Arbuscular Mycorrhizal Fungi Regulate Polyamine Homeostasis in Roots of Trifoliate Orange for Improved Adaptation to Soil Moisture Deficit Stress
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
33510746
PubMed Central
PMC7835339
DOI
10.3389/fpls.2020.600792
Knihovny.cz E-zdroje
- Klíčová slova
- Poncirus trifoliata, citrus, mycorrhiza, polyamine, water deficit,
- Publikační typ
- časopisecké články MeSH
Soil arbuscular mycorrhizal fungi (AMF) enhance the tolerance of plants against soil moisture deficit stress (SMDS), but the underlying mechanisms are still not fully understood. Polyamines (PAs) as low-molecular-weight, aliphatic polycations have strong roles in abiotic stress tolerance of plants. We aimed to investigate the effect of AMF (Funneliformis mosseae) inoculation on PAs, PA precursors, activities of PA synthases and degrading enzymes, and concentration of reactive oxygen species in the roots of trifoliate orange (Poncirus trifoliata) subjected to 15 days of SMDS. Leaf water potential and total chlorophyll levels were comparatively higher in AMF-inoculated than in non-AMF-treated plants exposed to SMDS. Mycorrhizal plants recorded a significantly higher concentration of precursors of PA synthesis such as L-ornithine, agmatine, and S-adenosyl methionine, besides higher putrescine and cadaverine and lower spermidine during the 15 days of SMDS. AMF colonization raised the PA synthase (arginine decarboxylase, ornithine decarboxylase, spermidine synthase, and spermine synthase) activities and PA-degrading enzymes (copper-containing diamine oxidase and FAD-containing polyamine oxidase) in response to SMDS. However, mycorrhizal plants showed a relatively lower degree of membrane lipid peroxidation, superoxide anion free radical, and hydrogen peroxide than non-mycorrhizal plants, whereas the difference between them increased linearly up to 15 days of SMDS. Our study concluded that AMF regulated PA homeostasis in roots of trifoliate orange to tolerate SMDS.
College of Horticulture and Gardening Yangtze University Jingzhou China
Department of Chemistry Faculty of Science University of Hradec Kralove Hradec Kralove Czechia
Zobrazit více v PubMed
Alcázar R., Fortes A. M., Tiburcio A. F. (2020). Editorial: polyamines in plant biotechnology, food nutrition, and human health. Front. Plant Sci. 11:120. 10.3389/fpls.2020.00120 PubMed DOI PMC
Augé R. M. (2001). Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11 3–42. 10.1007/s005720100097 DOI
Baslam M., Giocoechea N. (2012). Water deficit improved the capacity of arbuscular mycorrhizal fungi (AMF) for inducing the accumulation of antioxidant compounds in lettuce leaves. Mycorrhiza 22 347–359. 10.1007/s00572-011-0408-9 PubMed DOI
Cheng H. Q., Ding Y. E., Shu B., Zou Y. N., Wu Q. S., Kuča K. (2020). Plant aquaporin responses to mycorrhizal symbiosis under abiotic stress. Int. J. Agric. Biol. 23 786–794.
Chiapello M., Martino E., Perotto S. (2015). Common and metal-specific proteomic responses to cadmium and zinc in the metal tolerant ericoid mycorrhizal fungus Oidiodendron maius Zn. Metallomics 7 805–815. 10.1039/c5mt00024f PubMed DOI
Davies W. J., Tardieu F., Trejo C. L. (1994). How do chemical signals work in plants that grow in drying soil? Plant Physiol. 104 309–314. 10.1104/pp.104.2.309 PubMed DOI PMC
Ducros V., Ruffieux D., Belvabesnet H., Defraipont F., Berger F., Favier A. (2009). Determination of dansylated polyamines in red blood cells by liquid chromatography–tandem mass spectrometry. Anal. Biochem. 390 46–51. 10.1016/j.ab.2009.04.007 PubMed DOI
Fu X. Z., Xing F., Wang N. Q., Peng L. Z., Cao L., Ling L. L., et al. (2014). Exogenous spermine pretreatment confers tolerance to combined high-temperature and drought stress in vitro in trifoliate orange seedlings via modulation of antioxidative capacity and expression of stress-related genes. Biotechnol. Biotechnol. Equip. 28 192–198. 10.1080/13102818.2014.909152 PubMed DOI PMC
Gholinezhad E., Darvishzadeh R., Moghaddam S. S., Popovic-Djordjevic J. (2020). Effect of mycorrhizal inoculation in reducing water stress in sesame (Sesamum indicum L.): the assessment of agrobiochemical traits and enzymatic antioxidant activity. Agric. Wat. Manag. 238 106234 10.1016/j.agwat.2020.106234 DOI
Goicoechea N., Szalai G., Antolin M. C., Sanchez-Diazl M., Paldi E. (1998). Influence of arbuscular mycorrhizae and Rhizobium on free polyamines and proline levels in water-stressed alfalfa. J. Plant Physiol. 153 706–711. 10.1016/s0176-1617(98)80224-1 DOI
Gupta K., Dey A., Gupta B. (2013). Plant polyamines in abiotic stress responses. Acta Physiol. Plant 35 2015–2036. 10.1007/s11738-013-1239-4 DOI
He J. D., Dong T., Wu H. H., Zou Y. N., Wu Q. S., Kuča K. (2019). Mycorrhizas induce diverse responses of root TIP aquaporin gene expression to drought stress in trifoliate orange. Sci. Hortic. 243 64–69. 10.1016/j.scienta.2018.08.010 DOI
He J. D., Zou Y. N., Wu Q. S., Kuča K. (2020). Mycorrhizas enhance drought tolerance of trifoliate orange by enhancing activities and gene expression of antioxidant enzymes. Sci. Hortic. 262 108745 10.1016/j.scienta.2019.108745 DOI
Hu Y. B., Chen B. D. (2020). Arbuscular mycorrhiza induced putrescine degradation into γ-aminobutyric acid, malic acid accumulation, and improvement of nitrogen assimilation in roots of water-stressed maize plants. Mycorrhiza 30 329–339. 10.1007/s00572-020-00952-0 PubMed DOI
Huang Y. M., Zou Y. N., Wu Q. S. (2017). Alleviation of drought stress by mycorrhizas is related to increased root H2O2 efflux in trifoliate orange. Sci. Rep. 7 423–435. PubMed PMC
Kotakis C., Theodoropoulou E., Tassis K., Oustamanolakis C., Ioannidis N. E., Kotzabasis K. (2014). Putrescine, a fast-acting switch for tolerance against osmotic stress. J. Plant Physiol. 171 48–51. 10.1016/j.jplph.2013.09.015 PubMed DOI
Kusano T., Berberich T., Tateda C., Takahashi Y. (2008). Polyamines: essential factors for growth and survival. Planta 228 367–381. 10.1007/s00425-008-0772-7 PubMed DOI
Langeroodi A. R. S., Osipitan O. A., Radicetti E., Mancinelli R. (2020). To what extent arbuscular mycorrhiza can protect chicory (Cichorium intybus L.) against drought stress. Sci. Hortic. 263 109–119.
Lichtenthaler H. K., Wellburn A. R. (1983). Determinations of total carotenoids and chlorophyll a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 11 591–592. 10.1042/bst0110591 DOI
Liu J. H., Wang W., Wu H., Gong X. Q., Moriguchi T. (2015). Polyamines function in stress tolerance: from synthesis to regulation. Front. Plant Sci. 6:827. 10.3389/fpls.2015.00827 PubMed DOI PMC
Lokhandwala A., Hoeksema J. D. (2019). Priming by arbuscular mycorrhizal fungi of plant antioxidant enzyme production: a meta-analysis. Annu. Plant Rev. 2 1069–1084. 10.1002/9781119312994.apr0680 DOI
Luo Y. (2009). Effects of AMF on Cell Membrane, Endogenous Polyamines, and Salicylic Acid in Citrus Under Drought Stress. 1–42. Master Dissertation Huazhong Agriculture University, Wuhan.
Millar N. S., Bennett A. E. (2016). Stressed out symbiotes: hypotheses for the influence of abiotic stress on arbuscular mycorrhizal fungi. Oecologia 182 625–641. 10.1007/s00442-016-3673-7 PubMed DOI PMC
Minocha R., Majumdar R., Minocha S. (2014). Polyamines and abiotic stress in plants: a complex relationship. Front. Plant Sci. 5:175. 10.3389/fpls.2014.00175 PubMed DOI PMC
Moschou P. N., PAschalidis K. A., Roubelakis-Angelakis K. A. (2008). Plant polyamine catabolism: the state of the art. Plant Signal. Behav. 3 1061–1066. 10.4161/psb.3.12.7172 PubMed DOI PMC
Munzi S., Pirintsos S. A., Loppi S. (2009). Chlorophyll degradation and inhibition of polyamine biosynthesis in the lichen Xanthoria parietina under nitrogen stress. Ecotoxicol. Environ. Saf. 72 281–285. 10.1016/j.ecoenv.2008.04.013 PubMed DOI
Muthusamy M., Uma S., Backiyarani S., Saraswathi M. S. (2014). Computational prediction, identification, and expression profiling of microRNAs in banana (Musa spp.) during soil moisture deficit stress. J. Hortic. Sci. Biotechnol. 89 208–214. 10.1080/14620316.2014.11513070 DOI
Pál M., Szalai G., Janda T. (2015). Speculation: Polyamines are important in abiotic stress signaling. Plant Sci. 237 16–23. 10.1016/j.plantsci.2015.05.003 PubMed DOI
Phillips J. M., Hayman D. S. (1970). Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 55 158–161. 10.1016/s0007-1536(70)80110-3 DOI
Salloum M. S., Menduni M. F., Benavides M. P., Larrauri M., Luna C. M., Silvente S. (2018). Polyamines and flavonoids: key compounds in mycorrhizal colonization of improved and unimproved soybean genotypes. Symbiosis 76 265–275. 10.1007/s13199-018-0558-z DOI
Sánchez-Romera B., Ruiz-Lozano J. M., Zamarreño ÁM., García-Mina J. M., Aroca R. (2016). Arbuscular mycorrhizal symbiosis and methyl jasmonate avoid the inhibition of root hydraulic conductivity caused by drought. Mycorrhiza 26 111–122. 10.1007/s00572-015-0650-7 PubMed DOI
Šebela M., Radová A., Angelini R., Tavladoraki P., Frébort I., Peè P. (2001). FAD-containing polyamine oxidases: a timely challenge for researchers in biochemistry and physiology of plants. Plant Sci. 160 197–207. 10.1016/s0168-9452(00)00380-0 PubMed DOI
Srivastava A. K., Singh S. (2008). Citrus nutrition research in India: Problems and prospects. Ind. J. Agric. Sci. 78 3–16.
Srivastava A. K., Singh S. (2009). Citrus decline: soil fertility and plant nutrition. J. Plant Nutri. 32 197–245. 10.1080/01904160802592706 DOI
Sudhakar C., Laksmi A., Giridarakumar S. (2001). Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity. Plant Sci. 161 613–619. 10.1016/s0168-9452(01)00450-2 DOI
Takahashi T. (2020). Plant polyamines. Plants 9 511. 10.3390/plants9040511 PubMed DOI PMC
Talaat N. B., Shawky B. T. (2013). Modulation of nutrient acquisition and polyamine pool in salt-stressed wheat (Triticum aestivum L.) plants inoculated with arbuscular mycorrhizal fungi. Acta Physiol. Plant 35 2601–2610. 10.1007/s11738-013-1295-9 DOI
Toumi I., Moschou P. N., Paschalidis K. A., Bouamama B., Salem-fnayou A. B., Ghorbel A. W., et al. (2010). Abscisic acid signals reorientation of polyamine metabolism to orchestrate stress responses via the polyamine exodus pathway in grapevine. J. Plant Physiol. 167 519–525. 10.1016/j.jplph.2009.10.022 PubMed DOI
Unal D., Tuney I., Sukatar A. (2008). The role of external polyamines on photosynthetic responses, lipid peroxidation, protein and chlorophyll a content under the UV-A (352 nm) stress in Physcia semipinnata. J. Photychem. Photobiol. B. 90 64–68. 10.1016/j.jphotobiol.2007.11.004 PubMed DOI
Upadhyay R. K., Fatia T., Handa A. K., Mattoo A. K. (2020). Polyamines and their biosynthesis/catabolism genes are differentially modulated in response to heat versus cold stress in tomato leaves (Solannum lycopersicum L.). Cells 9 1749 10.3390/cells9081749 PubMed DOI PMC
Velikova V., Yordanov I., Edreva A. (2000). Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci. 151 59–66. 10.1016/s0168-9452(99)00197-1 DOI
Venice F., de Pinto M. C., Novero M., Ghignone S., Salvioli A., Bonfante P. (2017). Gigaspora margarita with and without its endobacterium shows adaptive responses to oxidative stress. Mycorrhiza 27 747–759. 10.1007/s00572-017-0790-z PubMed DOI
Vera-Sirera F., Minguet E. G., Singh S. K., Ljung K., Tuominen H., Blazquez M. A., et al. (2010). Role of polyamines in plant vascular development. Plant Physiol. Biochem. 48 534–539. 10.1016/j.plaphy.2010.01.011 PubMed DOI
Wu Q. S., He J. D., Srivastava A. K., Zou Y. N., Kuča K. (2019). Mycorrhizas enhance drought tolerance of citrus by altering root fatty acid compositions and their saturation levels. Tree Physiol. 39 1149–1158. 10.1093/treephys/tpz039 PubMed DOI
Wu Q. S., He X. H., Zou Y. N., Liu C. Y., Xiao J., Li Y. (2012a). Arbuscular mycorrhizas alter root system architecture of Citrus tangerine through regulating metabolism of endogenous polyamines. Plant Growth Regul. 68 27–35. 10.1007/s10725-012-9690-6 DOI
Wu Q. S., Srivastava A. K., Zou Y. N. (2013). AMF-induced tolerance to drought stress in citrus: a review. Sci. Hortic. 164 77–87. 10.1016/j.scienta.2013.09.010 DOI
Wu Q. S., Zou Y. N., He X. H. (2010). Exogenous putrescine, not spermine or spermidine, enhances root mycorrhizal development and plant growth of trifoliate orange (Poncirus trifoliata) seedlings. Int. J. Agric. Biol. 12 576–580.
Wu Q. S., Zou Y. N., Liu M., Cheng K. (2012b). Effects of exogenous putrescine on mycorrhiza, root system architecture, and physiological traits of Glomus mosseae-colonized trifoliate orange seedlings. Not. Bot. Hortic. Agrobot. 40 80–85. 10.15835/nbha4027926 DOI
Wu Z. W., Wang J. F., Yan D. L., Yuan H. W., Wang Y., He Y., et al. (2020). Exogenous spermidine improves salt tolerance of pecan-grafted seedlings via activating antioxidant system and inhibiting the enhancement of Na+/K+ ratio. Acta Physiol. Plant 42 83.
Xue B., Zhang A., Jiang M. (2009). Involvement of polyamine oxidase in abscisic acid-induced cytosolic antioxidant defense in leaves of maize. J. Integr. Plant. Biol. 51 225–234. 10.1111/j.1744-7909.2008.00766.x PubMed DOI
Yaakoubi H., Hamdani S., Bekalé L., Carpentier R. (2014). Protective action of spermine and spermidine against photoinhibition of photosystem I in isolated thylakoid membranes. PLoS One 9:e112893. 10.1371/journal.pone.0112893 PubMed DOI PMC
Yang H. Q., Gao H. J. (2007). Physiological function of arginine and its metabolites in plants. J. Plant Physiol. Mol. Biol. 33 1–8. 10.1002/9781118783054.ch1 PubMed DOI
Zhang F., Zou Y. N., Wu Q. S. (2018). Quantitative estimation of water uptake by mycorrhizal extraradical hyphae in citrus under drought stress. Sci. Hortic. 229 132–136. 10.1016/j.scienta.2017.10.038 DOI
Zhang F., Zou Y. N., Wu Q. S., Kuča K. (2020). Arbuscular mycorrhizas modulate root polyamine metabolism to enhance drought tolerance of trifoliate orange. Environ. Exp. Bot. 171 103962 10.1016/j.envexpbot.2019.103926 DOI
Zou Y. N., Wu H. H., Giri B., Wu Q. S., Kuča K. (2019). Mycorrhizal symbiosis down-regulates or does not change root aquaporin expression in trifoliate orange under drought stress. Plant Physiol. Biochem. 144 292–299. 10.1016/j.plaphy.2019.10.001 PubMed DOI
Zou Y. N., Wu Q. S., Kuča K. (2020). Unravelling the role of arbuscular mycorrhizal fungi in mitigating the oxidative burst of plants under drought stress. Plant Biol. 10.1111/plb.13161 [Epub ahead of print]. PubMed DOI
Metabolomics reveals arbuscular mycorrhizal fungi-mediated tolerance of walnut to soil drought