Ixodes ricinus Salivary Serpin Iripin-8 Inhibits the Intrinsic Pathway of Coagulation and Complement
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-14704Y
Grantová Agentura České Republiky
384 CZ.02.1.01/0.0/0.0/16_019/0000759
European Regional Development Fund
PubMed
34502392
PubMed Central
PMC8431025
DOI
10.3390/ijms22179480
PII: ijms22179480
Knihovny.cz E-zdroje
- Klíčová slova
- Ixodes ricinus, blood coagulation, crystal structure, parasite, saliva, serpin, tick,
- MeSH
- aktivace komplementu účinky léků imunologie fyziologie MeSH
- erytrocyty metabolismus MeSH
- exprese genu genetika MeSH
- hemokoagulace účinky léků fyziologie MeSH
- klíště enzymologie genetika metabolismus MeSH
- komplement metabolismus MeSH
- lymeská nemoc MeSH
- nymfa MeSH
- proteiny členovců metabolismus MeSH
- regulace genové exprese genetika MeSH
- serpiny metabolismus ultrastruktura MeSH
- slinné žlázy metabolismus MeSH
- sliny chemie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- komplement MeSH
- proteiny členovců MeSH
- serpiny MeSH
Tick saliva is a rich source of antihemostatic, anti-inflammatory, and immunomodulatory molecules that actively help the tick to finish its blood meal. Moreover, these molecules facilitate the transmission of tick-borne pathogens. Here we present the functional and structural characterization of Iripin-8, a salivary serpin from the tick Ixodes ricinus, a European vector of tick-borne encephalitis and Lyme disease. Iripin-8 displayed blood-meal-induced mRNA expression that peaked in nymphs and the salivary glands of adult females. Iripin-8 inhibited multiple proteases involved in blood coagulation and blocked the intrinsic and common pathways of the coagulation cascade in vitro. Moreover, Iripin-8 inhibited erythrocyte lysis by complement, and Iripin-8 knockdown by RNA interference in tick nymphs delayed the feeding time. Finally, we resolved the crystal structure of Iripin-8 at 1.89 Å resolution to reveal an unusually long and rigid reactive center loop that is conserved in several tick species. The P1 Arg residue is held in place distant from the serpin body by a conserved poly-Pro element on the P' side. Several PEG molecules bind to Iripin-8, including one in a deep cavity, perhaps indicating the presence of a small-molecule binding site. This is the first crystal structure of a tick serpin in the native state, and Iripin-8 is a tick serpin with a conserved reactive center loop that possesses antihemostatic activity that may mediate interference with host innate immunity.
Zobrazit více v PubMed
Lindgren E., Talleklint L., Polfeldt T. Impact of climatic change on the northern latitude limit and population density of the disease-transmitting European tick Ixodes ricinus. Environ. Health Perspect. 2000;108:119–123. doi: 10.1289/ehp.00108119. PubMed DOI PMC
Sonenshine D.E. Biology of Ticks. 2nd ed. Oxford University Press; Oxford, UK: 2014.
Chmelar J., Calvo E., Pedra J.H., Francischetti I.M., Kotsyfakis M. Tick salivary secretion as a source of antihemostatics. J Proteom. 2012;75:3842–3854. doi: 10.1016/j.jprot.2012.04.026. PubMed DOI PMC
Kotal J., Langhansova H., Lieskovska J., Andersen J.F., Francischetti I.M., Chavakis T., Kopecky J., Pedra J.H., Kotsyfakis M., Chmelar J. Modulation of host immunity by tick saliva. J. Proteom. 2015;128:58–68. doi: 10.1016/j.jprot.2015.07.005. PubMed DOI PMC
Kazimirova M., Stibraniova I. Tick salivary compounds: Their role in modulation of host defences and pathogen transmission. Front. Cell Infect. Microbiol. 2013;3:43. doi: 10.3389/fcimb.2013.00043. PubMed DOI PMC
Simo L., Kazimirova M., Richardson J., Bonnet S.I. The Essential Role of Tick Salivary Glands and Saliva in Tick Feeding and Pathogen Transmission. Front. Cell Infect. Microbiol. 2017;7:281. doi: 10.3389/fcimb.2017.00281. PubMed DOI PMC
Stibraniova I., Bartikova P., Holikova V., Kazimirova M. Deciphering Biological Processes at the Tick-Host Interface Opens New Strategies for Treatment of Human Diseases. Front. Physiol. 2019;10:830. doi: 10.3389/fphys.2019.00830. PubMed DOI PMC
Krober T., Guerin P.M. An in vitro feeding assay to test acaricides for control of hard ticks. Pest Manag. Sci. 2007;63:17–22. doi: 10.1002/ps.1293. PubMed DOI
Bajda S., Dermauw W., Panteleri R., Sugimoto N., Douris V., Tirry L., Osakabe M., Vontas J., Van Leeuwen T. A mutation in the PSST homologue of complex I (NADH:ubiquinone oxidoreductase) from Tetranychus urticae is associated with resistance to METI acaricides. Insect Biochem. Mol. Biol. 2017;80:79–90. doi: 10.1016/j.ibmb.2016.11.010. PubMed DOI
Amara U., Rittirsch D., Flierl M., Bruckner U., Klos A., Gebhard F., Lambris J.D., Huber-Lang M. Interaction between the coagulation and complement system. Adv. Exp. Med. Biol. 2008;632:71–79. PubMed PMC
Manning J.E., Cantaert T. Time to Micromanage the Pathogen-Host-Vector Interface: Considerations for Vaccine Development. Vaccines. 2019;7:10. doi: 10.3390/vaccines7010010. PubMed DOI PMC
Pingen M., Schmid M.A., Harris E., McKimmie C.S. Mosquito Biting Modulates Skin Response to Virus Infection. Trends Parasitol. 2017;33:645–657. doi: 10.1016/j.pt.2017.04.003. PubMed DOI
Chmelar J., Kotal J., Langhansova H., Kotsyfakis M. Protease Inhibitors in Tick Saliva: The Role of Serpins and Cystatins in Tick-host-Pathogen Interaction. Front. Cell Infect. Microbiol. 2017;7:216. doi: 10.3389/fcimb.2017.00216. PubMed DOI PMC
Wikel S. Ticks and tick-borne pathogens at the cutaneous interface: Host defenses, tick countermeasures, and a suitable environment for pathogen establishment. Front. Microbiol. 2013;4:337. doi: 10.3389/fmicb.2013.00337. PubMed DOI PMC
Schroeder H., Skelly P.J., Zipfel P.F., Losson B., Vanderplasschen A. Subversion of complement by hematophagous parasites. Dev. Comp. Immunol. 2009;33:5–13. doi: 10.1016/j.dci.2008.07.010. PubMed DOI PMC
Nunn M.A., Sharma A., Paesen G.C., Adamson S., Lissina O., Willis A.C., Nuttall P.A. Complement inhibitor of C5 activation from the soft tick Ornithodoros moubata. J. Immunol. 2005;174:2084–2091. doi: 10.4049/jimmunol.174.4.2084. PubMed DOI
Huntington J.A. Serpin structure, function and dysfunction. J. Thromb. Haemost. JTH. 2011;9(Suppl. 1):26–34. doi: 10.1111/j.1538-7836.2011.04360.x. PubMed DOI
Law R.H., Zhang Q., McGowan S., Buckle A.M., Silverman G.A., Wong W., Rosado C.J., Langendorf C.G., Pike R.N., Bird P.I., et al. An overview of the serpin superfamily. Genome Biol. 2006;7:216. doi: 10.1186/gb-2006-7-5-216. PubMed DOI PMC
Silverman G.A., Whisstock J.C., Bottomley S.P., Huntington J.A., Kaiserman D., Luke C.J., Pak S.C., Reichhart J.M., Bird P.I. Serpins flex their muscle: I. Putting the clamps on proteolysis in diverse biological systems. J. Biol. Chem. 2010;285:24299–24305. doi: 10.1074/jbc.R110.112771. PubMed DOI PMC
Whisstock J.C., Silverman G.A., Bird P.I., Bottomley S.P., Kaiserman D., Luke C.J., Pak S.C., Reichhart J.M., Huntington J.A. Serpins flex their muscle: II. Structural insights into target peptidase recognition, polymerization, and transport functions. J. Biol. Chem. 2010;285:24307–24312. doi: 10.1074/jbc.R110.141408. PubMed DOI PMC
Rawlings N.D., Barrett A.J., Thomas P.D., Huang X., Bateman A., Finn R.D. The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res. 2018;46:D624–D632. doi: 10.1093/nar/gkx1134. PubMed DOI PMC
Whisstock J.C., Bottomley S.P. Molecular gymnastics: Serpin structure, folding and misfolding. Curr. Opin. Struct. Biol. 2006;16:761–768. doi: 10.1016/j.sbi.2006.10.005. PubMed DOI
Meekins D.A., Kanost M.R., Michel K. Serpins in arthropod biology. Semin. Cell Dev. Biol. 2017;62:105–119. doi: 10.1016/j.semcdb.2016.09.001. PubMed DOI PMC
Porter L., Radulovic Z., Kim T., Braz G.R., Da Silva Vaz I., Jr., Mulenga A. Bioinformatic analyses of male and female Amblyomma americanum tick expressed serine protease inhibitors (serpins) Ticks Tick-Borne Dis. 2015;6:16–30. doi: 10.1016/j.ttbdis.2014.08.002. PubMed DOI PMC
Karim S., Ribeiro J.M. An Insight into the Sialome of the Lone Star Tick, Amblyomma americanum, with a Glimpse on Its Time Dependent Gene Expression. PLoS ONE. 2015;10:e0131292. doi: 10.1371/journal.pone.0131292. PubMed DOI PMC
Gaj T., Gersbach C.A., Barbas C.F., 3rd ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013;31:397–405. doi: 10.1016/j.tibtech.2013.04.004. PubMed DOI PMC
Tirloni L., Kim T.K., Pinto A.F.M., Yates J.R., 3rd, da Silva Vaz I., Jr., Mulenga A. Tick-Host Range Adaptation: Changes in Protein Profiles in Unfed Adult Ixodes scapularis and Amblyomma americanum Saliva Stimulated to Feed on Different Hosts. Front. Cell Infect. Microbiol. 2017;7:517. doi: 10.3389/fcimb.2017.00517. PubMed DOI PMC
Leboulle G., Crippa M., Decrem Y., Mejri N., Brossard M., Bollen A., Godfroid E. Characterization of a novel salivary immunosuppressive protein from Ixodes ricinus ticks. J. Biol. Chem. 2002;277:10083–10089. doi: 10.1074/jbc.M111391200. PubMed DOI
Prevot P.P., Adam B., Boudjeltia K.Z., Brossard M., Lins L., Cauchie P., Brasseur R., Vanhaeverbeek M., Vanhamme L., Godfroid E. Anti-hemostatic effects of a serpin from the saliva of the tick Ixodes ricinus. J. Biol. Chem. 2006;281:26361–26369. doi: 10.1074/jbc.M604197200. PubMed DOI
Chmelar J., Oliveira C.J., Rezacova P., Francischetti I.M., Kovarova Z., Pejler G., Kopacek P., Ribeiro J.M., Mares M., Kopecky J., et al. A tick salivary protein targets cathepsin G and chymase and inhibits host inflammation and platelet aggregation. Blood. 2011;117:736–744. doi: 10.1182/blood-2010-06-293241. PubMed DOI PMC
Palenikova J., Lieskovska J., Langhansova H., Kotsyfakis M., Chmelar J., Kopecky J. Ixodes ricinus salivary serpin IRS-2 affects Th17 differentiation via inhibition of the interleukin-6/STAT-3 signaling pathway. Infect. Immun. 2015;83:1949–1956. doi: 10.1128/IAI.03065-14. PubMed DOI PMC
Chlastakova A., Kotal J., Berankova Z., Kascakova B., Martins L.A., Langhansova H., Prudnikova T., Ederova M., Kuta Smatanova I., Kotsyfakis M., et al. Iripin-3, a New Salivary Protein Isolated From Ixodes ricinus Ticks, Displays Immunomodulatory and Anti-Hemostatic Properties In Vitro. Front. Immunol. 2021;12:626200. doi: 10.3389/fimmu.2021.626200. PubMed DOI PMC
Kim T.K., Tirloni L., Radulovic Z., Lewis L., Bakshi M., Hill C., da Silva Vaz I., Jr., Logullo C., Termignoni C., Mulenga A. Conserved Amblyomma americanum tick Serpin19, an inhibitor of blood clotting factors Xa and XIa, trypsin and plasmin, has anti-haemostatic functions. Int. J. Parasitol. 2015;45:613–627. doi: 10.1016/j.ijpara.2015.03.009. PubMed DOI PMC
Xu Z., Yan Y., Zhang H., Cao J., Zhou Y., Xu Q., Zhou J. A serpin from the tick Rhipicephalus haemaphysaloides: Involvement in vitellogenesis. Vet. Parasitol. 2020;279:109064. doi: 10.1016/j.vetpar.2020.109064. PubMed DOI
Xu T., Lew-Tabor A., Rodriguez-Valle M. Effective inhibition of thrombin by Rhipicephalus microplus serpin-15 (RmS-15) obtained in the yeast Pichia pastoris. Ticks Tick-Borne Dis. 2016;7:180–187. doi: 10.1016/j.ttbdis.2015.09.007. PubMed DOI
Kovarova Z., Chmelar J., Sanda M., Brynda J., Mares M., Rezacova P. Crystallization and diffraction analysis of the serpin IRS-2 from the hard tick Ixodes ricinus. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 2010;66 Pt 11:1453–1457. doi: 10.1107/S1744309110032343. PubMed DOI PMC
Ellisdon A.M., Zhang Q., Henstridge M.A., Johnson T.K., Warr C.G., Law R.H., Whisstock J.C. High resolution structure of cleaved Serpin 42 Da from Drosophila melanogaster. BMC Struct. Biol. 2014;14:14. doi: 10.1186/1472-6807-14-14. PubMed DOI PMC
Schreuder H.A., de Boer B., Dijkema R., Mulders J., Theunissen H.J., Grootenhuis P.D., Hol W.G. The intact and cleaved human antithrombin III complex as a model for serpin-proteinase interactions. Nat. Struct. Biol. 1994;1:48–54. doi: 10.1038/nsb0194-48. PubMed DOI
Akazawa T., Ogawa M., Hayakawa S., Hirata M., Niwa T. Structural change of ovalbumin-related protein X by alkali treatment. Poult. Sci. 2018;97:1730–1737. doi: 10.3382/ps/pey024. PubMed DOI
Yang L., Irving J.A., Dai W., Aguilar M.I., Bottomley S.P. Probing the folding pathway of a consensus serpin using single tryptophan mutants. Sci. Rep. 2018;8:2121. doi: 10.1038/s41598-018-19567-9. PubMed DOI PMC
Pereira M.H., Souza M.E., Vargas A.P., Martins M.S., Penido C.M., Diotaiuti L. Anticoagulant activity of Triatoma infestans and Panstrongylus megistus saliva (Hemiptera/Triatominae) Acta Trop. 1996;61:255–261. doi: 10.1016/0001-706X(96)00007-1. PubMed DOI
Lestinova T., Rohousova I., Sima M., de Oliveira C.I., Volf P. Insights into the sand fly saliva: Blood-feeding and immune interactions between sand flies, hosts, and Leishmania. PLoS Negl. Trop. Dis. 2017;11:e0005600. doi: 10.1371/journal.pntd.0005600. PubMed DOI PMC
Hoffman M. Remodeling the blood coagulation cascade. J. Thromb. Thrombolysis. 2003;16:17–20. doi: 10.1023/B:THRO.0000014588.95061.28. PubMed DOI
Kascakova B., Kotal J., Martins L.A., Berankova Z., Langhansova H., Calvo E., Crossley J.A., Havlickova P., Dycka F., Prudnikova T., et al. Structural and biochemical characterization of the novel serpin Iripin-5 from Ixodes ricinus. Acta Crystallogr. Sect. D. 2021;77 doi: 10.1107/S2059798321007920. PubMed DOI PMC
Kotal J., Stergiou N., Busa M., Chlastakova A., Berankova Z., Rezacova P., Langhansova H., Schwarz A., Calvo E., Kopecky J., et al. The structure and function of Iristatin, a novel immunosuppressive tick salivary cystatin. Cell. Mol. Life Sci. CMLS. 2019;76:2003–2013. doi: 10.1007/s00018-019-03034-3. PubMed DOI PMC
Ricklin D., Hajishengallis G., Yang K., Lambris J.D. Complement: A key system for immune surveillance and homeostasis. Nat. Immunol. 2010;11:785–797. doi: 10.1038/ni.1923. PubMed DOI PMC
Oliveira F., de Carvalho A.M., de Oliveira C.I. Sand-fly saliva-leishmania-man: The trigger trio. Front. Immunol. 2013;4:375. doi: 10.3389/fimmu.2013.00375. PubMed DOI PMC
Awuoche E.O. Tsetse fly saliva: Could it be useful in fly infection when feeding in chronically aparasitemic mammalian hosts. Open Vet. J. 2012;2:95–105. PubMed PMC
Caljon G., Van Den Abbeele J., Sternberg J.M., Coosemans M., De Baetselier P., Magez S. Tsetse fly saliva biases the immune response to Th2 and induces anti-vector antibodies that are a useful tool for exposure assessment. Int. J. Parasitol. 2006;36:1025–1035. doi: 10.1016/j.ijpara.2006.05.002. PubMed DOI
Kashuba E., Bailey J., Allsup D., Cawkwell L. The kinin-kallikrein system: Physiological roles, pathophysiology and its relationship to cancer biomarkers. Biomark. Biochem. Indic. Expo. Response Susceptibility Chem. 2013;18:279–296. doi: 10.3109/1354750X.2013.787544. PubMed DOI
Caljon G., De Ridder K., De Baetselier P., Coosemans M., Van Den Abbeele J. Identification of a tsetse fly salivary protein with dual inhibitory action on human platelet aggregation. PLoS ONE. 2010;5:e9671. doi: 10.1371/journal.pone.0009671. PubMed DOI PMC
Mans B.J. Chemical Equilibrium at the Tick-Host Feeding Interface:A Critical Examination of Biological Relevance in Hematophagous Behavior. Front. Physiol. 2019;10:530. doi: 10.3389/fphys.2019.00530. PubMed DOI PMC
Calvo E., Dao A., Pham V.M., Ribeiro J.M. An insight into the sialome of Anopheles funestus reveals an emerging pattern in anopheline salivary protein families. Insect Biochem. Mol. Biol. 2007;37:164–175. doi: 10.1016/j.ibmb.2006.11.005. PubMed DOI PMC
Draxler D.F., Sashindranath M., Medcalf R.L. Plasmin: A Modulator of Immune Function. Semin. Thromb. Hemost. 2017;43:143–153. doi: 10.1055/s-0036-1586227. PubMed DOI
Cong L., Ran F.A., Cox D., Lin S., Barretto R., Habib N., Hsu P.D., Wu X., Jiang W., Marraffini L.A., et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339:819–823. doi: 10.1126/science.1231143. PubMed DOI PMC
Lawrie C.H., Sim R.B., Nuttall P.A. Investigation of the mechanisms of anti-complement activity in Ixodes ricinus ticks. Mol. Immunol. 2005;42:31–38. doi: 10.1016/j.molimm.2004.07.001. PubMed DOI
Miller J.C., Tan S., Qiao G., Barlow K.A., Wang J., Xia D.F., Meng X., Paschon D.E., Leung E., Hinkley S.J., et al. A TALE nuclease architecture for efficient genome editing. Nat. Biotechnol. 2011;29:143–148. doi: 10.1038/nbt.1755. PubMed DOI
Valenzuela J.G., Charlab R., Mather T.N., Ribeiro J.M. Purification, cloning, and expression of a novel salivary anticomplement protein from the tick, Ixodes scapularis. J. Biol. Chem. 2000;275:18717–18723. doi: 10.1074/jbc.M001486200. PubMed DOI
Tyson K., Elkins C., Patterson H., Fikrig E., de Silva A. Biochemical and functional characterization of Salp20, an Ixodes scapularis tick salivary protein that inhibits the complement pathway. Insect Mol. Biol. 2007;16:469–479. doi: 10.1111/j.1365-2583.2007.00742.x. PubMed DOI
Tyson K.R., Elkins C., de Silva A.M. A novel mechanism of complement inhibition unmasked by a tick salivary protein that binds to properdin. J. Immunol. 2008;180:3964–3968. doi: 10.4049/jimmunol.180.6.3964. PubMed DOI
Daix V., Schroeder H., Praet N., Georgin J.P., Chiappino I., Gillet L., de Fays K., Decrem Y., Leboulle G., Godfroid E., et al. Ixodes ticks belonging to the Ixodes ricinus complex encode a family of anticomplement proteins. Insect Mol. Biol. 2007;16:155–166. doi: 10.1111/j.1365-2583.2006.00710.x. PubMed DOI
Schuijt T.J., Coumou J., Narasimhan S., Dai J., Deponte K., Wouters D., Brouwer M., Oei A., Roelofs J.J., van Dam A.P., et al. A tick mannose-binding lectin inhibitor interferes with the vertebrate complement cascade to enhance transmission of the lyme disease agent. Cell Host Microbe. 2011;10:136–146. doi: 10.1016/j.chom.2011.06.010. PubMed DOI PMC
Chmelar J., Kotal J., Kopecky J., Pedra J.H., Kotsyfakis M. All For One and One For All on the Tick-Host Battlefield. Trends Parasitol. 2016;32:368–377. doi: 10.1016/j.pt.2016.01.004. PubMed DOI PMC
Sojka D., Franta Z., Horn M., Caffrey C.R., Mares M., Kopacek P. New insights into the machinery of blood digestion by ticks. Trends Parasitol. 2013;29:276–285. doi: 10.1016/j.pt.2013.04.002. PubMed DOI
Franta Z., Frantova H., Konvickova J., Horn M., Sojka D., Mares M., Kopacek P. Dynamics of digestive proteolytic system during blood feeding of the hard tick Ixodes ricinus. Parasites Vectors. 2010;3:119. doi: 10.1186/1756-3305-3-119. PubMed DOI PMC
Lara F.A., Lins U., Bechara G.H., Oliveira P.L. Tracing heme in a living cell: Hemoglobin degradation and heme traffic in digest cells of the cattle tick Boophilus microplus. J. Exp. Biol. 2005;208 Pt 16:3093–3101. doi: 10.1242/jeb.01749. PubMed DOI
Blisnick A.A., Foulon T., Bonnet S.I. Serine Protease Inhibitors in Ticks: An Overview of Their Role in Tick Biology and Tick-Borne Pathogen Transmission. Front. Cell Infect. Microbiol. 2017;7:199. doi: 10.3389/fcimb.2017.00199. PubMed DOI PMC
Mulenga A., Tsuda A., Onuma M., Sugimoto C. Four serine proteinase inhibitors (serpin) from the brown ear tick, Rhiphicephalus appendiculatus; cDNA cloning and preliminary characterization. Insect Biochem. Mol. Biol. 2003;33:267–276. doi: 10.1016/S0965-1748(02)00240-0. PubMed DOI
Imamura S., da Silva Vaz Junior I., Sugino M., Ohashi K., Onuma M. A serine protease inhibitor (serpin) from Haemaphysalis longicornis as an anti-tick vaccine. Vaccine. 2005;23:1301–1311. doi: 10.1016/j.vaccine.2004.08.041. PubMed DOI
Rodriguez-Valle M., Vance M., Moolhuijzen P.M., Tao X., Lew-Tabor A.E. Differential recognition by tick-resistant cattle of the recombinantly expressed Rhipicephalus microplus serine protease inhibitor-3 (RMS-3) Ticks Tick-Borne Dis. 2012;3:159–169. doi: 10.1016/j.ttbdis.2012.03.002. PubMed DOI
Rodriguez-Valle M., Xu T., Kurscheid S., Lew-Tabor A.E. Rhipicephalus microplus serine protease inhibitor family: Annotation, expression and functional characterisation assessment. Parasites Vectors. 2015;8:7. doi: 10.1186/s13071-014-0605-4. PubMed DOI PMC
Schussler G.C. The thyroxine-binding proteins. Thyroid. 2000;10:141–149. doi: 10.1089/thy.2000.10.141. PubMed DOI
Lin H.Y., Muller Y.A., Hammond G.L. Molecular and structural basis of steroid hormone binding and release from corticosteroid-binding globulin. Mol. Cell Endocrinol. 2010;316:3–12. doi: 10.1016/j.mce.2009.06.015. PubMed DOI
Kim T.K., Radulovic Z., Mulenga A. Target validation of highly conserved Amblyomma americanum tick saliva serine protease inhibitor 19. Ticks Tick-Borne Dis. 2016;7:405–414. doi: 10.1016/j.ttbdis.2015.12.017. PubMed DOI PMC
Mans B.J. Tick histamine-binding proteins and related lipocalins: Potential as therapeutic agents. Curr. Opin. Investig. Drugs. 2005;6:1131–1135. PubMed
Mans B.J., Louw A.I., Neitz A.W. Evolution of hematophagy in ticks: Common origins for blood coagulation and platelet aggregation inhibitors from soft ticks of the genus Ornithodoros. Mol. Biol. Evol. 2002;19:1695–1705. doi: 10.1093/oxfordjournals.molbev.a003992. PubMed DOI
Maraganore J.M., Chao B., Joseph M.L., Jablonski J., Ramachandran K.L. Anticoagulant activity of synthetic hirudin peptides. J. Biol. Chem. 1989;264:8692–8698. doi: 10.1016/S0021-9258(18)81848-8. PubMed DOI
Stepanova-Tresova G., Kopecky J., Kuthejlova M. Identification of Borrelia burgdorferi sensu stricto, Borrelia garinii and Borrelia afzelii in Ixodes ricinus ticks from southern Bohemia using monoclonal antibodies. Zent. Bakteriol. Int. J. Med. Microbiol. 2000;289:797–806. PubMed
Pospisilova T., Urbanova V., Hes O., Kopacek P., Hajdusek O., Sima R. Tracking of Borrelia afzelii transmission from infected Ixodes ricinus nymphs to mice. Infect. Immun. 2019;87:e00896-18. doi: 10.1128/IAI.00896-18. PubMed DOI PMC
Fong S.W., Kini R.M., Ng L.F.P. Mosquito Saliva Reshapes Alphavirus Infection and Immunopathogenesis. J. Virol. 2018;92:e01004-17. doi: 10.1128/JVI.01004-17. PubMed DOI PMC
Stibraniova I., Lahova M., Bartikova P. Immunomodulators in tick saliva and their benefits. Acta Virol. 2013;57:200–216. doi: 10.4149/av_2013_02_200. PubMed DOI
Guerrero D., Cantaert T., Misse D. Aedes Mosquito Salivary Components and Their Effect on the Immune Response to Arboviruses. Front. Cell Infect. Microbiol. 2020;10:407. doi: 10.3389/fcimb.2020.00407. PubMed DOI PMC
Dai J., Wang P., Adusumilli S., Booth C.J., Narasimhan S., Anguita J., Fikrig E. Antibodies against a tick protein, Salp15, protect mice from the Lyme disease agent. Cell Host Microbe. 2009;6:482–492. doi: 10.1016/j.chom.2009.10.006. PubMed DOI PMC
Kopacek P., Zdychova J., Yoshiga T., Weise C., Rudenko N., Law J.H. Molecular cloning, expression and isolation of ferritins from two tick species--Ornithodoros moubata and Ixodes ricinus. Insect Biochem. Mol. Biol. 2003;33:103–113. doi: 10.1016/S0965-1748(02)00181-9. PubMed DOI
Kyckova K., Kopecky J. Effect of tick saliva on mechanisms of innate immune response against Borrelia afzelii. J. Med. Entomol. 2006;43:1208–1214. doi: 10.1093/jmedent/43.6.1208. PubMed DOI
Ribeiro J.M., Arca B., Lombardo F., Calvo E., Phan V.M., Chandra P.K., Wikel S.K. An annotated catalogue of salivary gland transcripts in the adult female mosquito, Aedes aegypti. BMC Genom. 2007;8:6. doi: 10.1186/1471-2164-8-6. PubMed DOI PMC
Friedrich T., Kroger B., Bialojan S., Lemaire H.G., Hoffken H.W., Reuschenbach P., Otte M., Dodt J. A Kazal-type inhibitor with thrombin specificity from Rhodnius prolixus. J. Biol. Chem. 1993;268:16216–16222. doi: 10.1016/S0021-9258(19)85408-X. PubMed DOI
Lange U., Keilholz W., Schaub G.A., Landmann H., Markwardt F., Nowak G. Biochemical characterization of a thrombin inhibitor from the bloodsucking bug Dipetalogaster maximus. Haemostasis. 1999;29:204–211. doi: 10.1159/000022503. PubMed DOI
Bussacos A.C., Nakayasu E.S., Hecht M.M., Parente J.A., Soares C.M., Teixeira A.R., Almeida I.C. Diversity of anti-haemostatic proteins in the salivary glands of Rhodnius species transmitters of Chagas disease in the greater Amazon. J. Proteom. 2011;74:1664–1672. doi: 10.1016/j.jprot.2011.06.022. PubMed DOI
Cappello M., Bergum P.W., Vlasuk G.P., Furmidge B.A., Pritchard D.I., Aksoy S. Isolation and characterization of the tsetse thrombin inhibitor: A potent antithrombotic peptide from the saliva of Glossina morsitans morsitans. Am. J. Trop. Med. Hyg. 1996;54:475–480. doi: 10.4269/ajtmh.1996.54.475. PubMed DOI
Cappello M., Li S., Chen X., Li C.B., Harrison L., Narashimhan S., Beard C.B., Aksoy S. Tsetse thrombin inhibitor: Bloodmeal-induced expression of an anticoagulant in salivary glands and gut tissue of Glossina morsitans morsitans. Proc. Natl. Acad. Sci. USA. 1998;95:14290–14295. doi: 10.1073/pnas.95.24.14290. PubMed DOI PMC
Chagas A.C., Oliveira F., Debrabant A., Valenzuela J.G., Ribeiro J.M., Calvo E. Lundep, a sand fly salivary endonuclease increases Leishmania parasite survival in neutrophils and inhibits XIIa contact activation in human plasma. PLoS Pathog. 2014;10:e1003923. doi: 10.1371/journal.ppat.1003923. PubMed DOI PMC
Kato H., Gomez E.A., Fujita M., Ishimaru Y., Uezato H., Mimori T., Iwata H., Hashiguchi Y. Ayadualin, a novel RGD peptide with dual antihemostatic activities from the sand fly Lutzomyia ayacuchensis, a vector of Andean-type cutaneous leishmaniasis. Biochimie. 2015;112:49–56. doi: 10.1016/j.biochi.2015.02.011. PubMed DOI
Maraganore J.M., Bourdon P., Jablonski J., Ramachandran K.L., Fenton J.W. 2nd, Design and characterization of hirulogs: A novel class of bivalent peptide inhibitors of thrombin. Biochemistry. 1990;29:7095–7101. doi: 10.1021/bi00482a021. PubMed DOI
USAN Council List No. 374. New names. Bivalirudin. Desirudin. Clin. Pharmacol. Ther. 1995;58:241. doi: 10.1016/0009-9236(95)90204-X. PubMed DOI
Poulin R. Evolutionary Ecology of Parasites. 2nd ed. Princeton University Press; Princeton, NJ, USA: 2007.
Schrodinger, LLC . The PyMOL Molecular Graphics System. Schrodinger, LLC; New York, NY, USA: 2015. Version 1.8.
Genome sequences of four Ixodes species expands understanding of tick evolution
Conformational transition of the Ixodes ricinus salivary serpin Iripin-4
Editorial: Special Issue on the "Molecular Biology of Disease Vectors"
Serpins in Tick Physiology and Tick-Host Interaction