncadella IJ, Bates TC, Suleiman R, Monteagudo-Mera A, Olson CM, Navasa N, et al. The tick saliva immunosuppressor, Salp15, contributes to Th17-induced pathology during experimental autoimmune encephalomyelitis. Biochem Biophys Res Commun. 2010;402:105–109. doi: 10.1016/j.bbrc.2010.09.125. PubMed DOI PMC

Süss J. Tick-borne encephalitis 2010: epidemiology, risk areas, and virus strains in Europe and Asia—an overview. Ticks Tick Borne Dis. 2011;2:2–15. doi: 10.1016/j.ttbdis.2010.10.007. PubMed DOI

Donoso Mantke O, Escadafal C, Niedrig M, Pfeffer M, Working Group For Tick-Borne Encephalitis Virus C Tick-borne encephalitis in Europe, 2007 to 2009. Eurosurveillance. 2011;16:39. doi: 10.2807/ese.16.39.19976-en. PubMed DOI

Dobler G. Zoonotic tick-borne flaviviruses. Vet Microbiol. 2010;140:221–228. doi: 10.1016/j.vetmic.2009.08.024. PubMed DOI

Amicizia D, Domnich A, Panatto D, Lai PL, Cristina ML, Avio U, et al. Epidemiology of tick-borne encephalitis (TBE) in Europe and its prevention by available vaccines. Hum Vaccines Immunother. 2013;9:1163–1171. doi: 10.4161/hv.23802. PubMed DOI PMC

Gritsun TS, Lashkevich VA, Gould EA. Tick-borne encephalitis. Antiviral Res. 2003;57:129–146. doi: 10.1016/S0166-3542(02)00206-1. PubMed DOI

Šmit R, Postma MJ. Vaccines for tick-borne diseases and cost-effectiveness of vaccination: a public health challenge to reduce the diseases’ burden. Expert Rev Vaccines. 2016;15:5–7. doi: 10.1586/14760584.2016.1111142. PubMed DOI

Nuttall PA, Labuda M. Dynamics of infection in tick vectors and at the tick–host interface. Adv Virus Res. 2003;60:233–272. doi: 10.1016/S0065-3527(03)60007-2. PubMed DOI

Randolph SE. Tick ecology: processes and patterns behind the epidemiological risk posed by ixodid ticks as vectors. Parasitology. 2004;129(S1):S37–S65. doi: 10.1017/S0031182004004925. PubMed DOI

Slovák M, Kazimírová M, Siebenstichová M, Ustaníková K, Klempa B, Gritsun T, et al. Survival dynamics of tick-borne encephalitis virus in Ixodes ricinus ticks. Ticks Tick Borne Dis. 2014;5:962–969. doi: 10.1016/j.ttbdis.2014.07.019. PubMed DOI

Labuda M, Danielova V, Jones LD, Nuttall PA. Amplification of tick-borne encephalitis virus infection during co-feeding of ticks. Med Vet Entomol. 1993;7:339–342. doi: 10.1111/j.1365-2915.1993.tb00702.x. PubMed DOI

Labuda M, Kozuch O, Zuffová E, Elecková E, Hails RS, Nuttall PA. Tick-borne encephalitis virus transmission between ticks cofeeding on specific immune natural rodent hosts. Virology. 1997;235:138–143. doi: 10.1006/viro.1997.8622. PubMed DOI

Labuda M, Austyn JM, Zuffova E, Kozuch O, Fuchsberger N, Lysy J, et al. Importance of localized skin infection in tick-borne encephalitis virus transmission. Virology. 1996;219:357–366. doi: 10.1006/viro.1996.0261. PubMed DOI

Nuttall PA, Labuda M. Saliva-assisted transmission of tick-borne pathogens. In: Bowman AS, Nuttall PA, editors. Ticks: biology, disease and control. Cambridge: Cambridge University Press; 2008. pp. 205–219.

Kazimírová M, Thangamani S, Bartíková P, Hermance M, Holíková V, Štibrániová I, et al. Tick-borne viruses and biological processes at the tick–host–virus interface. Front Cell Infect Microbiol. 2017;7:339. doi: 10.3389/fcimb.2017.00339. PubMed DOI PMC

Šimo L, Kazimirova M, Richardson J, Bonnet SI. The essential role of tick salivary glands and saliva in tick feeding and pathogen transmission. Front Cell Infect Microbiol. 2017;7:281. doi: 10.3389/fcimb.2017.00281. PubMed DOI PMC

Kotsyfakis M, Karim S, Andersen JF, Mather TN, Ribeiro JMC. Selective cysteine protease inhibition contributes to blood-feeding success of the tick Ixodes scapularis. J Biol Chem. 2007;282:29256–29263. doi: 10.1074/jbc.M703143200. PubMed DOI

Lieskovská J, Páleníková J, Širmarová J, Elsterová J, Kotsyfakis M, Campos Chagas A, et al. Tick salivary cystatin sialostatin L2 suppresses IFN responses in mouse dendritic cells. Parasite Immunol. 2015;37:70–78. doi: 10.1111/pim.12162. PubMed DOI

Manjunathachar HV, Kumar B, Saravanan BC, Choudhary S, Mohanty AK, Nagar G, et al. Identification and characterization of vaccine candidates against Hyalomma anatolicum—vector of Crimean-Congo haemorrhagic fever virus. Transbound Emerg Dis. 2019;66:1. doi: 10.1111/tbed.13038. PubMed DOI

Trimnell AR, Davies GM, Lissina O, Hails RS, Nuttall PA. A cross-reactive tick cement antigen is a candidate broad-spectrum tick vaccine. Vaccine. 2005;23:4329–4341. doi: 10.1016/j.vaccine.2005.03.041. PubMed DOI

Trimnell AR, Hails RS, Nuttall PA. Dual action ectoparasite vaccine targeting “exposed” and “concealed” antigens. Vaccine. 2002;20:3560–3568. doi: 10.1016/S0264-410X(02)00334-1. PubMed DOI

Labuda M, Trimnell AR, Licková M, Kazimírová M, Davies GM, Lissina O, et al. An antivector vaccine protects against a lethal vector-borne pathogen. PLoS Pathog. 2006;2:e27. doi: 10.1371/journal.ppat.0020027. PubMed DOI PMC

Zivkovic Z, Torina A, Mitra R, Alongi A, Scimeca S, Kocan KM, et al. Subolesin expression in response to pathogen infection in ticks. BMC Immunol. 2010;11:7. doi: 10.1186/1471-2172-11-7. PubMed DOI PMC

Galindo RC, Doncel-Pérez E, Zivkovic Z, Naranjo V, Gortazar C, Mangold AJ, et al. Tick subolesin is an ortholog of the akirins described in insects and vertebrates. Dev Comp Immunol. 2009;33:612–617. doi: 10.1016/j.dci.2008.11.002. PubMed DOI

Mangold AJ, Galindo RC, de la Fuente J, Response to the commentary of D Macqueen on: Galindo RC, Doncel-Pérez E, Zivkovic Z, Naranjo V, Gortazar C, Mangold AJ, et al. Tick subolesin is an ortholog of the akirins described in insects and vertebrates [Dev. Comp. Immunol. 33 (2009) 612–617] Dev Comp Immunol. 2009;33:878–879. doi: 10.1016/j.dci.2009.02.010. PubMed DOI

de la Fuente J, Almazán C, Blouin EF, Naranjo V, Kocan KM. Reduction of tick infections with Anaplasma marginale and A. phagocytophilum by targeting the tick protective antigen subolesin. Parasitol Res. 2006;100:85–91. doi: 10.1007/s00436-006-0244-6. PubMed DOI

Bensaci M, Bhattacharya D, Clark R, Hu LT. Oral vaccination with vaccinia virus expressing the tick antigen subolesin inhibits tick feeding and transmission of Borrelia burgdorferi. Vaccine. 2012;30:6040–6046. doi: 10.1016/j.vaccine.2012.07.053. PubMed DOI PMC

Merino O, Almazán C, Canales M, Villar M, Moreno-Cid JA, Galindo RC, et al. Targeting the tick protective antigen subolesin reduces vector infestations and pathogen infection by Anaplasma marginale and Babesia bigemina. Vaccine. 2011;29:8575–8579. doi: 10.1016/j.vaccine.2011.09.023. PubMed DOI

Havlíková S, Ličková M, Ayllón N, Roller L, Kazimírová M, Slovák M, et al. Immunization with recombinant subolesin does not reduce tick infection with tick-borne encephalitis virus nor protect mice against disease. Vaccine. 2013;31:1582–1589. doi: 10.1016/j.vaccine.2013.01.017. PubMed DOI

Stuen S, Granquist EG, Silaghi C. Anaplasma phagocytophilum—a widespread multi-host pathogen with highly adaptive strategies. Front Cell Infect Microbiol. 2013;3:31. doi: 10.3389/fcimb.2013.00031. PubMed DOI PMC

Gordon WS, Brownlee A, Wilson DR, Macleod J. Tick-borne fever: a hitherto undescribed disease of sheep. J Comp Pathol Ther. 1932;45:301–307. doi: 10.1016/S0368-1742(32)80025-1. DOI

Chen SM, Dumler JS, Bakken JS, Walker DH. Identification of a granulocytotropic Ehrlichia species as the etiologic agent of human disease. J Clin Microbiol. 1994;32:589–595. PubMed PMC

Woldehiwet Z. The natural history of Anaplasma phagocytophilum. Vet Parasitol. 2010;167:108–122. doi: 10.1016/j.vetpar.2009.09.013. PubMed DOI

Bakken JS, Dumler JS. Human granulocytic anaplasmosis. Infect Dis Clin N Am. 2015;29:341–355. doi: 10.1016/j.idc.2015.02.007. PubMed DOI PMC

de la Fuente J, Estrada-Peña A, Cabezas-Cruz A, Kocan KM. Anaplasma phagocytophilum uses common strategies for infection of ticks and vertebrate hosts. Trends Microbiol. 2016;24:173–180. doi: 10.1016/j.tim.2015.12.001. PubMed DOI

Telford SR, Dawson JE, Katavolos P, Warner CK, Kolbert CP, Persing DH. Perpetuation of the agent of human granulocytic ehrlichiosis in a deer tick-rodent cycle. Proc Natl Acad Sci USA. 1996;93:6209–6214. doi: 10.1073/pnas.93.12.6209. PubMed DOI PMC

Stuen S, Okstad W, Artursson K, Al-Khedery B, Barbet A, Granquist EG. Lambs immunized with an inactivated variant of Anaplasma phagocytophilum. Acta Vet Scand. 2015;57:40. doi: 10.1186/s13028-015-0131-1. PubMed DOI PMC

Ojogun N, Kahlon A, Ragland SA, Troese MJ, Mastronunzio JE, Walker NJ, et al. Anaplasma phagocytophilum outer membrane protein A interacts with sialylated glycoproteins to promote infection of mammalian host cells. Infect Immun. 2012;80:3748–3760. doi: 10.1128/IAI.00654-12. PubMed DOI PMC

Kahlon A, Ojogun N, Ragland SA, Seidman D, Troese MJ, Ottens AK, et al. Anaplasma phagocytophilum Asp14 is an invasin that interacts with mammalian host cells via its C terminus to facilitate infection. Infect Immun. 2013;81:65–79. doi: 10.1128/IAI.00932-12. PubMed DOI PMC

Seidman D, Ojogun N, Walker NJ, Mastronunzio J, Kahlon A, Hebert KS, et al. Anaplasma phagocytophilum surface protein AipA mediates invasion of mammalian host cells. Cell Microbiol. 2014;16:1133–1145. doi: 10.1111/cmi.12286. PubMed DOI PMC

Seidman D, Hebert KS, Truchan HK, Miller DP, Tegels BK, Marconi RT, et al. Essential domains of Anaplasma phagocytophilum invasins utilized to infect mammalian host cells. PLoS Pathog. 2015;11:e1004669. doi: 10.1371/journal.ppat.1004669. PubMed DOI PMC

Contreras M, Alberdi P, Mateos-Hernández L, Fernández de Mera IG, García-Pérez AL, Vancová M, et al. Anaplasma phagocytophilum MSP4 and HSP70 proteins are involved in interactions with host cells during pathogen infection. Front Cell Infect Microbiol. 2017;7:307. doi: 10.3389/fcimb.2017.00307. PubMed DOI PMC

Sukumaran B, Narasimhan S, Anderson JF, DePonte K, Marcantonio N, Krishnan MN, et al. An Ixodes scapularis protein required for survival of Anaplasma phagocytophilum in tick salivary glands. J Exp Med. 2006;203:1507–1517. doi: 10.1084/jem.20060208. PubMed DOI PMC

Liu L, Narasimhan S, Dai J, Zhang L, Cheng G, Fikrig E. Ixodes scapularis salivary gland protein P11 facilitates migration of Anaplasma phagocytophilum from the tick gut to salivary glands. EMBO Rep. 2011;12:1196–1203. doi: 10.1038/embor.2011.177. PubMed DOI PMC

Ayllón N, Villar M, Galindo RC, Kocan KM, Šíma R, López JA, et al. Systems biology of tissue-specific response to Anaplasma phagocytophilum reveals differentiated apoptosis in the tick vector Ixodes scapularis. PLoS Genet. 2015;11:e1005120. doi: 10.1371/journal.pgen.1005120. PubMed DOI PMC

Villar M, Ayllón N, Alberdi P, Moreno A, Moreno M, Tobes R, et al. Integrated metabolomics, transcriptomics and proteomics identifies metabolic pathways affected by Anaplasma phagocytophilum infection in tick cells. Mol Cell Proteomics MCP. 2015;14:3154–3172. doi: 10.1074/mcp.M115.051938. PubMed DOI PMC

Neelakanta G, Sultana H, Fish D, Anderson JF, Fikrig E. Anaplasma phagocytophilum induces Ixodes scapularis ticks to express an antifreeze glycoprotein gene that enhances their survival in the cold. J Clin Investig. 2010;120:3179–3190. doi: 10.1172/JCI42868. PubMed DOI PMC

Pedra JHF, Narasimhan S, Rendić D, DePonte K, Bell-Sakyi L, Wilson IBH, et al. Fucosylation enhances colonization of ticks by Anaplasma phagocytophilum. Cell Microbiol. 2010;12:1222–1234. doi: 10.1111/j.1462-5822.2010.01464.x. PubMed DOI PMC

Contreras M, Alberdi P, Fernández De Mera IG, Krull C, Nijhof A, Villar M, et al. Vaccinomics approach to the identification of candidate protective antigens for the control of tick vector infestations and Anaplasma phagocytophilum infection. Front Cell Infect Microbiol. 2017;7:360. doi: 10.3389/fcimb.2017.00360. PubMed DOI PMC

Sultana H, Neelakanta G, Kantor FS, Malawista SE, Fish D, Montgomery RR, et al. Anaplasma phagocytophilum induces actin phosphorylation to selectively regulate gene transcription in Ixodes scapularis ticks. J Exp Med. 2010;207:1727–1743. doi: 10.1084/jem.20100276. PubMed DOI PMC

Heisig M, Abraham NM, Liu L, Neelakanta G, Mattessich S, Sultana H, et al. Antivirulence properties of an antifreeze protein. Cell Rep. 2014;9:417–424. doi: 10.1016/j.celrep.2014.09.034. PubMed DOI PMC

Abraham NM, Liu L, Jutras BL, Yadav AK, Narasimhan S, Gopalakrishnan V, et al. Pathogen-mediated manipulation of arthropod microbiota to promote infection. Proc Natl Acad Sci USA. 2017;114:E781–E790. doi: 10.1073/pnas.1613422114. PubMed DOI PMC

de la Fuente J, Canales M, Kocan KM. The importance of protein glycosylation in development of novel tick vaccine strategies. Parasite Immunol. 2006;28:687–688. doi: 10.1111/j.1365-3024.2006.00902.x. PubMed DOI

de la Fuente J, Moreno-Cid JA, Galindo RC, Almazan C, Kocan KM, Merino O, et al. Subolesin/Akirin vaccines for the control of arthropod vectors and vectorborne pathogens. Transbound Emerg Dis. 2013;60(Suppl. 2):172–178. doi: 10.1111/tbed.12146. PubMed DOI

Portillo A, Santibáñez S, García-Álvarez L, Palomar AM, Oteo JA. Rickettsioses in Europe. Microbes Infect. 2015;17:834–838. doi: 10.1016/j.micinf.2015.09.009. PubMed DOI

Eremeeva ME, Dasch GA. Challenges posed by tick-borne rickettsiae: eco-epidemiology and public health implications. Front Public Health. 2015;3:55. doi: 10.3389/fpubh.2015.00055. PubMed DOI PMC

Sahni SK, Narra HP, Sahni A, Walker DH. Recent molecular insights into rickettsial pathogenesis and immunity. Future Microbiol. 2013;8:1265–1288. doi: 10.2217/fmb.13.102. PubMed DOI PMC

Botelho-Nevers E, Socolovschi C, Raoult D, Parola P. Treatment of Rickettsia spp. infections: a review. Expert Rev Anti Infect Ther. 2012;10:1425–1437. doi: 10.1586/eri.12.139. PubMed DOI

Chan YG-Y, Riley SP, Martinez JJ. Adherence to and invasion of host cells by spotted fever group Rickettsia species. Front Microbiol. 2010;1:139. doi: 10.3389/fmicb.2010.00139. PubMed DOI PMC

Walker DH. The realities of biodefense vaccines against Rickettsia. Vaccine. 2009;27(Suppl. 4):D52–D55. doi: 10.1016/j.vaccine.2009.07.045. PubMed DOI PMC

Richards AL. Rickettsial vaccines: the old and the new. Expert Rev Vaccines. 2004;3:541–555. doi: 10.1586/14760584.3.5.541. PubMed DOI

El Karkouri K, Kowalczewska M, Armstrong N, Azza S, Fournier P-E, Raoult D. Multi-omics analysis sheds light on the evolution and the intracellular lifestyle strategies of spotted fever group Rickettsia spp. Front Microbiol. 2017;8:1363. doi: 10.3389/fmicb.2017.01363. PubMed DOI PMC

Walker DH, Ismail N. Emerging and re-emerging rickettsioses: endothelial cell infection and early disease events. Nat Rev Microbiol. 2008;6:375–386. doi: 10.1038/nrmicro1866. PubMed DOI

Ireton K. Molecular mechanisms of cell–cell spread of intracellular bacterial pathogens. Open Biol. 2013;3:130079. doi: 10.1098/rsob.130079. PubMed DOI PMC

Kuehl CJ, Dragoi A-M, Talman A, Agaisse H. Bacterial spread from cell to cell: beyond actin-based motility. Trends Microbiol. 2015;23:558–566. doi: 10.1016/j.tim.2015.04.010. PubMed DOI PMC

Goldberg MB. Actin-based motility of intracellular microbial pathogens. Microbiol Mol Biol Rev. 2001;65:595–626. doi: 10.1128/MMBR.65.4.595-626.2001. PubMed DOI PMC

Petchampai N, Sunyakumthorn P, Banajee KH, Verhoeve VI, Kearney MT, Macaluso KR. Identification of host proteins involved in rickettsial invasion of tick cells. Infect Immun. 2015;83:1048–1055. doi: 10.1128/IAI.02888-14. PubMed DOI PMC

Martinez JJ, Cossart P. Early signaling events involved in the entry of Rickettsia conorii into mammalian cells. J Cell Sci. 2004;117:5097–5106. doi: 10.1242/jcs.01382. PubMed DOI

Petchampai N, Sunyakumthorn P, Guillotte ML, Verhoeve VI, Banajee KH, Kearney MT, et al. Novel identification of Dermacentor variabilis Arp2/3 complex and its role in rickettsial infection of the arthropod vector. PLoS ONE. 2014;9:e93768. doi: 10.1371/journal.pone.0093768. PubMed DOI PMC

Jeng RL, Goley ED, D’Alessio JA, Chaga OY, Svitkina TM, Borisy GG, et al. A Rickettsia WASP-like protein activates the Arp2/3 complex and mediates actin-based motility. Cell Microbiol. 2004;6:761–769. doi: 10.1111/j.1462-5822.2004.00402.x. PubMed DOI

Oliver JD, Burkhardt NY, Felsheim RF, Kurtti TJ, Munderloh UG. Motility characteristics are altered for Rickettsia bellii transformed to overexpress a heterologous rickA gene. Appl Environ Microbiol. 2014;80:1170–1176. doi: 10.1128/AEM.03352-13. PubMed DOI PMC

Petchampai N, Sunyakumthorn P, Guillotte ML, Thepparit C, Kearney MT, Mulenga A, et al. Molecular and functional characterization of vacuolar-ATPase from the American dog tick Dermacentor variabilis. Insect Mol Biol. 2014;23:42–51. doi: 10.1111/imb.12059. PubMed DOI PMC

Charpentier BM, Bach MA, Lang P, Martin B, Fries D. Phenotypic composition and in vitro functional capacities of unmodified fresh cells infiltrating acutely rejected human kidney allografts. Transplantation. 1987;44:38–43. doi: 10.1097/00007890-198707000-00010. PubMed DOI

Macaluso KR, Mulenga A, Simser JA, Azad AF. Differential expression of genes in uninfected and rickettsia-infected Dermacentor variabilis ticks as assessed by differential-display PCR. Infect Immun. 2003;71:6165–6170. doi: 10.1128/IAI.71.11.6165-6170.2003. PubMed DOI PMC

Sunyakumthorn P, Petchampai N, Grasperge BJ, Kearney MT, Sonenshine DE, Macaluso KR. Gene expression of tissue-specific molecules in ex vivo Dermacentor variabilis (Acari: Ixodidae) during rickettsial exposure. J Med Entomol. 2013;50:1089–1096. doi: 10.1603/ME12162. PubMed DOI PMC

Mulenga A, Simser JA, Macaluso KR, Azad AF. Stress and transcriptional regulation of tick ferritin HC. Insect Mol Biol. 2004;13:423–433. doi: 10.1111/j.0962-1075.2004.00502.x. PubMed DOI

Mulenga A, Macaluso KR, Simser JA, Azad AF. Dynamics of Rickettsia-tick interactions: identification and characterization of differentially expressed mRNAs in uninfected and infected Dermacentor variabilis. Insect Mol Biol. 2003;12:185–193. doi: 10.1046/j.1365-2583.2003.00400.x. PubMed DOI

Rizzoli A, Silaghi C, Obiegala A, Rudolf I, Hubálek Z, Földvári G, et al. Ixodes ricinus and its transmitted pathogens in urban and peri-urban areas in Europe: new hazards and relevance for public health. Front Public Health. 2014;2:251. doi: 10.3389/fpubh.2014.00251. PubMed DOI PMC

Speck S, Kern T, Aistleitner K, Dilcher M, Dobler G, Essbauer S. In vitro studies of Rickettsia-host cell interactions: confocal laser scanning microscopy of Rickettsia helvetica-infected eukaryotic cell lines. PLoS Negl Trop Dis. 2018;12:e0006151. doi: 10.1371/journal.pntd.0006151. PubMed DOI PMC

Elfving K, Lukinius A, Nilsson K. Life cycle, growth characteristics and host cell response of Rickettsia helvetica in a Vero cell line. Exp Appl Acarol. 2012;56:179–187. doi: 10.1007/s10493-011-9508-7. PubMed DOI PMC

Socolovschi C, Mediannikov O, Raoult D, Parola P. The relationship between spotted fever group rickettsiae and ixodid ticks. Vet Res. 2009;40:34. doi: 10.1051/vetres/2009017. PubMed DOI PMC

Ahantarig A, Trinachartvanit W, Baimai V, Grubhoffer L. Hard ticks and their bacterial endosymbionts (or would be pathogens) Folia Microbiol. 2013;58:419–428. doi: 10.1007/s12223-013-0222-1. PubMed DOI

Narasimhan S, Fikrig E. Tick microbiome: the force within. Trends Parasitol. 2015;31:315–323. doi: 10.1016/j.pt.2015.03.010. PubMed DOI PMC

Bonnet SI, Binetruy F, Hernández-Jarguín AM, Duron O. The tick microbiome: why non-pathogenic microorganisms matter in tick biology and pathogen transmission. Front Cell Infect Microbiol. 2017;7:236. doi: 10.3389/fcimb.2017.00236. PubMed DOI PMC

Homer MJ, Aguilar-Delfin I, Telford SR, Krause PJ, Persing DH. Babesiosis. Clin Microbiol Rev. 2000;13:451–469. doi: 10.1128/CMR.13.3.451. PubMed DOI PMC

Hunfeld K-P, Hildebrandt A, Gray JS. Babesiosis: recent insights into an ancient disease. Int J Parasitol. 2008;38:1219–1237. doi: 10.1016/j.ijpara.2008.03.001. PubMed DOI

Zintl A, Mulcahy G, Skerrett HE, Taylor SM, Gray JS. Babesia divergens, a bovine blood parasite of veterinary and zoonotic importance. Clin Microbiol Rev. 2003;16:622–636. doi: 10.1128/CMR.16.4.622-636.2003. PubMed DOI PMC

Leiby DA. Transfusion-transmitted Babesia spp.: bull’s-eye on Babesia microti. Clin Microbiol Rev. 2011;24:14–28. doi: 10.1128/CMR.00022-10. PubMed DOI PMC

Kjemtrup AM, Conrad PA. Human babesiosis: an emerging tick-borne disease. Int J Parasitol. 2000;30:1323–1337. doi: 10.1016/S0020-7519(00)00137-5. PubMed DOI

Gohil S, Herrmann S, Günther S, Cooke BM. Bovine babesiosis in the 21st century: advances in biology and functional genomics. Int J Parasitol. 2013;43:125–132. doi: 10.1016/j.ijpara.2012.09.008. PubMed DOI

Bock R, Jackson L, de Vos A, Jorgensen W. Babesiosis of cattle. Parasitology. 2004;129(S1):S247–S269. doi: 10.1017/S0031182004005190. PubMed DOI

Wise LN, Pelzel-McCluskey AM, Mealey RH, Knowles DP. Equine piroplasmosis. Vet Clin N Am Equine Pract. 2014;30:677–693. doi: 10.1016/j.cveq.2014.08.008. PubMed DOI

Irwin PJ. Canine babesiosis: from molecular taxonomy to control. Parasites Vectors. 2009;2(Suppl. 1):S4. doi: 10.1186/1756-3305-2-S1-S4. PubMed DOI PMC

Florin-Christensen M, Suarez CE, Rodriguez AE, Flores DA, Schnittger L. Vaccines against bovine babesiosis: where we are now and possible roads ahead. Parasitology. 2014;141:12. doi: 10.1017/S0031182014000961. PubMed DOI

Suarez CE, Noh S. Emerging perspectives in the research of bovine babesiosis and anaplasmosis. Vet Parasitol. 2011;180:109–125. doi: 10.1016/j.vetpar.2011.05.032. PubMed DOI

Vannier E, Krause PJ. Human babesiosis. N Engl J Med. 2012;366:2397–2407. doi: 10.1056/NEJMra1202018. PubMed DOI

Häselbarth K, Tenter AM, Brade V, Krieger G, Hunfeld K-P. First case of human babesiosis in Germany—clinical presentation and molecular characterisation of the pathogen. Int J Med Microbiol IJMM. 2007;297:197–204. doi: 10.1016/j.ijmm.2007.01.002. PubMed DOI

Herwaldt BL, Cacciò S, Gherlinzoni F, Aspöck H, Slemenda SB, Piccaluga P, et al. Molecular characterization of a non-Babesia divergens organism causing zoonotic babesiosis in Europe. Emerg Infect Dis. 2003;9:942–948. doi: 10.3201/eid0908.020748. PubMed DOI PMC

Conrad PA, Kjemtrup AM, Carreno RA, Thomford J, Wainwright K, Eberhard M, et al. Description of Babesia duncani n.csp. (Apicomplexa: Babesiidae) from humans and its differentiation from other piroplasms. Int J Parasitol. 2006;36:779–789. doi: 10.1016/j.ijpara.2006.03.008. PubMed DOI

Bloch EM, Herwaldt BL, Leiby DA, Shaieb A, Herron RM, Chervenak M, et al. The third described case of transfusion-transmitted Babesia duncani. Transfusion. 2012;52:1517–1522. doi: 10.1111/j.1537-2995.2011.03467.x. PubMed DOI

Lobo CA, Cursino-Santos JR, Alhassan A, Rodrigues M. Babesia: an emerging infectious threat in transfusion medicine. PLoS Pathog. 2013;9:e1003387. doi: 10.1371/journal.ppat.1003387. PubMed DOI PMC

Vannier E, Gewurz BE, Krause PJ. Human babesiosis. Infect Dis Clin N Am. 2008;22:469–488. doi: 10.1016/j.idc.2008.03.010. PubMed DOI PMC

Krause PJ, Lepore T, Sikand VK, Gadbaw J, Burke G, Telford SR, et al. Atovaquone and azithromycin for the treatment of babesiosis. N Engl J Med. 2000;343:1454–1458. doi: 10.1056/NEJM200011163432004. PubMed DOI

Vannier E, Krause PJ. Update on babesiosis. Interdiscip Perspect Infect Dis. 2009;2009:984568. doi: 10.1155/2009/984568. PubMed DOI PMC

Krause PJ, Gewurz BE, Hill D, Marty FM, Vannier E, Foppa IM, et al. Persistent and relapsing babesiosis in immunocompromised patients. Clin Infect Dis. 2008;46:370–376. doi: 10.1086/525852. PubMed DOI

Krause PJ. Babesiosis. Med Clin N Am. 2002;86:361–373. doi: 10.1016/S0025-7125(03)00092-0. PubMed DOI

Rosner F, Zarrabi MH, Benach JL, Habicht GS. Babesiosis in splenectomized adults. Review of 22 reported cases. Am J Med. 1984;76:696–701. doi: 10.1016/0002-9343(84)90298-5. PubMed DOI

Stowell CP, Gelfand JA, Shepard J-AO, Kratz A. Case records of the Massachusetts General Hospital. Case 17–2007. A 25-year-old woman with relapsing fevers and recent onset of dyspnea. N Engl J Med. 2007;356:2313–2319. doi: 10.1056/NEJMcpc079011. PubMed DOI

Rodriguez AE, Florin-Christensen M, Flores DA, Echaide I, Suarez CE, Schnittger L. The glycosylphosphatidylinositol-anchored protein repertoire of Babesia bovis and its significance for erythrocyte invasion. Ticks Tick Borne Dis. 2014;5:343–348. doi: 10.1016/j.ttbdis.2013.12.011. PubMed DOI

Kleuskens J, Moubri-Menage K, Rohwer A, Schetters TPM. Canine babesiosis vaccine antigen. 2012. https://patents.google.com/patent/WO2012089748A1/en. Accessed 22 Oct 2018.

Yabsley MJ, Shock BC. Natural history of zoonotic Babesia: role of wildlife reservoirs. Int J Parasitol Parasites Wildl. 2013;2:18–31. doi: 10.1016/j.ijppaw.2012.11.003. PubMed DOI PMC

Vannier EG, Diuk-Wasser MA, Ben Mamoun C, Krause PJ. Babesiosis. Infect Dis Clin N Am. 2015;29:357–370. doi: 10.1016/j.idc.2015.02.008. PubMed DOI PMC

Gray J, Zintl A, Hildebrandt A, Hunfeld K-P, Weiss L. Zoonotic babesiosis: overview of the disease and novel aspects of pathogen identity. Ticks Tick Borne Dis. 2010;1:3–10. doi: 10.1016/j.ttbdis.2009.11.003. PubMed DOI

Benezra D, Brown AE, Polsky B, Gold JW, Armstrong D. Babesiosis and infection with human immunodeficiency virus (HIV) Ann Intern Med. 1987;107:944. doi: 10.7326/0003-4819-107-6-944_1. PubMed DOI

Falagas ME, Klempner MS. Babesiosis in patients with AIDS: a chronic infection presenting as fever of unknown origin. Clin Infect Dis Off Publ Infect Dis Soc Am. 1996;22:809–812. doi: 10.1093/clinids/22.5.809. PubMed DOI

Froberg MK, Dannen D, Bakken JS. Babesiosis and HIV. Lancet Lond Engl. 2004;363:704. doi: 10.1016/S0140-6736(04)15645-6. PubMed DOI

Krause PJ, Telford SR, Spielman A, Sikand V, Ryan R, Christianson D, et al. Concurrent Lyme disease and babesiosis. Evidence for increased severity and duration of illness. JAMA. 1996;275:1657–1660. doi: 10.1001/jama.1996.03530450047031. PubMed DOI

Krause PJ, McKay K, Thompson CA, Sikand VK, Lentz R, Lepore T, et al. Disease-specific diagnosis of coinfecting tickborne zoonoses: babesiosis, human granulocytic ehrlichiosis, and Lyme disease. Clin Infect Dis. 2002;34:1184–1191. doi: 10.1086/339813. PubMed DOI

Sonenshine DE, Roe RM, editors. Biology of ticks. 2. Oxford: Oxford University Press; 2014.

Becker CAM, Bouju-Albert A, Jouglin M, Chauvin A, Malandrin L. Natural transmission of zoonotic Babesia spp. by Ixodes ricinus ticks. Emerg Infect Dis. 2009;15:320–322. doi: 10.3201/eid1502.081247. PubMed DOI PMC

Bonnet S, Jouglin M, L’Hostis M, Chauvin A. Babesia sp. EU1 from roe deer and transmission within Ixodes ricinus. Emerg Infect Dis. 2007;13:1208–1210. doi: 10.3201/eid1308.061560. PubMed DOI PMC

Bonnet S, Brisseau N, Hermouet A, Jouglin M, Chauvin A. Experimental in vitro transmission of Babesia sp. (EU1) by Ixodes ricinus. Vet Res. 2009;40:21. doi: 10.1051/vetres/2009004. PubMed DOI PMC

Cieniuch S, Stańczak J, Ruczaj A. The first detection of Babesia EU1 and Babesia canis canis in Ixodes ricinus ticks (Acari, Ixodidae) collected in urban and rural areas in northern Poland. Pol J Microbiol. 2009;58:231–236. PubMed

Zintl A, Finnerty EJ, Murphy TM, de Waal T, Gray JS. Babesias of red deer (Cervus elaphus) in Ireland. Vet Res. 2011;42:7. doi: 10.1186/1297-9716-42-7. PubMed DOI PMC

Nikol’skii SN, Pozov SA. Ixodes ricinus ticks as carriers of Babesia capreoli in the roe deer. Veterinariia. 1972;4:62. PubMed

Gray J, von Stedingk LV, Gürtelschmid M, Granström M. Transmission studies of Babesia microti in Ixodes ricinus ticks and gerbils. J Clin Microbiol. 2002;40:1259–1263. doi: 10.1128/JCM.40.4.1259-1263.2002. PubMed DOI PMC

Rudzinska MA, Spielman A, Riek RF, Lewengrub SJ, Piesman J. Intraerythrocytic, “gametocytes” of Babesia microti and their maturation in ticks. Can J Zool. 1979;57:424–434. doi: 10.1139/z79-050. PubMed DOI

Mehlhorn H, Shein E. The piroplasms: life cycle and sexual stages. Adv Parasitol. 1984;23:37–103. doi: 10.1016/S0065-308X(08)60285-7. PubMed DOI

Piesman J, Karakashian SJ, Lewengrub S, Rudzinska MA, Spielmank A. Development of Babesia microti sporozoites in adult Ixodes dammini. Int J Parasitol. 1986;16:381–385. doi: 10.1016/0020-7519(86)90118-9. PubMed DOI

Karakashian SJ, Rudzinska MA, Spielman A, Lewengrub S, Piesman J, Shoukrey N. Ultrastructural studies on sporogony of Babesia microti in salivary gland cells of the tick Ixodes dammini. Cell Tissue Res. 1983;231:275–287. doi: 10.1007/BF00222180. PubMed DOI

Cen-Aguilar JF, Rodríguez-Vivas RI, Domínguez-Alpizar JL, Wagner GG. Studies on the effect of infection by Babesia sp. on oviposition of Boophilus microplus engorged females naturally infected in the Mexican tropics. Vet Parasitol. 1998;78:253–257. doi: 10.1016/S0304-4017(98)00148-4. PubMed DOI

Hajdušek O, Síma R, Ayllón N, Jalovecká M, Perner J, de la Fuente J, et al. Interaction of the tick immune system with transmitted pathogens. Front Cell Infect Microbiol. 2013;3:26. doi: 10.3389/fcimb.2013.00026. PubMed DOI PMC

Tsuji N, Fujisaki K. Longicin plays a crucial role in inhibiting the transmission of Babesia parasites in the vector tick Haemaphysalis longicornis. Future Microbiol. 2007;2:575–578. doi: 10.2217/17460913.2.6.575. PubMed DOI

Tsuji N, Battsetseg B, Boldbaatar D, Miyoshi T, Xuan X, Oliver JH, et al. Babesial vector tick defensin against Babesia sp. parasites. Infect Immun. 2007;75:3633–3640. doi: 10.1128/IAI.00256-07. PubMed DOI PMC

Tsuji N, Miyoshi T, Battsetseg B, Matsuo T, Xuan X, Fujisaki K. A cysteine protease is critical for Babesia spp. transmission in Haemaphysalis ticks. PLoS Pathog. 2008;4:e1000062. doi: 10.1371/journal.ppat.1000062. PubMed DOI PMC

Zhu J, Yin R, Wu H, Yi J, Luo L, Dong G, et al. Cystatin C as a reliable marker of renal function following heart valve replacement surgery with cardiopulmonary bypass. Clin Chim Acta Int J Clin Chem. 2006;374:116–121. doi: 10.1016/j.cca.2006.06.001. PubMed DOI

Boldbaatar D, Battsetseg B, Matsuo T, Hatta T, Umemiya-Shirafuji R, Xuan X, et al. Tick vitellogenin receptor reveals critical role in oocyte development and transovarial transmission of Babesia parasite. Biochem Cell Biol Biochim Biol Cell. 2008;86:331–344. doi: 10.1139/O08-071. PubMed DOI

Antunes S, Galindo RC, Almazán C, Rudenko N, Golovchenko M, Grubhoffer L, et al. Functional genomics studies of Rhipicephalus (Boophilus) annulatus ticks in response to infection with the cattle protozoan parasite, Babesia bigemina. Int J Parasitol. 2012;42:187–195. doi: 10.1016/j.ijpara.2011.12.003. PubMed DOI

Rachinsky A, Guerrero FD, Scoles GA. Differential protein expression in ovaries of uninfected and Babesia-infected southern cattle ticks, Rhipicephalus (Boophilus) microplus. Insect Biochem Mol Biol. 2007;37:1291–1308. doi: 10.1016/j.ibmb.2007.08.001. PubMed DOI

Rachinsky A, Guerrero FD, Scoles GA. Proteomic profiling of Rhipicephalus (Boophilus) microplus midgut responses to infection with Babesia bovis. Vet Parasitol. 2008;152:294–313. doi: 10.1016/j.vetpar.2007.12.027. PubMed DOI

Heekin AM, Guerrero FD, Bendele KG, Saldivar L, Scoles GA, Gondro C, et al. Analysis of Babesia bovis infection-induced gene expression changes in larvae from the cattle tick, Rhipicephalus (Boophilus) microplus. Parasites Vectors. 2012;5:162. doi: 10.1186/1756-3305-5-162. PubMed DOI PMC

Van Zee JP, Schlueter JA, Schlueter S, Dixon P, Sierra CAB, Hill CA. Paralog analyses reveal gene duplication events and genes under positive selection in Ixodes scapularis and other ixodid ticks. BMC Genomics. 2016;17:241. doi: 10.1186/s12864-015-2350-2. PubMed DOI PMC

Chmelař J, Kotál J, Kopecky J, Pedra JH, Kotsyfakis M. All for one and one for all on the tick-host battlefield. Trends Parasitol. 2016;32:368–377. doi: 10.1016/j.pt.2016.01.004. PubMed DOI PMC

Narasimhan S, Schuijt TJ, Abraham NM, Rajeevan N, Coumou J, Graham M, et al. Modulation of the tick gut milieu by a secreted tick protein favors Borrelia burgdorferi colonization. Nat Commun. 2017;8:184. doi: 10.1038/s41467-017-00208-0. PubMed DOI PMC

Smith AA, Navasa N, Yang X, Wilder CN, Buyuktanir O, Marques A, et al. Cross-species interferon signaling boosts microbicidal activity within the tick vector. Cell Host Microbe. 2016;20:91–98. doi: 10.1016/j.chom.2016.06.001. PubMed DOI PMC

Schetters T, Bishop R, Crampton M, Kopáček P, Lew-Tabor A, Maritz-Olivier C, et al. Cattle tick vaccine researchers join forces in CATVAC. Parasites Vectors. 2016;9:105. doi: 10.1186/s13071-016-1386-8. PubMed DOI PMC

Cramaro WJ, Hunewald OE, Bell-Sakyi L, Muller CP. Genome scaffolding and annotation for the pathogen vector Ixodes ricinus by ultra-long single molecule sequencing. Parasites Vectors. 2017;10:71. doi: 10.1186/s13071-017-2008-9. PubMed DOI PMC

Iwamoto N, Shimada T. Recent advances in mass spectrometry-based approaches for proteomics and biologics: great contribution for developing therapeutic antibodies. Pharmacol Ther. 2018;185:147–154. doi: 10.1016/j.pharmthera.2017.12.007. PubMed DOI

Chao G, Lau WL, Hackel BJ, Sazinsky SL, Lippow SM, Wittrup KD. Isolating and engineering human antibodies using yeast surface display. Nat Protoc. 2006;1:755–768. doi: 10.1038/nprot.2006.94. PubMed DOI

Maeda H, Hatta T, Alim MA, Tsubokawa D, Mikami F, Matsubayashi M, et al. Establishment of a novel tick-Babesia experimental infection model. Sci Rep. 2016;6:37039. doi: 10.1038/srep37039. PubMed DOI PMC

Krull C, Böhme B, Clausen P-H, Nijhof AM. Optimization of an artificial tick feeding assay for Dermacentor reticulatus. Parasites Vectors. 2017;10:60. doi: 10.1186/s13071-017-2000-4. PubMed DOI PMC

Böhme B, Krull C, Clausen P-H, Nijhof AM. Evaluation of a semi-automated in vitro feeding system for Dermacentor reticulatus and Ixodes ricinus adults. Parasitol Res. 2018;117:565–570. doi: 10.1007/s00436-017-5648-y. PubMed DOI PMC

Romano D, Stefanini C, Canale A, Benelli G. Artificial blood feeders for mosquito and ticks—where from, where to? Acta Trop. 2018;183:43–56. doi: 10.1016/j.actatropica.2018.04.009. PubMed DOI

Kröber T, Guerin PM. In vitro feeding assays for hard ticks. Trends Parasitol. 2007;23:445–449. doi: 10.1016/j.pt.2007.07.010. PubMed DOI

Trentelman JJA, Kleuskens JAGM, van de Crommert J, Schetters TPM. A new method for in vitro feeding of Rhipicephalus australis (formerly Rhipicephalus microplus) larvae: a valuable tool for tick vaccine development. Parasites Vectors. 2017;10:153. doi: 10.1186/s13071-017-2081-0. PubMed DOI PMC

Mihajlović J, Hovius JWR, Sprong H, Bogovič P, Postma MJ, Strle F. Cost-effectiveness of a potential anti-tick vaccine with combined protection against Lyme borreliosis and tick-borne encephalitis in Slovenia. Ticks Tick Borne Dis. 2019;10:63–71. doi: 10.1016/j.ttbdis.2018.08.014. PubMed DOI

Plotkin SA. Need for a new Lyme disease vaccine. N Engl J Med. 2016;375:911–913. doi: 10.1056/NEJMp1607146. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Pathogenicity and virulence of Borrelia burgdorferi

. 2023 Dec ; 14 (1) : 2265015. [epub] 20231009

Iripin-1, a new anti-inflammatory tick serpin, inhibits leukocyte recruitment in vivo while altering the levels of chemokines and adhesion molecules

. 2023 ; 14 () : 1116324. [epub] 20230123

Lyme disease transmission by severely impaired ticks

. 2022 Feb ; 12 (2) : 210244. [epub] 20220216

Iripin-3, a New Salivary Protein Isolated From Ixodes ricinus Ticks, Displays Immunomodulatory and Anti-Hemostatic Properties In Vitro

. 2021 ; 12 () : 626200. [epub] 20210301

Catalogue of stage-specific transcripts in Ixodes ricinus and their potential functions during the tick life-cycle

. 2020 Jun 16 ; 13 (1) : 311. [epub] 20200616

Novel targets and strategies to combat borreliosis

. 2020 Mar ; 104 (5) : 1915-1925. [epub] 20200117

Identification of Tick Ixodes ricinus Midgut Genes Differentially Expressed During the Transmission of Borrelia afzelii Spirochetes Using a Transcriptomic Approach

. 2020 ; 11 () : 612412. [epub] 20210204

Differential Tick Salivary Protein Profiles and Human Immune Responses to Lone Star Ticks (Amblyomma americanum) From the Wild vs. a Laboratory Colony

. 2019 ; 10 () : 1996. [epub] 20190828

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace