Iripin-1, a new anti-inflammatory tick serpin, inhibits leukocyte recruitment in vivo while altering the levels of chemokines and adhesion molecules
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, N.I.H., Intramural
PubMed
36756125
PubMed Central
PMC9901544
DOI
10.3389/fimmu.2023.1116324
Knihovny.cz E-zdroje
- Klíčová slova
- anti-inflammatory protein, cell migration, iripin, ixodes ricinus, serpin, tick saliva, tick-host interaction, ticks,
- MeSH
- antiflogistika farmakologie MeSH
- chemokiny MeSH
- endoteliální buňky metabolismus MeSH
- klíště * metabolismus MeSH
- monocyty metabolismus MeSH
- myši MeSH
- serpiny * metabolismus MeSH
- trypsin MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Intramural MeSH
- Názvy látek
- antiflogistika MeSH
- chemokiny MeSH
- serpiny * MeSH
- trypsin MeSH
Serpins are widely distributed and functionally diverse inhibitors of serine proteases. Ticks secrete serpins with anti-coagulation, anti-inflammatory, and immunomodulatory activities via their saliva into the feeding cavity to modulate host's hemostatic and immune reaction initiated by the insertion of tick's mouthparts into skin. The suppression of the host's immune response not only allows ticks to feed on a host for several days but also creates favorable conditions for the transmission of tick-borne pathogens. Herein we present the functional and structural characterization of Iripin-1 (Ixodes ricinus serpin-1), whose expression was detected in the salivary glands of the tick Ixodes ricinus, a European vector of tick-borne encephalitis and Lyme disease. Of 16 selected serine proteases, Iripin-1 inhibited primarily trypsin and further exhibited weaker inhibitory activity against kallikrein, matriptase, and plasmin. In the mouse model of acute peritonitis, Iripin-1 enhanced the production of the anti-inflammatory cytokine IL-10 and chemokines involved in neutrophil and monocyte recruitment, including MCP-1/CCL2, a potent histamine-releasing factor. Despite increased chemokine levels, the migration of neutrophils and monocytes to inflamed peritoneal cavities was significantly attenuated following Iripin-1 administration. Based on the results of in vitro experiments, immune cell recruitment might be inhibited due to Iripin-1-mediated reduction of the expression of chemokine receptors in neutrophils and adhesion molecules in endothelial cells. Decreased activity of serine proteases in the presence of Iripin-1 could further impede cell migration to the site of inflammation. Finally, we determined the tertiary structure of native Iripin-1 at 2.10 Å resolution by employing the X-ray crystallography technique. In conclusion, our data indicate that Iripin-1 facilitates I. ricinus feeding by attenuating the host's inflammatory response at the tick attachment site.
Zobrazit více v PubMed
Rawlings ND, Tolle DP, Barrett AJ. Evolutionary families of peptidase inhibitors. Biochem J (2004) 378(Pt 3):705–16. doi: 10.1042/BJ20031825 PubMed DOI PMC
Spence MA, Mortimer MD, Buckle AM, Minh BQ, Jackson CJ. A comprehensive phylogenetic analysis of the serpin superfamily. Mol Biol Evol (2021) 38(7):2915–29. doi: 10.1093/molbev/msab081 PubMed DOI PMC
Mkaouar H, Akermi N, Kriaa A, Abraham AL, Jablaoui A, Soussou S, et al. . Serine protease inhibitors and human wellbeing interplay: new insights for old friends. PeerJ (2019) 7:e7224. doi: 10.7717/peerj.7224 PubMed DOI PMC
Kelly-Robinson GA, Reihill JA, Lundy FT, McGarvey LP, Lockhart JC, Litherland GJ, et al. . The serpin superfamily and their role in the regulation and dysfunction of serine protease activity in COPD and other chronic lung diseases. Int J Mol Sci (2021) 22(12):6351. doi: 10.3390/ijms22126351 PubMed DOI PMC
Huntington JA. Serpin structure, function and dysfunction. J Thromb Haemost (2011) 9 Suppl 1:26–34. doi: 10.1111/j.1538-7836.2011.04360.x PubMed DOI
van Gent D, Sharp P, Morgan K, Kalsheker N. Serpins: structure, function and molecular evolution. Int J Biochem Cell Biol (2003) 35(11):1536–47. doi: 10.1016/s1357-2725(03)00134-1 PubMed DOI
Khan MS, Singh P, Azhar A, Naseem A, Rashid Q, Kabir MA, et al. . Serpin inhibition mechanism: a delicate balance between native metastable state and polymerization. J Amino Acids (2011) 2011:606797. doi: 10.4061/2011/606797 PubMed DOI PMC
Marijanovic EM, Fodor J, Riley BT, Porebski BT, Costa MGS, Kass I, et al. . Reactive centre loop dynamics and serpin specificity. Sci Rep (2019) 9(1):3870. doi: 10.1038/s41598-019-40432-w PubMed DOI PMC
Rizzoli A, Silaghi C, Obiegala A, Rudolf I, Hubalek Z, Foldvari G, et al. . Ixodes ricinus and its transmitted pathogens in urban and peri-urban areas in Europe: new hazards and relevance for public health. Front Public Health (2014) 2:251. doi: 10.3389/fpubh.2014.00251 PubMed DOI PMC
Schon MP. The tick and I: Parasite-host interactions between ticks and humans. J Dtsch Dermatol Ges (2022) 20 (6):818–853. doi: 10.1111/ddg.14821 PubMed DOI
Heinze DM, Carmical JR, Aronson JF, Thangamani S. Early immunologic events at the tick-host interface. PloS One (2012) 7(10):e47301. doi: 10.1371/journal.pone.0047301 PubMed DOI PMC
Mako V, Czucz J, Weiszhar Z, Herczenik E, Matko J, Prohaszka Z, et al. . Proinflammatory activation pattern of human umbilical vein endothelial cells induced by IL-1beta, TNF-alpha, and LPS. Cytometry A (2010) 77(10):962–70. doi: 10.1002/cyto.a.20952 PubMed DOI
Griffith JW, Sokol CL, Luster AD. Chemokines and chemokine receptors: positioning cells for host defense and immunity. Annu Rev Immunol (2014) 32:659–702. doi: 10.1146/annurev-immunol-032713-120145 PubMed DOI
Laudanna C, Kim JY, Constantin G, Butcher E. Rapid leukocyte integrin activation by chemokines. Immunol Rev (2002) 186:37–46. doi: 10.1034/j.1600-065x.2002.18604.x PubMed DOI
Penberthy TW, Jiang Y, Graves DT. Leukocyte adhesion molecules. Crit Rev Oral Biol Med (1997) 8(4):380–8. doi: 10.1177/10454411970080040201 PubMed DOI
Weber C, Fraemohs L, Dejana E. The role of junctional adhesion molecules in vascular inflammation. Nat Rev Immunol (2007) 7(6):467–77. doi: 10.1038/nri2096 PubMed DOI
Muller WA. Transendothelial migration: unifying principles from the endothelial perspective. Immunol Rev (2016) 273(1):61–75. doi: 10.1111/imr.12443 PubMed DOI PMC
Nourshargh S, Alon R. Leukocyte migration into inflamed tissues. Immunity (2014) 41(5):694–707. doi: 10.1016/j.immuni.2014.10.008 PubMed DOI
Wolf K, Friedl P. Extracellular matrix determinants of proteolytic and non-proteolytic cell migration. Trends Cell Biol (2011) 21(12):736–44. doi: 10.1016/j.tcb.2011.09.006 PubMed DOI
Simo L, Kazimirova M, Richardson J, Bonnet SI. The essential role of tick salivary glands and saliva in tick feeding and pathogen transmission. Front Cell Infect Microbiol (2017) 7:281. doi: 10.3389/fcimb.2017.00281 PubMed DOI PMC
Aounallah H, Bensaoud C, M'Ghirbi Y, Faria F, Chmelar JI, Kotsyfakis M. Tick salivary compounds for targeted immunomodulatory therapy. Front Immunol (2020) 11:583845. doi: 10.3389/fimmu.2020.583845 PubMed DOI PMC
Abbas MN, Chlastakova A, Jmel MA, Iliaki-Giannakoudaki E, Chmelar J, Kotsyfakis M. Serpins in tick physiology and tick-host interaction. Front Cell Infect Microbiol (2022) 12:892770. doi: 10.3389/fcimb.2022.892770 PubMed DOI PMC
Tirloni L, Kim TK, Berger M, Termignoni C, da Silva Vaz I, Jr., Mulenga A. Amblyomma americanum serpin 27 (AAS27) is a tick salivary anti-inflammatory protein secreted into the host during feeding. PloS Negl Trop Dis (2019) 13(8):e0007660. doi: 10.1371/journal.pntd.0007660 PubMed DOI PMC
Coutinho ML, Bizzarro B, Tirloni L, Berger M, Freire Oliveira CJ, Sa-Nunes A, et al. . Rhipicephalus microplus serpins interfere with host immune responses by specifically modulating mast cells and lymphocytes. Ticks Tick Borne Dis (2020) 11(4):101425. doi: 10.1016/j.ttbdis.2020.101425 PubMed DOI PMC
Kim TK, Tirloni L, Berger M, Diedrich JK, Yates JR, 3rd, Termignoni C, et al. . Amblyomma americanum serpin 41 (AAS41) inhibits inflammation by targeting chymase and chymotrypsin. Int J Biol Macromol (2020) 156:1007–21. doi: 10.1016/j.ijbiomac.2020.04.088 PubMed DOI PMC
Leboulle G, Crippa M, Decrem Y, Mejri N, Brossard M, Bollen A, et al. . Characterization of a novel salivary immunosuppressive protein from Ixodes ricinus ticks. J Biol Chem (2002) 277(12):10083–9. doi: 10.1074/jbc.M111391200 PubMed DOI
Prevot PP, Beschin A, Lins L, Beaufays J, Grosjean A, Bruys L, et al. . Exosites mediate the anti-inflammatory effects of a multifunctional serpin from the saliva of the tick Ixodes ricinus . FEBS J (2009) 276(12):3235–46. doi: 10.1111/j.1742-4658.2009.07038.x PubMed DOI
Palenikova J, Lieskovska J, Langhansova H, Kotsyfakis M, Chmelar J, Kopecky J. Ixodes ricinus salivary serpin IRS-2 affects Th17 differentiation via inhibition of the interleukin-6/STAT-3 signaling pathway. Infect Immun (2015) 83(5):1949–56. doi: 10.1128/IAI.03065-14 PubMed DOI PMC
Wang F, Song Z, Chen J, Wu Q, Zhou X, Ni X, et al. . The immunosuppressive functions of two novel tick serpins, HlSerpin-a and HlSerpin-b, from Haemaphysalis longicornis. Immunol (2020) 159(1):109–20. doi: 10.1111/imm.13130 PubMed DOI PMC
Chlastakova A, Kotal J, Berankova Z, Kascakova B, Martins LA, Langhansova H, et al. . Iripin-3, a new salivary protein isolated from Ixodes ricinus ticks, displays immunomodulatory and anti-hemostatic properties in vitro . Front Immunol (2021) 12:626200. doi: 10.3389/fimmu.2021.626200 PubMed DOI PMC
Kascakova B, Kotal J, Martins LA, Berankova Z, Langhansova H, Calvo E, et al. . Structural and biochemical characterization of the novel serpin iripin-5 from Ixodes ricinus . Acta Crystallogr D Struct Biol (2021) 77(Pt 9):1183–96. doi: 10.1107/S2059798321007920 PubMed DOI PMC
Chmelar J, Oliveira CJ, Rezacova P, Francischetti IM, Kovarova Z, Pejler G, et al. . A tick salivary protein targets cathepsin G and chymase and inhibits host inflammation and platelet aggregation. Blood (2011) 117(2):736–44. doi: 10.1182/blood-2010-06-293241 PubMed DOI PMC
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta c(t)) method. Methods (2001) 25(4):402–8. doi: 10.1006/meth.2001.1262 PubMed DOI
Lew M. Good statistical practice in pharmacology. Problem 2. Br J Pharmacol (2007) 152(3):299–303. doi: 10.1038/sj.bjp.0707372 PubMed DOI PMC
Schechter I, Berger A. On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun (1967) 27(2):157–62. doi: 10.1016/s0006-291x(67)80055-x PubMed DOI
Hopkins PC, Carrell RW, Stone SR. Effects of mutations in the hinge region of serpins. Biochemistry (1993) 32(30):7650–7. doi: 10.1021/bi00081a008 PubMed DOI
Olsen JV, Ong SE, Mann M. Trypsin cleaves exclusively C-terminal to arginine and lysine residues. Mol Cell Proteomics (2004) 3(6):608–14. doi: 10.1074/mcp.T400003-MCP200 PubMed DOI
Goettig P, Brandstetter H, Magdolen V. Surface loops of trypsin-like serine proteases as determinants of function. Biochimie (2019) 166:52–76. doi: 10.1016/j.biochi.2019.09.004 PubMed DOI PMC
Lundberg AH, Eubanks JW, 3rd, Henry J, Sabek O, Kotb M, Gaber L, et al. . Trypsin stimulates production of cytokines from peritoneal macrophages in vitro and in vivo . Pancreas (2000) 21(1):41–51. doi: 10.1097/00006676-200007000-00050 PubMed DOI
Paszcuk AF, Quintao NL, Fernandes ES, Juliano L, Chapman K, Andrade-Gordon P, et al. . Mechanisms underlying the nociceptive and inflammatory responses induced by trypsin in the mouse paw. Eur J Pharmacol (2008) 581(1-2):204–15. doi: 10.1016/j.ejphar.2007.11.025 PubMed DOI
Bjorkqvist J, Jamsa A, Renne T. Plasma kallikrein: the bradykinin-producing enzyme. Thromb Haemost (2013) 110(3):399–407. doi: 10.1160/TH13-03-0258 PubMed DOI
Baker SK, Strickland S. A critical role for plasminogen in inflammation. J Exp Med (2020) 217(4):e20191865. doi: 10.1084/jem.20191865 PubMed DOI PMC
Henderson RB, Hobbs JA, Mathies M, Hogg N. Rapid recruitment of inflammatory monocytes is independent of neutrophil migration. Blood (2003) 102(1):328–35. doi: 10.1182/blood-2002-10-3228 PubMed DOI
Cailhier JF, Partolina M, Vuthoori S, Wu S, Ko K, Watson S, et al. . Conditional macrophage ablation demonstrates that resident macrophages initiate acute peritoneal inflammation. J Immunol (2005) 174(4):2336–42. doi: 10.4049/jimmunol.174.4.2336 PubMed DOI
Liu T, Liu F, Peng LW, Chang L, Jiang YM. The peritoneal macrophages in inflammatory diseases and abdominal cancers. Oncol Res (2018) 26(5):817–26. doi: 10.3727/096504017X15130753659625 PubMed DOI PMC
Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res (2001) 29(9):e45. doi: 10.1093/nar/29.9.e45 PubMed DOI PMC
Ribeiro JMC, Mans BJ. TickSialoFam (TSFam): a database that helps to classify tick salivary proteins, a review on tick salivary protein function and evolution, with considerations on the tick sialome switching phenomenon. Front Cell Infect Microbiol (2020) 10:374. doi: 10.3389/fcimb.2020.00374 PubMed DOI PMC
Hovius JW, Levi M, Fikrig E. Salivating for knowledge: potential pharmacological agents in tick saliva. PloS Med (2008) 5(2):e43. doi: 10.1371/journal.pmed.0050043 PubMed DOI PMC
Chmelar J, Kotal J, Kovarikova A, Kotsyfakis M. The use of tick salivary proteins as novel therapeutics. Front Physiol (2019) 10:812. doi: 10.3389/fphys.2019.00812 PubMed DOI PMC
de la Fuente J, Kocan KM. Strategies for development of vaccines for control of ixodid tick species. Parasite Immunol (2006) 28(7):275–83. doi: 10.1111/j.1365-3024.2006.00828.x PubMed DOI
Rego ROM, Trentelman JJA, Anguita J, Nijhof AM, Sprong H, Klempa B, et al. . Counterattacking the tick bite: towards a rational design of anti-tick vaccines targeting pathogen transmission. Parasit Vectors (2019) 12(1):229. doi: 10.1186/s13071-019-3468-x PubMed DOI PMC
Kotal J, Polderdijk SGI, Langhansova H, Ederova M, Martins LA, Berankova Z, et al. . Ixodes ricinus salivary serpin Iripin-8 inhibits the intrinsic pathway of coagulation and complement. Int J Mol Sci (2021) 22(17):9480. doi: 10.3390/ijms22179480 PubMed DOI PMC
Patston PA, Church FC, Olson ST. Serpin-ligand interactions. Methods (2004) 32(2):93–109. doi: 10.1016/s1046-2023(03)00201-9 PubMed DOI
Fu Z, Thorpe M, Akula S, Chahal G, Hellman LT. Extended cleavage specificity of human neutrophil elastase, human proteinase 3, and their distant ortholog clawed frog PR3-three elastases with similar primary but different extended specificities and stability. Front Immunol (2018) 9:2387. doi: 10.3389/fimmu.2018.02387 PubMed DOI PMC
Tirloni L, Kim TK, Coutinho ML, Ali A, Seixas A, Termignoni C, et al. . The putative role of Rhipicephalus microplus salivary serpins in the tick-host relationship. Insect Biochem Mol Biol (2016) 71:12–28. doi: 10.1016/j.ibmb.2016.01.004 PubMed DOI PMC
Saraiva M, Vieira P, O'Garra A. Biology and therapeutic potential of interleukin-10. J Exp Med (2020) 217(1):e20190418. doi: 10.1084/jem.20190418 PubMed DOI PMC
Blisnick AA, Simo L, Grillon C, Fasani F, Brule S, Le Bonniec B, et al. . The immunomodulatory effect of IrSPI, a tick salivary gland serine protease inhibitor involved in Ixodes ricinus tick feeding. Vaccines (Basel) (2019) 7(4):148. doi: 10.3390/vaccines7040148 PubMed DOI PMC
Hayward J, Sanchez J, Perry A, Huang C, Rodriguez Valle M, Canals M, et al. . Ticks from diverse genera encode chemokine-inhibitory evasin proteins. J Biol Chem (2017) 292(38):15670–80. doi: 10.1074/jbc.M117.807255 PubMed DOI PMC
Lee AW, Deruaz M, Lynch C, Davies G, Singh K, Alenazi Y, et al. . A knottin scaffold directs the CXC-chemokine-binding specificity of tick evasins. J Biol Chem (2019) 294(29):11199–212. doi: 10.1074/jbc.RA119.008817 PubMed DOI PMC
Alenazi Y, Singh K, Davies G, Eaton JRO, Elders P, Kawamura A, et al. . Genetically engineered two-warhead evasins provide a method to achieve precision targeting of disease-relevant chemokine subsets. Sci Rep (2018) 8(1):6333. doi: 10.1038/s41598-018-24568-9 PubMed DOI PMC
Langhansova H, Bopp T, Schmitt E, Kopecky J. Tick saliva increases production of three chemokines including monocyte chemoattractant protein-1, a histamine-releasing cytokine. Parasite Immunol (2015) 37(2):92–6. doi: 10.1111/pim.12168 PubMed DOI
Kuna P, Reddigari SR, Rucinski D, Oppenheim JJ, Kaplan AP. Monocyte chemotactic and activating factor is a potent histamine-releasing factor for human basophils. J Exp Med (1992) 175(2):489–93. doi: 10.1084/jem.175.2.489 PubMed DOI PMC
Bischoff SC, Krieger M, Brunner T, Rot A, von Tscharner V, Baggiolini M, et al. . RANTES and related chemokines activate human basophil granulocytes through different G protein-coupled receptors. Eur J Immunol (1993) 23(3):761–7. doi: 10.1002/eji.1830230329 PubMed DOI
Campbell EM, Charo IF, Kunkel SL, Strieter RM, Boring L, Gosling J, et al. . Monocyte chemoattractant protein-1 mediates cockroach allergen-induced bronchial hyperreactivity in normal but not CCR2-/- mice: the role of mast cells. J Immunol (1999) 163(4):2160–7. doi: 10.4049/jimmunol.163.4.2160 PubMed DOI
Thangam EB, Jemima EA, Singh H, Baig MS, Khan M, Mathias CB, et al. . The role of histamine and histamine receptors in mast cell-mediated allergy and inflammation: the hunt for new therapeutic targets. Front Immunol (2018) 9:1873. doi: 10.3389/fimmu.2018.01873 PubMed DOI PMC
Dai J, Narasimhan S, Zhang L, Liu L, Wang P, Fikrig E. Tick histamine release factor is critical for Ixodes scapularis engorgement and transmission of the Lyme disease agent. PloS Pathog (2010) 6(11):e1001205. doi: 10.1371/journal.ppat.1001205 PubMed DOI PMC
Bozic CR, Gerard NP, von Uexkull-Guldenband C, Kolakowski LF, Jr., Conklyn MJ, Breslow R, et al. . The murine interleukin 8 type b receptor homologue and its ligands. expression and biological characterization. J Biol Chem (1994) 269(47):29355–8. doi: 10.1016/S0021-9258(18)43882-3 PubMed DOI
Cacalano G, Lee J, Kikly K, Ryan AM, Pitts-Meek S, Hultgren B, et al. . Neutrophil and B cell expansion in mice that lack the murine IL-8 receptor homolog. Science (1994) 265(5172):682–4. doi: 10.1126/science.8036519 PubMed DOI
Hu N, Westra J, Rutgers A, Doornbos-Van der Meer B, Huitema MG, Stegeman CA, et al. . Decreased CXCR1 and CXCR2 expression on neutrophils in anti-neutrophil cytoplasmic autoantibody-associated vasculitides potentially increases neutrophil adhesion and impairs migration. Arthritis Res Ther (2011) 13(6):R201. doi: 10.1186/ar3534 PubMed DOI PMC
Bochner BS, Luscinskas FW, Gimbrone MA, Jr., Newman W, Sterbinsky SA, Derse-Anthony CP, et al. . Adhesion of human basophils, eosinophils, and neutrophils to interleukin 1-activated human vascular endothelial cells: contributions of endothelial cell adhesion molecules. J Exp Med (1991) 173(6):1553–7. doi: 10.1084/jem.173.6.1553 PubMed DOI PMC
Takahashi M, Ikeda U, Masuyama J, Kitagawa S, Kasahara T, Saito M, et al. . Involvement of adhesion molecules in human monocyte adhesion to and transmigration through endothelial cells in vitro . Atherosclerosis (1994) 108(1):73–81. doi: 10.1016/0021-9150(94)90038-8 PubMed DOI
Henderson RB, Lim LHK, Tessier PA, Gavins FNE, Mathies M, Perretti M, et al. . The use of lymphocyte function–associated antigen (LFA)-1–deficient mice to determine the role of LFA-1, Mac-1, and α4 integrin in the inflammatory response of neutrophils. J Exp Med (2001) 194(2):219–26. doi: 10.1084/jem.194.2.219 PubMed DOI PMC
Pereira S, Zhou M, Mocsai A, Lowell C. Resting murine neutrophils express functional alpha 4 integrins that signal through src family kinases. J Immunol (2001) 166(6):4115–23. doi: 10.4049/jimmunol.166.6.4115 PubMed DOI
Ulyanova T, Priestley GV, Banerjee ER, Papayannopoulou T. Unique and redundant roles of alpha4 and beta2 integrins in kinetics of recruitment of lymphoid vs myeloid cell subsets to the inflamed peritoneum revealed by studies of genetically deficient mice. Exp Hematol (2007) 35(8):1256–65. doi: 10.1016/j.exphem.2007.04.015 PubMed DOI PMC
Nagata M, Nakagome K, Soma T. Mechanisms of eosinophilic inflammation. Asia Pac Allergy (2020) 10(2):e14. doi: 10.5415/apallergy.2020.10.e14 PubMed DOI PMC
Sriramarao P, DiScipio RG, Cobb RR, Cybulsky M, Stachnick G, Castaneda D, et al. . VCAM-1 is more effective than MAdCAM-1 in supporting eosinophil rolling under conditions of shear flow. Blood (2000) 95(2):592–601. doi: 10.1182/blood.V95.2.592 PubMed DOI
Schenkel AR, Mamdouh Z, Chen X, Liebman RM, Muller WA. CD99 plays a major role in the migration of monocytes through endothelial junctions. Nat Immunol (2002) 3(2):143–50. doi: 10.1038/ni749 PubMed DOI
Lou O, Alcaide P, Luscinskas FW, Muller WA. CD99 is a key mediator of the transendothelial migration of neutrophils. J Immunol (2007) 178(2):1136–43. doi: 10.4049/jimmunol.178.2.1136 PubMed DOI
Bixel MG, Petri B, Khandoga AG, Khandoga A, Wolburg-Buchholz K, Wolburg H, et al. . A CD99-related antigen on endothelial cells mediates neutrophil but not lymphocyte extravasation in vivo . Blood (2007) 109(12):5327–36. doi: 10.1182/blood-2006-08-043109 PubMed DOI
Dufour EM, Deroche A, Bae Y, Muller WA. CD99 is essential for leukocyte diapedesis in vivo . Cell Commun Adhes (2008) 15(4):351–63. doi: 10.1080/15419060802442191 PubMed DOI PMC
Koshikawa N, Hasegawa S, Nagashima Y, Mitsuhashi K, Tsubota Y, Miyata S, et al. . Expression of trypsin by epithelial cells of various tissues, leukocytes, and neurons in human and mouse. Am J Pathol (1998) 153(3):937–44. doi: 10.1016/S0002-9440(10)65635-0 PubMed DOI PMC
Plow EF, Doeuvre L, Das R. So many plasminogen receptors: why? J BioMed Biotechnol (2012) 2012:141806. doi: 10.1155/2012/141806 PubMed DOI PMC
Kilpatrick LM, Harris RL, Owen KA, Bass R, Ghorayeb C, Bar-Or A, et al. . Initiation of plasminogen activation on the surface of monocytes expressing the type II transmembrane serine protease matriptase. Blood (2006) 108(8):2616–23. doi: 10.1182/blood-2006-02-001073 PubMed DOI
List K, Bugge TH, Szabo R. Matriptase: potent proteolysis on the cell surface. Mol Med (2006) 12(1-3):1–7. doi: 10.2119/2006-00022.List PubMed DOI PMC
Seitz I, Hess S, Schulz H, Eckl R, Busch G, Montens HP, et al. . Membrane-type serine protease-1/matriptase induces interleukin-6 and -8 in endothelial cells by activation of protease-activated receptor-2: potential implications in atherosclerosis. Arterioscler Thromb Vasc Biol (2007) 27(4):769–75. doi: 10.1161/01.ATV.0000258862.61067.14 PubMed DOI
Shi YE, Torri J, Yieh L, Wellstein A, Lippman ME, Dickson RB. Identification and characterization of a novel matrix-degrading protease from hormone-dependent human breast cancer cells. Cancer Res (1993) 53(6):1409–15. PubMed
Lijnen HR. Plasmin and matrix metalloproteinases in vascular remodeling. Thromb Haemost (2001) 86(1):324–33. doi: 10.1055/s-0037-1616230 PubMed DOI
Satomi S, Yamasaki Y, Tsuzuki S, Hitomi Y, Iwanaga T, Fushiki T. A role for membrane-type serine protease (MT-SP1) in intestinal epithelial turnover. Biochem Biophys Res Commun (2001) 287(4):995–1002. doi: 10.1006/bbrc.2001.5686 PubMed DOI
Moilanen M, Sorsa T, Stenman M, Nyberg P, Lindy O, Vesterinen J, et al. . Tumor-associated trypsinogen-2 (trypsinogen-2) activates procollagenases (MMP-1, -8, -13) and stromelysin-1 (MMP-3) and degrades type I collagen. Biochemistry (2003) 42(18):5414–20. doi: 10.1021/bi020582s PubMed DOI
Gong Y, Hart E, Shchurin A, Hoover-Plow J. Inflammatory macrophage migration requires MMP-9 activation by plasminogen in mice. J Clin Invest (2008) 118(9):3012–24. doi: 10.1172/JCI32750 PubMed DOI PMC
Silva LM, Lum AG, Tran C, Shaw MW, Gao Z, Flick MJ, et al. . Plasmin-mediated fibrinolysis enables macrophage migration in a murine model of inflammation. Blood (2019) 134(3):291–303. doi: 10.1182/blood.2018874859 PubMed DOI PMC
Colman RW. Activation of plasminogen by human plasma kallikrein. Biochem Biophys Res Commun (1969) 35(2):273–9. doi: 10.1016/0006-291x(69)90278-2 PubMed DOI
Ichinose A, Fujikawa K, Suyama T. The activation of pro-urokinase by plasma kallikrein and its inactivation by thrombin. J Biol Chem (1986) 261(8):3486–9. doi: 10.1016/S0021-9258(17)35674-0 PubMed DOI
Takeuchi T, Harris JL, Huang W, Yan KW, Coughlin SR, Craik CS. Cellular localization of membrane-type serine protease 1 and identification of protease-activated receptor-2 and single-chain urokinase-type plasminogen activator as substrates. J Biol Chem (2000) 275(34):26333–42. doi: 10.1074/jbc.M002941200 PubMed DOI
Golias C, Charalabopoulos A, Stagikas D, Charalabopoulos K, Batistatou A. The kinin system–bradykinin: biological effects and clinical implications. Multiple role kinin system–bradykinin. Hippokratia (2007) 11(3):124–8. PubMed PMC
Hartwig W, Werner J, Warshaw AL, Antoniu B, Castillo CF, Gebhard MM, et al. . Membrane-bound ICAM-1 is upregulated by trypsin and contributes to leukocyte migration in acute pancreatitis. Am J Physiol Gastrointest Liver Physiol (2004) 287(6):G1194–9. doi: 10.1152/ajpgi.00221.2004 PubMed DOI
Gobel K, Asaridou CM, Merker M, Eichler S, Herrmann AM, Geuss E, et al. . Plasma kallikrein modulates immune cell trafficking during neuroinflammation via PAR2 and bradykinin release. Proc Natl Acad Sci U.S.A. (2019) 116(1):271–6. doi: 10.1073/pnas.1810020116 PubMed DOI PMC
Sheehan JJ, Zhou C, Gravanis I, Rogove AD, Wu YP, Bogenhagen DF, et al. . Proteolytic activation of monocyte chemoattractant protein-1 by plasmin underlies excitotoxic neurodegeneration in mice. J Neurosci (2007) 27(7):1738–45. doi: 10.1523/JNEUROSCI.4987-06.2007 PubMed DOI PMC
Genome sequences of four Ixodes species expands understanding of tick evolution
Conformational transition of the Ixodes ricinus salivary serpin Iripin-4