Iripin-1, a new anti-inflammatory tick serpin, inhibits leukocyte recruitment in vivo while altering the levels of chemokines and adhesion molecules

. 2023 ; 14 () : 1116324. [epub] 20230123

Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, N.I.H., Intramural

Perzistentní odkaz   https://www.medvik.cz/link/pmid36756125

Serpins are widely distributed and functionally diverse inhibitors of serine proteases. Ticks secrete serpins with anti-coagulation, anti-inflammatory, and immunomodulatory activities via their saliva into the feeding cavity to modulate host's hemostatic and immune reaction initiated by the insertion of tick's mouthparts into skin. The suppression of the host's immune response not only allows ticks to feed on a host for several days but also creates favorable conditions for the transmission of tick-borne pathogens. Herein we present the functional and structural characterization of Iripin-1 (Ixodes ricinus serpin-1), whose expression was detected in the salivary glands of the tick Ixodes ricinus, a European vector of tick-borne encephalitis and Lyme disease. Of 16 selected serine proteases, Iripin-1 inhibited primarily trypsin and further exhibited weaker inhibitory activity against kallikrein, matriptase, and plasmin. In the mouse model of acute peritonitis, Iripin-1 enhanced the production of the anti-inflammatory cytokine IL-10 and chemokines involved in neutrophil and monocyte recruitment, including MCP-1/CCL2, a potent histamine-releasing factor. Despite increased chemokine levels, the migration of neutrophils and monocytes to inflamed peritoneal cavities was significantly attenuated following Iripin-1 administration. Based on the results of in vitro experiments, immune cell recruitment might be inhibited due to Iripin-1-mediated reduction of the expression of chemokine receptors in neutrophils and adhesion molecules in endothelial cells. Decreased activity of serine proteases in the presence of Iripin-1 could further impede cell migration to the site of inflammation. Finally, we determined the tertiary structure of native Iripin-1 at 2.10 Å resolution by employing the X-ray crystallography technique. In conclusion, our data indicate that Iripin-1 facilitates I. ricinus feeding by attenuating the host's inflammatory response at the tick attachment site.

Zobrazit více v PubMed

Rawlings ND, Tolle DP, Barrett AJ. Evolutionary families of peptidase inhibitors. Biochem J (2004) 378(Pt 3):705–16. doi: 10.1042/BJ20031825 PubMed DOI PMC

Spence MA, Mortimer MD, Buckle AM, Minh BQ, Jackson CJ. A comprehensive phylogenetic analysis of the serpin superfamily. Mol Biol Evol (2021) 38(7):2915–29. doi: 10.1093/molbev/msab081 PubMed DOI PMC

Mkaouar H, Akermi N, Kriaa A, Abraham AL, Jablaoui A, Soussou S, et al. . Serine protease inhibitors and human wellbeing interplay: new insights for old friends. PeerJ (2019) 7:e7224. doi: 10.7717/peerj.7224 PubMed DOI PMC

Kelly-Robinson GA, Reihill JA, Lundy FT, McGarvey LP, Lockhart JC, Litherland GJ, et al. . The serpin superfamily and their role in the regulation and dysfunction of serine protease activity in COPD and other chronic lung diseases. Int J Mol Sci (2021) 22(12):6351. doi: 10.3390/ijms22126351 PubMed DOI PMC

Huntington JA. Serpin structure, function and dysfunction. J Thromb Haemost (2011) 9 Suppl 1:26–34. doi: 10.1111/j.1538-7836.2011.04360.x PubMed DOI

van Gent D, Sharp P, Morgan K, Kalsheker N. Serpins: structure, function and molecular evolution. Int J Biochem Cell Biol (2003) 35(11):1536–47. doi: 10.1016/s1357-2725(03)00134-1 PubMed DOI

Khan MS, Singh P, Azhar A, Naseem A, Rashid Q, Kabir MA, et al. . Serpin inhibition mechanism: a delicate balance between native metastable state and polymerization. J Amino Acids (2011) 2011:606797. doi: 10.4061/2011/606797 PubMed DOI PMC

Marijanovic EM, Fodor J, Riley BT, Porebski BT, Costa MGS, Kass I, et al. . Reactive centre loop dynamics and serpin specificity. Sci Rep (2019) 9(1):3870. doi: 10.1038/s41598-019-40432-w PubMed DOI PMC

Rizzoli A, Silaghi C, Obiegala A, Rudolf I, Hubalek Z, Foldvari G, et al. . Ixodes ricinus and its transmitted pathogens in urban and peri-urban areas in Europe: new hazards and relevance for public health. Front Public Health (2014) 2:251. doi: 10.3389/fpubh.2014.00251 PubMed DOI PMC

Schon MP. The tick and I: Parasite-host interactions between ticks and humans. J Dtsch Dermatol Ges (2022) 20 (6):818–853. doi: 10.1111/ddg.14821 PubMed DOI

Heinze DM, Carmical JR, Aronson JF, Thangamani S. Early immunologic events at the tick-host interface. PloS One (2012) 7(10):e47301. doi: 10.1371/journal.pone.0047301 PubMed DOI PMC

Mako V, Czucz J, Weiszhar Z, Herczenik E, Matko J, Prohaszka Z, et al. . Proinflammatory activation pattern of human umbilical vein endothelial cells induced by IL-1beta, TNF-alpha, and LPS. Cytometry A (2010) 77(10):962–70. doi: 10.1002/cyto.a.20952 PubMed DOI

Griffith JW, Sokol CL, Luster AD. Chemokines and chemokine receptors: positioning cells for host defense and immunity. Annu Rev Immunol (2014) 32:659–702. doi: 10.1146/annurev-immunol-032713-120145 PubMed DOI

Laudanna C, Kim JY, Constantin G, Butcher E. Rapid leukocyte integrin activation by chemokines. Immunol Rev (2002) 186:37–46. doi: 10.1034/j.1600-065x.2002.18604.x PubMed DOI

Penberthy TW, Jiang Y, Graves DT. Leukocyte adhesion molecules. Crit Rev Oral Biol Med (1997) 8(4):380–8. doi: 10.1177/10454411970080040201 PubMed DOI

Weber C, Fraemohs L, Dejana E. The role of junctional adhesion molecules in vascular inflammation. Nat Rev Immunol (2007) 7(6):467–77. doi: 10.1038/nri2096 PubMed DOI

Muller WA. Transendothelial migration: unifying principles from the endothelial perspective. Immunol Rev (2016) 273(1):61–75. doi: 10.1111/imr.12443 PubMed DOI PMC

Nourshargh S, Alon R. Leukocyte migration into inflamed tissues. Immunity (2014) 41(5):694–707. doi: 10.1016/j.immuni.2014.10.008 PubMed DOI

Wolf K, Friedl P. Extracellular matrix determinants of proteolytic and non-proteolytic cell migration. Trends Cell Biol (2011) 21(12):736–44. doi: 10.1016/j.tcb.2011.09.006 PubMed DOI

Simo L, Kazimirova M, Richardson J, Bonnet SI. The essential role of tick salivary glands and saliva in tick feeding and pathogen transmission. Front Cell Infect Microbiol (2017) 7:281. doi: 10.3389/fcimb.2017.00281 PubMed DOI PMC

Aounallah H, Bensaoud C, M'Ghirbi Y, Faria F, Chmelar JI, Kotsyfakis M. Tick salivary compounds for targeted immunomodulatory therapy. Front Immunol (2020) 11:583845. doi: 10.3389/fimmu.2020.583845 PubMed DOI PMC

Abbas MN, Chlastakova A, Jmel MA, Iliaki-Giannakoudaki E, Chmelar J, Kotsyfakis M. Serpins in tick physiology and tick-host interaction. Front Cell Infect Microbiol (2022) 12:892770. doi: 10.3389/fcimb.2022.892770 PubMed DOI PMC

Tirloni L, Kim TK, Berger M, Termignoni C, da Silva Vaz I, Jr., Mulenga A. Amblyomma americanum serpin 27 (AAS27) is a tick salivary anti-inflammatory protein secreted into the host during feeding. PloS Negl Trop Dis (2019) 13(8):e0007660. doi: 10.1371/journal.pntd.0007660 PubMed DOI PMC

Coutinho ML, Bizzarro B, Tirloni L, Berger M, Freire Oliveira CJ, Sa-Nunes A, et al. . Rhipicephalus microplus serpins interfere with host immune responses by specifically modulating mast cells and lymphocytes. Ticks Tick Borne Dis (2020) 11(4):101425. doi: 10.1016/j.ttbdis.2020.101425 PubMed DOI PMC

Kim TK, Tirloni L, Berger M, Diedrich JK, Yates JR, 3rd, Termignoni C, et al. . Amblyomma americanum serpin 41 (AAS41) inhibits inflammation by targeting chymase and chymotrypsin. Int J Biol Macromol (2020) 156:1007–21. doi: 10.1016/j.ijbiomac.2020.04.088 PubMed DOI PMC

Leboulle G, Crippa M, Decrem Y, Mejri N, Brossard M, Bollen A, et al. . Characterization of a novel salivary immunosuppressive protein from Ixodes ricinus ticks. J Biol Chem (2002) 277(12):10083–9. doi: 10.1074/jbc.M111391200 PubMed DOI

Prevot PP, Beschin A, Lins L, Beaufays J, Grosjean A, Bruys L, et al. . Exosites mediate the anti-inflammatory effects of a multifunctional serpin from the saliva of the tick Ixodes ricinus . FEBS J (2009) 276(12):3235–46. doi: 10.1111/j.1742-4658.2009.07038.x PubMed DOI

Palenikova J, Lieskovska J, Langhansova H, Kotsyfakis M, Chmelar J, Kopecky J. Ixodes ricinus salivary serpin IRS-2 affects Th17 differentiation via inhibition of the interleukin-6/STAT-3 signaling pathway. Infect Immun (2015) 83(5):1949–56. doi: 10.1128/IAI.03065-14 PubMed DOI PMC

Wang F, Song Z, Chen J, Wu Q, Zhou X, Ni X, et al. . The immunosuppressive functions of two novel tick serpins, HlSerpin-a and HlSerpin-b, from Haemaphysalis longicornis. Immunol (2020) 159(1):109–20. doi: 10.1111/imm.13130 PubMed DOI PMC

Chlastakova A, Kotal J, Berankova Z, Kascakova B, Martins LA, Langhansova H, et al. . Iripin-3, a new salivary protein isolated from Ixodes ricinus ticks, displays immunomodulatory and anti-hemostatic properties in vitro . Front Immunol (2021) 12:626200. doi: 10.3389/fimmu.2021.626200 PubMed DOI PMC

Kascakova B, Kotal J, Martins LA, Berankova Z, Langhansova H, Calvo E, et al. . Structural and biochemical characterization of the novel serpin iripin-5 from Ixodes ricinus . Acta Crystallogr D Struct Biol (2021) 77(Pt 9):1183–96. doi: 10.1107/S2059798321007920 PubMed DOI PMC

Chmelar J, Oliveira CJ, Rezacova P, Francischetti IM, Kovarova Z, Pejler G, et al. . A tick salivary protein targets cathepsin G and chymase and inhibits host inflammation and platelet aggregation. Blood (2011) 117(2):736–44. doi: 10.1182/blood-2010-06-293241 PubMed DOI PMC

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta c(t)) method. Methods (2001) 25(4):402–8. doi: 10.1006/meth.2001.1262 PubMed DOI

Lew M. Good statistical practice in pharmacology. Problem 2. Br J Pharmacol (2007) 152(3):299–303. doi: 10.1038/sj.bjp.0707372 PubMed DOI PMC

Schechter I, Berger A. On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun (1967) 27(2):157–62. doi: 10.1016/s0006-291x(67)80055-x PubMed DOI

Hopkins PC, Carrell RW, Stone SR. Effects of mutations in the hinge region of serpins. Biochemistry (1993) 32(30):7650–7. doi: 10.1021/bi00081a008 PubMed DOI

Olsen JV, Ong SE, Mann M. Trypsin cleaves exclusively C-terminal to arginine and lysine residues. Mol Cell Proteomics (2004) 3(6):608–14. doi: 10.1074/mcp.T400003-MCP200 PubMed DOI

Goettig P, Brandstetter H, Magdolen V. Surface loops of trypsin-like serine proteases as determinants of function. Biochimie (2019) 166:52–76. doi: 10.1016/j.biochi.2019.09.004 PubMed DOI PMC

Lundberg AH, Eubanks JW, 3rd, Henry J, Sabek O, Kotb M, Gaber L, et al. . Trypsin stimulates production of cytokines from peritoneal macrophages in vitro and in vivo . Pancreas (2000) 21(1):41–51. doi: 10.1097/00006676-200007000-00050 PubMed DOI

Paszcuk AF, Quintao NL, Fernandes ES, Juliano L, Chapman K, Andrade-Gordon P, et al. . Mechanisms underlying the nociceptive and inflammatory responses induced by trypsin in the mouse paw. Eur J Pharmacol (2008) 581(1-2):204–15. doi: 10.1016/j.ejphar.2007.11.025 PubMed DOI

Bjorkqvist J, Jamsa A, Renne T. Plasma kallikrein: the bradykinin-producing enzyme. Thromb Haemost (2013) 110(3):399–407. doi: 10.1160/TH13-03-0258 PubMed DOI

Baker SK, Strickland S. A critical role for plasminogen in inflammation. J Exp Med (2020) 217(4):e20191865. doi: 10.1084/jem.20191865 PubMed DOI PMC

Henderson RB, Hobbs JA, Mathies M, Hogg N. Rapid recruitment of inflammatory monocytes is independent of neutrophil migration. Blood (2003) 102(1):328–35. doi: 10.1182/blood-2002-10-3228 PubMed DOI

Cailhier JF, Partolina M, Vuthoori S, Wu S, Ko K, Watson S, et al. . Conditional macrophage ablation demonstrates that resident macrophages initiate acute peritoneal inflammation. J Immunol (2005) 174(4):2336–42. doi: 10.4049/jimmunol.174.4.2336 PubMed DOI

Liu T, Liu F, Peng LW, Chang L, Jiang YM. The peritoneal macrophages in inflammatory diseases and abdominal cancers. Oncol Res (2018) 26(5):817–26. doi: 10.3727/096504017X15130753659625 PubMed DOI PMC

Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res (2001) 29(9):e45. doi: 10.1093/nar/29.9.e45 PubMed DOI PMC

Ribeiro JMC, Mans BJ. TickSialoFam (TSFam): a database that helps to classify tick salivary proteins, a review on tick salivary protein function and evolution, with considerations on the tick sialome switching phenomenon. Front Cell Infect Microbiol (2020) 10:374. doi: 10.3389/fcimb.2020.00374 PubMed DOI PMC

Hovius JW, Levi M, Fikrig E. Salivating for knowledge: potential pharmacological agents in tick saliva. PloS Med (2008) 5(2):e43. doi: 10.1371/journal.pmed.0050043 PubMed DOI PMC

Chmelar J, Kotal J, Kovarikova A, Kotsyfakis M. The use of tick salivary proteins as novel therapeutics. Front Physiol (2019) 10:812. doi: 10.3389/fphys.2019.00812 PubMed DOI PMC

de la Fuente J, Kocan KM. Strategies for development of vaccines for control of ixodid tick species. Parasite Immunol (2006) 28(7):275–83. doi: 10.1111/j.1365-3024.2006.00828.x PubMed DOI

Rego ROM, Trentelman JJA, Anguita J, Nijhof AM, Sprong H, Klempa B, et al. . Counterattacking the tick bite: towards a rational design of anti-tick vaccines targeting pathogen transmission. Parasit Vectors (2019) 12(1):229. doi: 10.1186/s13071-019-3468-x PubMed DOI PMC

Kotal J, Polderdijk SGI, Langhansova H, Ederova M, Martins LA, Berankova Z, et al. . Ixodes ricinus salivary serpin Iripin-8 inhibits the intrinsic pathway of coagulation and complement. Int J Mol Sci (2021) 22(17):9480. doi: 10.3390/ijms22179480 PubMed DOI PMC

Patston PA, Church FC, Olson ST. Serpin-ligand interactions. Methods (2004) 32(2):93–109. doi: 10.1016/s1046-2023(03)00201-9 PubMed DOI

Fu Z, Thorpe M, Akula S, Chahal G, Hellman LT. Extended cleavage specificity of human neutrophil elastase, human proteinase 3, and their distant ortholog clawed frog PR3-three elastases with similar primary but different extended specificities and stability. Front Immunol (2018) 9:2387. doi: 10.3389/fimmu.2018.02387 PubMed DOI PMC

Tirloni L, Kim TK, Coutinho ML, Ali A, Seixas A, Termignoni C, et al. . The putative role of Rhipicephalus microplus salivary serpins in the tick-host relationship. Insect Biochem Mol Biol (2016) 71:12–28. doi: 10.1016/j.ibmb.2016.01.004 PubMed DOI PMC

Saraiva M, Vieira P, O'Garra A. Biology and therapeutic potential of interleukin-10. J Exp Med (2020) 217(1):e20190418. doi: 10.1084/jem.20190418 PubMed DOI PMC

Blisnick AA, Simo L, Grillon C, Fasani F, Brule S, Le Bonniec B, et al. . The immunomodulatory effect of IrSPI, a tick salivary gland serine protease inhibitor involved in Ixodes ricinus tick feeding. Vaccines (Basel) (2019) 7(4):148. doi: 10.3390/vaccines7040148 PubMed DOI PMC

Hayward J, Sanchez J, Perry A, Huang C, Rodriguez Valle M, Canals M, et al. . Ticks from diverse genera encode chemokine-inhibitory evasin proteins. J Biol Chem (2017) 292(38):15670–80. doi: 10.1074/jbc.M117.807255 PubMed DOI PMC

Lee AW, Deruaz M, Lynch C, Davies G, Singh K, Alenazi Y, et al. . A knottin scaffold directs the CXC-chemokine-binding specificity of tick evasins. J Biol Chem (2019) 294(29):11199–212. doi: 10.1074/jbc.RA119.008817 PubMed DOI PMC

Alenazi Y, Singh K, Davies G, Eaton JRO, Elders P, Kawamura A, et al. . Genetically engineered two-warhead evasins provide a method to achieve precision targeting of disease-relevant chemokine subsets. Sci Rep (2018) 8(1):6333. doi: 10.1038/s41598-018-24568-9 PubMed DOI PMC

Langhansova H, Bopp T, Schmitt E, Kopecky J. Tick saliva increases production of three chemokines including monocyte chemoattractant protein-1, a histamine-releasing cytokine. Parasite Immunol (2015) 37(2):92–6. doi: 10.1111/pim.12168 PubMed DOI

Kuna P, Reddigari SR, Rucinski D, Oppenheim JJ, Kaplan AP. Monocyte chemotactic and activating factor is a potent histamine-releasing factor for human basophils. J Exp Med (1992) 175(2):489–93. doi: 10.1084/jem.175.2.489 PubMed DOI PMC

Bischoff SC, Krieger M, Brunner T, Rot A, von Tscharner V, Baggiolini M, et al. . RANTES and related chemokines activate human basophil granulocytes through different G protein-coupled receptors. Eur J Immunol (1993) 23(3):761–7. doi: 10.1002/eji.1830230329 PubMed DOI

Campbell EM, Charo IF, Kunkel SL, Strieter RM, Boring L, Gosling J, et al. . Monocyte chemoattractant protein-1 mediates cockroach allergen-induced bronchial hyperreactivity in normal but not CCR2-/- mice: the role of mast cells. J Immunol (1999) 163(4):2160–7. doi: 10.4049/jimmunol.163.4.2160 PubMed DOI

Thangam EB, Jemima EA, Singh H, Baig MS, Khan M, Mathias CB, et al. . The role of histamine and histamine receptors in mast cell-mediated allergy and inflammation: the hunt for new therapeutic targets. Front Immunol (2018) 9:1873. doi: 10.3389/fimmu.2018.01873 PubMed DOI PMC

Dai J, Narasimhan S, Zhang L, Liu L, Wang P, Fikrig E. Tick histamine release factor is critical for Ixodes scapularis engorgement and transmission of the Lyme disease agent. PloS Pathog (2010) 6(11):e1001205. doi: 10.1371/journal.ppat.1001205 PubMed DOI PMC

Bozic CR, Gerard NP, von Uexkull-Guldenband C, Kolakowski LF, Jr., Conklyn MJ, Breslow R, et al. . The murine interleukin 8 type b receptor homologue and its ligands. expression and biological characterization. J Biol Chem (1994) 269(47):29355–8. doi: 10.1016/S0021-9258(18)43882-3 PubMed DOI

Cacalano G, Lee J, Kikly K, Ryan AM, Pitts-Meek S, Hultgren B, et al. . Neutrophil and B cell expansion in mice that lack the murine IL-8 receptor homolog. Science (1994) 265(5172):682–4. doi: 10.1126/science.8036519 PubMed DOI

Hu N, Westra J, Rutgers A, Doornbos-Van der Meer B, Huitema MG, Stegeman CA, et al. . Decreased CXCR1 and CXCR2 expression on neutrophils in anti-neutrophil cytoplasmic autoantibody-associated vasculitides potentially increases neutrophil adhesion and impairs migration. Arthritis Res Ther (2011) 13(6):R201. doi: 10.1186/ar3534 PubMed DOI PMC

Bochner BS, Luscinskas FW, Gimbrone MA, Jr., Newman W, Sterbinsky SA, Derse-Anthony CP, et al. . Adhesion of human basophils, eosinophils, and neutrophils to interleukin 1-activated human vascular endothelial cells: contributions of endothelial cell adhesion molecules. J Exp Med (1991) 173(6):1553–7. doi: 10.1084/jem.173.6.1553 PubMed DOI PMC

Takahashi M, Ikeda U, Masuyama J, Kitagawa S, Kasahara T, Saito M, et al. . Involvement of adhesion molecules in human monocyte adhesion to and transmigration through endothelial cells in vitro . Atherosclerosis (1994) 108(1):73–81. doi: 10.1016/0021-9150(94)90038-8 PubMed DOI

Henderson RB, Lim LHK, Tessier PA, Gavins FNE, Mathies M, Perretti M, et al. . The use of lymphocyte function–associated antigen (LFA)-1–deficient mice to determine the role of LFA-1, Mac-1, and α4 integrin in the inflammatory response of neutrophils. J Exp Med (2001) 194(2):219–26. doi: 10.1084/jem.194.2.219 PubMed DOI PMC

Pereira S, Zhou M, Mocsai A, Lowell C. Resting murine neutrophils express functional alpha 4 integrins that signal through src family kinases. J Immunol (2001) 166(6):4115–23. doi: 10.4049/jimmunol.166.6.4115 PubMed DOI

Ulyanova T, Priestley GV, Banerjee ER, Papayannopoulou T. Unique and redundant roles of alpha4 and beta2 integrins in kinetics of recruitment of lymphoid vs myeloid cell subsets to the inflamed peritoneum revealed by studies of genetically deficient mice. Exp Hematol (2007) 35(8):1256–65. doi: 10.1016/j.exphem.2007.04.015 PubMed DOI PMC

Nagata M, Nakagome K, Soma T. Mechanisms of eosinophilic inflammation. Asia Pac Allergy (2020) 10(2):e14. doi: 10.5415/apallergy.2020.10.e14 PubMed DOI PMC

Sriramarao P, DiScipio RG, Cobb RR, Cybulsky M, Stachnick G, Castaneda D, et al. . VCAM-1 is more effective than MAdCAM-1 in supporting eosinophil rolling under conditions of shear flow. Blood (2000) 95(2):592–601. doi: 10.1182/blood.V95.2.592 PubMed DOI

Schenkel AR, Mamdouh Z, Chen X, Liebman RM, Muller WA. CD99 plays a major role in the migration of monocytes through endothelial junctions. Nat Immunol (2002) 3(2):143–50. doi: 10.1038/ni749 PubMed DOI

Lou O, Alcaide P, Luscinskas FW, Muller WA. CD99 is a key mediator of the transendothelial migration of neutrophils. J Immunol (2007) 178(2):1136–43. doi: 10.4049/jimmunol.178.2.1136 PubMed DOI

Bixel MG, Petri B, Khandoga AG, Khandoga A, Wolburg-Buchholz K, Wolburg H, et al. . A CD99-related antigen on endothelial cells mediates neutrophil but not lymphocyte extravasation in vivo . Blood (2007) 109(12):5327–36. doi: 10.1182/blood-2006-08-043109 PubMed DOI

Dufour EM, Deroche A, Bae Y, Muller WA. CD99 is essential for leukocyte diapedesis in vivo . Cell Commun Adhes (2008) 15(4):351–63. doi: 10.1080/15419060802442191 PubMed DOI PMC

Koshikawa N, Hasegawa S, Nagashima Y, Mitsuhashi K, Tsubota Y, Miyata S, et al. . Expression of trypsin by epithelial cells of various tissues, leukocytes, and neurons in human and mouse. Am J Pathol (1998) 153(3):937–44. doi: 10.1016/S0002-9440(10)65635-0 PubMed DOI PMC

Plow EF, Doeuvre L, Das R. So many plasminogen receptors: why? J BioMed Biotechnol (2012) 2012:141806. doi: 10.1155/2012/141806 PubMed DOI PMC

Kilpatrick LM, Harris RL, Owen KA, Bass R, Ghorayeb C, Bar-Or A, et al. . Initiation of plasminogen activation on the surface of monocytes expressing the type II transmembrane serine protease matriptase. Blood (2006) 108(8):2616–23. doi: 10.1182/blood-2006-02-001073 PubMed DOI

List K, Bugge TH, Szabo R. Matriptase: potent proteolysis on the cell surface. Mol Med (2006) 12(1-3):1–7. doi: 10.2119/2006-00022.List PubMed DOI PMC

Seitz I, Hess S, Schulz H, Eckl R, Busch G, Montens HP, et al. . Membrane-type serine protease-1/matriptase induces interleukin-6 and -8 in endothelial cells by activation of protease-activated receptor-2: potential implications in atherosclerosis. Arterioscler Thromb Vasc Biol (2007) 27(4):769–75. doi: 10.1161/01.ATV.0000258862.61067.14 PubMed DOI

Shi YE, Torri J, Yieh L, Wellstein A, Lippman ME, Dickson RB. Identification and characterization of a novel matrix-degrading protease from hormone-dependent human breast cancer cells. Cancer Res (1993) 53(6):1409–15. PubMed

Lijnen HR. Plasmin and matrix metalloproteinases in vascular remodeling. Thromb Haemost (2001) 86(1):324–33. doi: 10.1055/s-0037-1616230 PubMed DOI

Satomi S, Yamasaki Y, Tsuzuki S, Hitomi Y, Iwanaga T, Fushiki T. A role for membrane-type serine protease (MT-SP1) in intestinal epithelial turnover. Biochem Biophys Res Commun (2001) 287(4):995–1002. doi: 10.1006/bbrc.2001.5686 PubMed DOI

Moilanen M, Sorsa T, Stenman M, Nyberg P, Lindy O, Vesterinen J, et al. . Tumor-associated trypsinogen-2 (trypsinogen-2) activates procollagenases (MMP-1, -8, -13) and stromelysin-1 (MMP-3) and degrades type I collagen. Biochemistry (2003) 42(18):5414–20. doi: 10.1021/bi020582s PubMed DOI

Gong Y, Hart E, Shchurin A, Hoover-Plow J. Inflammatory macrophage migration requires MMP-9 activation by plasminogen in mice. J Clin Invest (2008) 118(9):3012–24. doi: 10.1172/JCI32750 PubMed DOI PMC

Silva LM, Lum AG, Tran C, Shaw MW, Gao Z, Flick MJ, et al. . Plasmin-mediated fibrinolysis enables macrophage migration in a murine model of inflammation. Blood (2019) 134(3):291–303. doi: 10.1182/blood.2018874859 PubMed DOI PMC

Colman RW. Activation of plasminogen by human plasma kallikrein. Biochem Biophys Res Commun (1969) 35(2):273–9. doi: 10.1016/0006-291x(69)90278-2 PubMed DOI

Ichinose A, Fujikawa K, Suyama T. The activation of pro-urokinase by plasma kallikrein and its inactivation by thrombin. J Biol Chem (1986) 261(8):3486–9. doi: 10.1016/S0021-9258(17)35674-0 PubMed DOI

Takeuchi T, Harris JL, Huang W, Yan KW, Coughlin SR, Craik CS. Cellular localization of membrane-type serine protease 1 and identification of protease-activated receptor-2 and single-chain urokinase-type plasminogen activator as substrates. J Biol Chem (2000) 275(34):26333–42. doi: 10.1074/jbc.M002941200 PubMed DOI

Golias C, Charalabopoulos A, Stagikas D, Charalabopoulos K, Batistatou A. The kinin system–bradykinin: biological effects and clinical implications. Multiple role kinin system–bradykinin. Hippokratia (2007) 11(3):124–8. PubMed PMC

Hartwig W, Werner J, Warshaw AL, Antoniu B, Castillo CF, Gebhard MM, et al. . Membrane-bound ICAM-1 is upregulated by trypsin and contributes to leukocyte migration in acute pancreatitis. Am J Physiol Gastrointest Liver Physiol (2004) 287(6):G1194–9. doi: 10.1152/ajpgi.00221.2004 PubMed DOI

Gobel K, Asaridou CM, Merker M, Eichler S, Herrmann AM, Geuss E, et al. . Plasma kallikrein modulates immune cell trafficking during neuroinflammation via PAR2 and bradykinin release. Proc Natl Acad Sci U.S.A. (2019) 116(1):271–6. doi: 10.1073/pnas.1810020116 PubMed DOI PMC

Sheehan JJ, Zhou C, Gravanis I, Rogove AD, Wu YP, Bogenhagen DF, et al. . Proteolytic activation of monocyte chemoattractant protein-1 by plasmin underlies excitotoxic neurodegeneration in mice. J Neurosci (2007) 27(7):1738–45. doi: 10.1523/JNEUROSCI.4987-06.2007 PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Genome sequences of four Ixodes species expands understanding of tick evolution

. 2025 Jan 21 ; 23 (1) : 17. [epub] 20250121

Conformational transition of the Ixodes ricinus salivary serpin Iripin-4

. 2023 May 01 ; 79 (Pt 5) : 409-419. [epub] 20230424

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...