Ixodes ricinus Salivary Serpin Iripin-8 Inhibits the Intrinsic Pathway of Coagulation and Complement

. 2021 Aug 31 ; 22 (17) : . [epub] 20210831

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34502392

Grantová podpora
19-14704Y Grantová Agentura České Republiky
384 CZ.02.1.01/0.0/0.0/16_019/0000759 European Regional Development Fund

Tick saliva is a rich source of antihemostatic, anti-inflammatory, and immunomodulatory molecules that actively help the tick to finish its blood meal. Moreover, these molecules facilitate the transmission of tick-borne pathogens. Here we present the functional and structural characterization of Iripin-8, a salivary serpin from the tick Ixodes ricinus, a European vector of tick-borne encephalitis and Lyme disease. Iripin-8 displayed blood-meal-induced mRNA expression that peaked in nymphs and the salivary glands of adult females. Iripin-8 inhibited multiple proteases involved in blood coagulation and blocked the intrinsic and common pathways of the coagulation cascade in vitro. Moreover, Iripin-8 inhibited erythrocyte lysis by complement, and Iripin-8 knockdown by RNA interference in tick nymphs delayed the feeding time. Finally, we resolved the crystal structure of Iripin-8 at 1.89 Å resolution to reveal an unusually long and rigid reactive center loop that is conserved in several tick species. The P1 Arg residue is held in place distant from the serpin body by a conserved poly-Pro element on the P' side. Several PEG molecules bind to Iripin-8, including one in a deep cavity, perhaps indicating the presence of a small-molecule binding site. This is the first crystal structure of a tick serpin in the native state, and Iripin-8 is a tick serpin with a conserved reactive center loop that possesses antihemostatic activity that may mediate interference with host innate immunity.

Zobrazit více v PubMed

Lindgren E., Talleklint L., Polfeldt T. Impact of climatic change on the northern latitude limit and population density of the disease-transmitting European tick Ixodes ricinus. Environ. Health Perspect. 2000;108:119–123. doi: 10.1289/ehp.00108119. PubMed DOI PMC

Sonenshine D.E. Biology of Ticks. 2nd ed. Oxford University Press; Oxford, UK: 2014.

Chmelar J., Calvo E., Pedra J.H., Francischetti I.M., Kotsyfakis M. Tick salivary secretion as a source of antihemostatics. J Proteom. 2012;75:3842–3854. doi: 10.1016/j.jprot.2012.04.026. PubMed DOI PMC

Kotal J., Langhansova H., Lieskovska J., Andersen J.F., Francischetti I.M., Chavakis T., Kopecky J., Pedra J.H., Kotsyfakis M., Chmelar J. Modulation of host immunity by tick saliva. J. Proteom. 2015;128:58–68. doi: 10.1016/j.jprot.2015.07.005. PubMed DOI PMC

Kazimirova M., Stibraniova I. Tick salivary compounds: Their role in modulation of host defences and pathogen transmission. Front. Cell Infect. Microbiol. 2013;3:43. doi: 10.3389/fcimb.2013.00043. PubMed DOI PMC

Simo L., Kazimirova M., Richardson J., Bonnet S.I. The Essential Role of Tick Salivary Glands and Saliva in Tick Feeding and Pathogen Transmission. Front. Cell Infect. Microbiol. 2017;7:281. doi: 10.3389/fcimb.2017.00281. PubMed DOI PMC

Stibraniova I., Bartikova P., Holikova V., Kazimirova M. Deciphering Biological Processes at the Tick-Host Interface Opens New Strategies for Treatment of Human Diseases. Front. Physiol. 2019;10:830. doi: 10.3389/fphys.2019.00830. PubMed DOI PMC

Krober T., Guerin P.M. An in vitro feeding assay to test acaricides for control of hard ticks. Pest Manag. Sci. 2007;63:17–22. doi: 10.1002/ps.1293. PubMed DOI

Bajda S., Dermauw W., Panteleri R., Sugimoto N., Douris V., Tirry L., Osakabe M., Vontas J., Van Leeuwen T. A mutation in the PSST homologue of complex I (NADH:ubiquinone oxidoreductase) from Tetranychus urticae is associated with resistance to METI acaricides. Insect Biochem. Mol. Biol. 2017;80:79–90. doi: 10.1016/j.ibmb.2016.11.010. PubMed DOI

Amara U., Rittirsch D., Flierl M., Bruckner U., Klos A., Gebhard F., Lambris J.D., Huber-Lang M. Interaction between the coagulation and complement system. Adv. Exp. Med. Biol. 2008;632:71–79. PubMed PMC

Manning J.E., Cantaert T. Time to Micromanage the Pathogen-Host-Vector Interface: Considerations for Vaccine Development. Vaccines. 2019;7:10. doi: 10.3390/vaccines7010010. PubMed DOI PMC

Pingen M., Schmid M.A., Harris E., McKimmie C.S. Mosquito Biting Modulates Skin Response to Virus Infection. Trends Parasitol. 2017;33:645–657. doi: 10.1016/j.pt.2017.04.003. PubMed DOI

Chmelar J., Kotal J., Langhansova H., Kotsyfakis M. Protease Inhibitors in Tick Saliva: The Role of Serpins and Cystatins in Tick-host-Pathogen Interaction. Front. Cell Infect. Microbiol. 2017;7:216. doi: 10.3389/fcimb.2017.00216. PubMed DOI PMC

Wikel S. Ticks and tick-borne pathogens at the cutaneous interface: Host defenses, tick countermeasures, and a suitable environment for pathogen establishment. Front. Microbiol. 2013;4:337. doi: 10.3389/fmicb.2013.00337. PubMed DOI PMC

Schroeder H., Skelly P.J., Zipfel P.F., Losson B., Vanderplasschen A. Subversion of complement by hematophagous parasites. Dev. Comp. Immunol. 2009;33:5–13. doi: 10.1016/j.dci.2008.07.010. PubMed DOI PMC

Nunn M.A., Sharma A., Paesen G.C., Adamson S., Lissina O., Willis A.C., Nuttall P.A. Complement inhibitor of C5 activation from the soft tick Ornithodoros moubata. J. Immunol. 2005;174:2084–2091. doi: 10.4049/jimmunol.174.4.2084. PubMed DOI

Huntington J.A. Serpin structure, function and dysfunction. J. Thromb. Haemost. JTH. 2011;9(Suppl. 1):26–34. doi: 10.1111/j.1538-7836.2011.04360.x. PubMed DOI

Law R.H., Zhang Q., McGowan S., Buckle A.M., Silverman G.A., Wong W., Rosado C.J., Langendorf C.G., Pike R.N., Bird P.I., et al. An overview of the serpin superfamily. Genome Biol. 2006;7:216. doi: 10.1186/gb-2006-7-5-216. PubMed DOI PMC

Silverman G.A., Whisstock J.C., Bottomley S.P., Huntington J.A., Kaiserman D., Luke C.J., Pak S.C., Reichhart J.M., Bird P.I. Serpins flex their muscle: I. Putting the clamps on proteolysis in diverse biological systems. J. Biol. Chem. 2010;285:24299–24305. doi: 10.1074/jbc.R110.112771. PubMed DOI PMC

Whisstock J.C., Silverman G.A., Bird P.I., Bottomley S.P., Kaiserman D., Luke C.J., Pak S.C., Reichhart J.M., Huntington J.A. Serpins flex their muscle: II. Structural insights into target peptidase recognition, polymerization, and transport functions. J. Biol. Chem. 2010;285:24307–24312. doi: 10.1074/jbc.R110.141408. PubMed DOI PMC

Rawlings N.D., Barrett A.J., Thomas P.D., Huang X., Bateman A., Finn R.D. The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res. 2018;46:D624–D632. doi: 10.1093/nar/gkx1134. PubMed DOI PMC

Whisstock J.C., Bottomley S.P. Molecular gymnastics: Serpin structure, folding and misfolding. Curr. Opin. Struct. Biol. 2006;16:761–768. doi: 10.1016/j.sbi.2006.10.005. PubMed DOI

Meekins D.A., Kanost M.R., Michel K. Serpins in arthropod biology. Semin. Cell Dev. Biol. 2017;62:105–119. doi: 10.1016/j.semcdb.2016.09.001. PubMed DOI PMC

Porter L., Radulovic Z., Kim T., Braz G.R., Da Silva Vaz I., Jr., Mulenga A. Bioinformatic analyses of male and female Amblyomma americanum tick expressed serine protease inhibitors (serpins) Ticks Tick-Borne Dis. 2015;6:16–30. doi: 10.1016/j.ttbdis.2014.08.002. PubMed DOI PMC

Karim S., Ribeiro J.M. An Insight into the Sialome of the Lone Star Tick, Amblyomma americanum, with a Glimpse on Its Time Dependent Gene Expression. PLoS ONE. 2015;10:e0131292. doi: 10.1371/journal.pone.0131292. PubMed DOI PMC

Gaj T., Gersbach C.A., Barbas C.F., 3rd ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013;31:397–405. doi: 10.1016/j.tibtech.2013.04.004. PubMed DOI PMC

Tirloni L., Kim T.K., Pinto A.F.M., Yates J.R., 3rd, da Silva Vaz I., Jr., Mulenga A. Tick-Host Range Adaptation: Changes in Protein Profiles in Unfed Adult Ixodes scapularis and Amblyomma americanum Saliva Stimulated to Feed on Different Hosts. Front. Cell Infect. Microbiol. 2017;7:517. doi: 10.3389/fcimb.2017.00517. PubMed DOI PMC

Leboulle G., Crippa M., Decrem Y., Mejri N., Brossard M., Bollen A., Godfroid E. Characterization of a novel salivary immunosuppressive protein from Ixodes ricinus ticks. J. Biol. Chem. 2002;277:10083–10089. doi: 10.1074/jbc.M111391200. PubMed DOI

Prevot P.P., Adam B., Boudjeltia K.Z., Brossard M., Lins L., Cauchie P., Brasseur R., Vanhaeverbeek M., Vanhamme L., Godfroid E. Anti-hemostatic effects of a serpin from the saliva of the tick Ixodes ricinus. J. Biol. Chem. 2006;281:26361–26369. doi: 10.1074/jbc.M604197200. PubMed DOI

Chmelar J., Oliveira C.J., Rezacova P., Francischetti I.M., Kovarova Z., Pejler G., Kopacek P., Ribeiro J.M., Mares M., Kopecky J., et al. A tick salivary protein targets cathepsin G and chymase and inhibits host inflammation and platelet aggregation. Blood. 2011;117:736–744. doi: 10.1182/blood-2010-06-293241. PubMed DOI PMC

Palenikova J., Lieskovska J., Langhansova H., Kotsyfakis M., Chmelar J., Kopecky J. Ixodes ricinus salivary serpin IRS-2 affects Th17 differentiation via inhibition of the interleukin-6/STAT-3 signaling pathway. Infect. Immun. 2015;83:1949–1956. doi: 10.1128/IAI.03065-14. PubMed DOI PMC

Chlastakova A., Kotal J., Berankova Z., Kascakova B., Martins L.A., Langhansova H., Prudnikova T., Ederova M., Kuta Smatanova I., Kotsyfakis M., et al. Iripin-3, a New Salivary Protein Isolated From Ixodes ricinus Ticks, Displays Immunomodulatory and Anti-Hemostatic Properties In Vitro. Front. Immunol. 2021;12:626200. doi: 10.3389/fimmu.2021.626200. PubMed DOI PMC

Kim T.K., Tirloni L., Radulovic Z., Lewis L., Bakshi M., Hill C., da Silva Vaz I., Jr., Logullo C., Termignoni C., Mulenga A. Conserved Amblyomma americanum tick Serpin19, an inhibitor of blood clotting factors Xa and XIa, trypsin and plasmin, has anti-haemostatic functions. Int. J. Parasitol. 2015;45:613–627. doi: 10.1016/j.ijpara.2015.03.009. PubMed DOI PMC

Xu Z., Yan Y., Zhang H., Cao J., Zhou Y., Xu Q., Zhou J. A serpin from the tick Rhipicephalus haemaphysaloides: Involvement in vitellogenesis. Vet. Parasitol. 2020;279:109064. doi: 10.1016/j.vetpar.2020.109064. PubMed DOI

Xu T., Lew-Tabor A., Rodriguez-Valle M. Effective inhibition of thrombin by Rhipicephalus microplus serpin-15 (RmS-15) obtained in the yeast Pichia pastoris. Ticks Tick-Borne Dis. 2016;7:180–187. doi: 10.1016/j.ttbdis.2015.09.007. PubMed DOI

Kovarova Z., Chmelar J., Sanda M., Brynda J., Mares M., Rezacova P. Crystallization and diffraction analysis of the serpin IRS-2 from the hard tick Ixodes ricinus. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 2010;66 Pt 11:1453–1457. doi: 10.1107/S1744309110032343. PubMed DOI PMC

Ellisdon A.M., Zhang Q., Henstridge M.A., Johnson T.K., Warr C.G., Law R.H., Whisstock J.C. High resolution structure of cleaved Serpin 42 Da from Drosophila melanogaster. BMC Struct. Biol. 2014;14:14. doi: 10.1186/1472-6807-14-14. PubMed DOI PMC

Schreuder H.A., de Boer B., Dijkema R., Mulders J., Theunissen H.J., Grootenhuis P.D., Hol W.G. The intact and cleaved human antithrombin III complex as a model for serpin-proteinase interactions. Nat. Struct. Biol. 1994;1:48–54. doi: 10.1038/nsb0194-48. PubMed DOI

Akazawa T., Ogawa M., Hayakawa S., Hirata M., Niwa T. Structural change of ovalbumin-related protein X by alkali treatment. Poult. Sci. 2018;97:1730–1737. doi: 10.3382/ps/pey024. PubMed DOI

Yang L., Irving J.A., Dai W., Aguilar M.I., Bottomley S.P. Probing the folding pathway of a consensus serpin using single tryptophan mutants. Sci. Rep. 2018;8:2121. doi: 10.1038/s41598-018-19567-9. PubMed DOI PMC

Pereira M.H., Souza M.E., Vargas A.P., Martins M.S., Penido C.M., Diotaiuti L. Anticoagulant activity of Triatoma infestans and Panstrongylus megistus saliva (Hemiptera/Triatominae) Acta Trop. 1996;61:255–261. doi: 10.1016/0001-706X(96)00007-1. PubMed DOI

Lestinova T., Rohousova I., Sima M., de Oliveira C.I., Volf P. Insights into the sand fly saliva: Blood-feeding and immune interactions between sand flies, hosts, and Leishmania. PLoS Negl. Trop. Dis. 2017;11:e0005600. doi: 10.1371/journal.pntd.0005600. PubMed DOI PMC

Hoffman M. Remodeling the blood coagulation cascade. J. Thromb. Thrombolysis. 2003;16:17–20. doi: 10.1023/B:THRO.0000014588.95061.28. PubMed DOI

Kascakova B., Kotal J., Martins L.A., Berankova Z., Langhansova H., Calvo E., Crossley J.A., Havlickova P., Dycka F., Prudnikova T., et al. Structural and biochemical characterization of the novel serpin Iripin-5 from Ixodes ricinus. Acta Crystallogr. Sect. D. 2021;77 doi: 10.1107/S2059798321007920. PubMed DOI PMC

Kotal J., Stergiou N., Busa M., Chlastakova A., Berankova Z., Rezacova P., Langhansova H., Schwarz A., Calvo E., Kopecky J., et al. The structure and function of Iristatin, a novel immunosuppressive tick salivary cystatin. Cell. Mol. Life Sci. CMLS. 2019;76:2003–2013. doi: 10.1007/s00018-019-03034-3. PubMed DOI PMC

Ricklin D., Hajishengallis G., Yang K., Lambris J.D. Complement: A key system for immune surveillance and homeostasis. Nat. Immunol. 2010;11:785–797. doi: 10.1038/ni.1923. PubMed DOI PMC

Oliveira F., de Carvalho A.M., de Oliveira C.I. Sand-fly saliva-leishmania-man: The trigger trio. Front. Immunol. 2013;4:375. doi: 10.3389/fimmu.2013.00375. PubMed DOI PMC

Awuoche E.O. Tsetse fly saliva: Could it be useful in fly infection when feeding in chronically aparasitemic mammalian hosts. Open Vet. J. 2012;2:95–105. PubMed PMC

Caljon G., Van Den Abbeele J., Sternberg J.M., Coosemans M., De Baetselier P., Magez S. Tsetse fly saliva biases the immune response to Th2 and induces anti-vector antibodies that are a useful tool for exposure assessment. Int. J. Parasitol. 2006;36:1025–1035. doi: 10.1016/j.ijpara.2006.05.002. PubMed DOI

Kashuba E., Bailey J., Allsup D., Cawkwell L. The kinin-kallikrein system: Physiological roles, pathophysiology and its relationship to cancer biomarkers. Biomark. Biochem. Indic. Expo. Response Susceptibility Chem. 2013;18:279–296. doi: 10.3109/1354750X.2013.787544. PubMed DOI

Caljon G., De Ridder K., De Baetselier P., Coosemans M., Van Den Abbeele J. Identification of a tsetse fly salivary protein with dual inhibitory action on human platelet aggregation. PLoS ONE. 2010;5:e9671. doi: 10.1371/journal.pone.0009671. PubMed DOI PMC

Mans B.J. Chemical Equilibrium at the Tick-Host Feeding Interface:A Critical Examination of Biological Relevance in Hematophagous Behavior. Front. Physiol. 2019;10:530. doi: 10.3389/fphys.2019.00530. PubMed DOI PMC

Calvo E., Dao A., Pham V.M., Ribeiro J.M. An insight into the sialome of Anopheles funestus reveals an emerging pattern in anopheline salivary protein families. Insect Biochem. Mol. Biol. 2007;37:164–175. doi: 10.1016/j.ibmb.2006.11.005. PubMed DOI PMC

Draxler D.F., Sashindranath M., Medcalf R.L. Plasmin: A Modulator of Immune Function. Semin. Thromb. Hemost. 2017;43:143–153. doi: 10.1055/s-0036-1586227. PubMed DOI

Cong L., Ran F.A., Cox D., Lin S., Barretto R., Habib N., Hsu P.D., Wu X., Jiang W., Marraffini L.A., et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339:819–823. doi: 10.1126/science.1231143. PubMed DOI PMC

Lawrie C.H., Sim R.B., Nuttall P.A. Investigation of the mechanisms of anti-complement activity in Ixodes ricinus ticks. Mol. Immunol. 2005;42:31–38. doi: 10.1016/j.molimm.2004.07.001. PubMed DOI

Miller J.C., Tan S., Qiao G., Barlow K.A., Wang J., Xia D.F., Meng X., Paschon D.E., Leung E., Hinkley S.J., et al. A TALE nuclease architecture for efficient genome editing. Nat. Biotechnol. 2011;29:143–148. doi: 10.1038/nbt.1755. PubMed DOI

Valenzuela J.G., Charlab R., Mather T.N., Ribeiro J.M. Purification, cloning, and expression of a novel salivary anticomplement protein from the tick, Ixodes scapularis. J. Biol. Chem. 2000;275:18717–18723. doi: 10.1074/jbc.M001486200. PubMed DOI

Tyson K., Elkins C., Patterson H., Fikrig E., de Silva A. Biochemical and functional characterization of Salp20, an Ixodes scapularis tick salivary protein that inhibits the complement pathway. Insect Mol. Biol. 2007;16:469–479. doi: 10.1111/j.1365-2583.2007.00742.x. PubMed DOI

Tyson K.R., Elkins C., de Silva A.M. A novel mechanism of complement inhibition unmasked by a tick salivary protein that binds to properdin. J. Immunol. 2008;180:3964–3968. doi: 10.4049/jimmunol.180.6.3964. PubMed DOI

Daix V., Schroeder H., Praet N., Georgin J.P., Chiappino I., Gillet L., de Fays K., Decrem Y., Leboulle G., Godfroid E., et al. Ixodes ticks belonging to the Ixodes ricinus complex encode a family of anticomplement proteins. Insect Mol. Biol. 2007;16:155–166. doi: 10.1111/j.1365-2583.2006.00710.x. PubMed DOI

Schuijt T.J., Coumou J., Narasimhan S., Dai J., Deponte K., Wouters D., Brouwer M., Oei A., Roelofs J.J., van Dam A.P., et al. A tick mannose-binding lectin inhibitor interferes with the vertebrate complement cascade to enhance transmission of the lyme disease agent. Cell Host Microbe. 2011;10:136–146. doi: 10.1016/j.chom.2011.06.010. PubMed DOI PMC

Chmelar J., Kotal J., Kopecky J., Pedra J.H., Kotsyfakis M. All For One and One For All on the Tick-Host Battlefield. Trends Parasitol. 2016;32:368–377. doi: 10.1016/j.pt.2016.01.004. PubMed DOI PMC

Sojka D., Franta Z., Horn M., Caffrey C.R., Mares M., Kopacek P. New insights into the machinery of blood digestion by ticks. Trends Parasitol. 2013;29:276–285. doi: 10.1016/j.pt.2013.04.002. PubMed DOI

Franta Z., Frantova H., Konvickova J., Horn M., Sojka D., Mares M., Kopacek P. Dynamics of digestive proteolytic system during blood feeding of the hard tick Ixodes ricinus. Parasites Vectors. 2010;3:119. doi: 10.1186/1756-3305-3-119. PubMed DOI PMC

Lara F.A., Lins U., Bechara G.H., Oliveira P.L. Tracing heme in a living cell: Hemoglobin degradation and heme traffic in digest cells of the cattle tick Boophilus microplus. J. Exp. Biol. 2005;208 Pt 16:3093–3101. doi: 10.1242/jeb.01749. PubMed DOI

Blisnick A.A., Foulon T., Bonnet S.I. Serine Protease Inhibitors in Ticks: An Overview of Their Role in Tick Biology and Tick-Borne Pathogen Transmission. Front. Cell Infect. Microbiol. 2017;7:199. doi: 10.3389/fcimb.2017.00199. PubMed DOI PMC

Mulenga A., Tsuda A., Onuma M., Sugimoto C. Four serine proteinase inhibitors (serpin) from the brown ear tick, Rhiphicephalus appendiculatus; cDNA cloning and preliminary characterization. Insect Biochem. Mol. Biol. 2003;33:267–276. doi: 10.1016/S0965-1748(02)00240-0. PubMed DOI

Imamura S., da Silva Vaz Junior I., Sugino M., Ohashi K., Onuma M. A serine protease inhibitor (serpin) from Haemaphysalis longicornis as an anti-tick vaccine. Vaccine. 2005;23:1301–1311. doi: 10.1016/j.vaccine.2004.08.041. PubMed DOI

Rodriguez-Valle M., Vance M., Moolhuijzen P.M., Tao X., Lew-Tabor A.E. Differential recognition by tick-resistant cattle of the recombinantly expressed Rhipicephalus microplus serine protease inhibitor-3 (RMS-3) Ticks Tick-Borne Dis. 2012;3:159–169. doi: 10.1016/j.ttbdis.2012.03.002. PubMed DOI

Rodriguez-Valle M., Xu T., Kurscheid S., Lew-Tabor A.E. Rhipicephalus microplus serine protease inhibitor family: Annotation, expression and functional characterisation assessment. Parasites Vectors. 2015;8:7. doi: 10.1186/s13071-014-0605-4. PubMed DOI PMC

Schussler G.C. The thyroxine-binding proteins. Thyroid. 2000;10:141–149. doi: 10.1089/thy.2000.10.141. PubMed DOI

Lin H.Y., Muller Y.A., Hammond G.L. Molecular and structural basis of steroid hormone binding and release from corticosteroid-binding globulin. Mol. Cell Endocrinol. 2010;316:3–12. doi: 10.1016/j.mce.2009.06.015. PubMed DOI

Kim T.K., Radulovic Z., Mulenga A. Target validation of highly conserved Amblyomma americanum tick saliva serine protease inhibitor 19. Ticks Tick-Borne Dis. 2016;7:405–414. doi: 10.1016/j.ttbdis.2015.12.017. PubMed DOI PMC

Mans B.J. Tick histamine-binding proteins and related lipocalins: Potential as therapeutic agents. Curr. Opin. Investig. Drugs. 2005;6:1131–1135. PubMed

Mans B.J., Louw A.I., Neitz A.W. Evolution of hematophagy in ticks: Common origins for blood coagulation and platelet aggregation inhibitors from soft ticks of the genus Ornithodoros. Mol. Biol. Evol. 2002;19:1695–1705. doi: 10.1093/oxfordjournals.molbev.a003992. PubMed DOI

Maraganore J.M., Chao B., Joseph M.L., Jablonski J., Ramachandran K.L. Anticoagulant activity of synthetic hirudin peptides. J. Biol. Chem. 1989;264:8692–8698. doi: 10.1016/S0021-9258(18)81848-8. PubMed DOI

Stepanova-Tresova G., Kopecky J., Kuthejlova M. Identification of Borrelia burgdorferi sensu stricto, Borrelia garinii and Borrelia afzelii in Ixodes ricinus ticks from southern Bohemia using monoclonal antibodies. Zent. Bakteriol. Int. J. Med. Microbiol. 2000;289:797–806. PubMed

Pospisilova T., Urbanova V., Hes O., Kopacek P., Hajdusek O., Sima R. Tracking of Borrelia afzelii transmission from infected Ixodes ricinus nymphs to mice. Infect. Immun. 2019;87:e00896-18. doi: 10.1128/IAI.00896-18. PubMed DOI PMC

Fong S.W., Kini R.M., Ng L.F.P. Mosquito Saliva Reshapes Alphavirus Infection and Immunopathogenesis. J. Virol. 2018;92:e01004-17. doi: 10.1128/JVI.01004-17. PubMed DOI PMC

Stibraniova I., Lahova M., Bartikova P. Immunomodulators in tick saliva and their benefits. Acta Virol. 2013;57:200–216. doi: 10.4149/av_2013_02_200. PubMed DOI

Guerrero D., Cantaert T., Misse D. Aedes Mosquito Salivary Components and Their Effect on the Immune Response to Arboviruses. Front. Cell Infect. Microbiol. 2020;10:407. doi: 10.3389/fcimb.2020.00407. PubMed DOI PMC

Dai J., Wang P., Adusumilli S., Booth C.J., Narasimhan S., Anguita J., Fikrig E. Antibodies against a tick protein, Salp15, protect mice from the Lyme disease agent. Cell Host Microbe. 2009;6:482–492. doi: 10.1016/j.chom.2009.10.006. PubMed DOI PMC

Kopacek P., Zdychova J., Yoshiga T., Weise C., Rudenko N., Law J.H. Molecular cloning, expression and isolation of ferritins from two tick species--Ornithodoros moubata and Ixodes ricinus. Insect Biochem. Mol. Biol. 2003;33:103–113. doi: 10.1016/S0965-1748(02)00181-9. PubMed DOI

Kyckova K., Kopecky J. Effect of tick saliva on mechanisms of innate immune response against Borrelia afzelii. J. Med. Entomol. 2006;43:1208–1214. doi: 10.1093/jmedent/43.6.1208. PubMed DOI

Ribeiro J.M., Arca B., Lombardo F., Calvo E., Phan V.M., Chandra P.K., Wikel S.K. An annotated catalogue of salivary gland transcripts in the adult female mosquito, Aedes aegypti. BMC Genom. 2007;8:6. doi: 10.1186/1471-2164-8-6. PubMed DOI PMC

Friedrich T., Kroger B., Bialojan S., Lemaire H.G., Hoffken H.W., Reuschenbach P., Otte M., Dodt J. A Kazal-type inhibitor with thrombin specificity from Rhodnius prolixus. J. Biol. Chem. 1993;268:16216–16222. doi: 10.1016/S0021-9258(19)85408-X. PubMed DOI

Lange U., Keilholz W., Schaub G.A., Landmann H., Markwardt F., Nowak G. Biochemical characterization of a thrombin inhibitor from the bloodsucking bug Dipetalogaster maximus. Haemostasis. 1999;29:204–211. doi: 10.1159/000022503. PubMed DOI

Bussacos A.C., Nakayasu E.S., Hecht M.M., Parente J.A., Soares C.M., Teixeira A.R., Almeida I.C. Diversity of anti-haemostatic proteins in the salivary glands of Rhodnius species transmitters of Chagas disease in the greater Amazon. J. Proteom. 2011;74:1664–1672. doi: 10.1016/j.jprot.2011.06.022. PubMed DOI

Cappello M., Bergum P.W., Vlasuk G.P., Furmidge B.A., Pritchard D.I., Aksoy S. Isolation and characterization of the tsetse thrombin inhibitor: A potent antithrombotic peptide from the saliva of Glossina morsitans morsitans. Am. J. Trop. Med. Hyg. 1996;54:475–480. doi: 10.4269/ajtmh.1996.54.475. PubMed DOI

Cappello M., Li S., Chen X., Li C.B., Harrison L., Narashimhan S., Beard C.B., Aksoy S. Tsetse thrombin inhibitor: Bloodmeal-induced expression of an anticoagulant in salivary glands and gut tissue of Glossina morsitans morsitans. Proc. Natl. Acad. Sci. USA. 1998;95:14290–14295. doi: 10.1073/pnas.95.24.14290. PubMed DOI PMC

Chagas A.C., Oliveira F., Debrabant A., Valenzuela J.G., Ribeiro J.M., Calvo E. Lundep, a sand fly salivary endonuclease increases Leishmania parasite survival in neutrophils and inhibits XIIa contact activation in human plasma. PLoS Pathog. 2014;10:e1003923. doi: 10.1371/journal.ppat.1003923. PubMed DOI PMC

Kato H., Gomez E.A., Fujita M., Ishimaru Y., Uezato H., Mimori T., Iwata H., Hashiguchi Y. Ayadualin, a novel RGD peptide with dual antihemostatic activities from the sand fly Lutzomyia ayacuchensis, a vector of Andean-type cutaneous leishmaniasis. Biochimie. 2015;112:49–56. doi: 10.1016/j.biochi.2015.02.011. PubMed DOI

Maraganore J.M., Bourdon P., Jablonski J., Ramachandran K.L., Fenton J.W. 2nd, Design and characterization of hirulogs: A novel class of bivalent peptide inhibitors of thrombin. Biochemistry. 1990;29:7095–7101. doi: 10.1021/bi00482a021. PubMed DOI

USAN Council List No. 374. New names. Bivalirudin. Desirudin. Clin. Pharmacol. Ther. 1995;58:241. doi: 10.1016/0009-9236(95)90204-X. PubMed DOI

Poulin R. Evolutionary Ecology of Parasites. 2nd ed. Princeton University Press; Princeton, NJ, USA: 2007.

Schrodinger, LLC . The PyMOL Molecular Graphics System. Schrodinger, LLC; New York, NY, USA: 2015. Version 1.8.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...