Unravelling the role of arbuscular mycorrhizal fungi in mitigating the oxidative burst of plants under drought stress

. 2021 May ; 23 Suppl 1 () : 50-57. [epub] 20201012

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid32745347

Grantová podpora
2018YFD1000300 National Key Research and Development Program of China
T201604 Plan in Scientific and Technological Innovation Team of Outstanding Young Scientists, Hubei Provincial Department of Education

With continued climate changes, soil drought stress has become the main limiting factor for crop growth in arid and semi-arid regions. A typical characteristic of drought stress is the burst of reactive oxygen species (ROS), causing oxidative damage. Plant-associated microbes, such as arbuscular mycorrhizal fungi (AMF), can regulate physiological and molecular responses to tolerate drought stress, and they have a strong ability to cope with drought-induced oxidative damage via enhanced antioxidant defence systems. AMF produce a limited oxidative burst in the arbuscule-containing root cortical cells. Similar to plants, AMF modulate a fungal network in enzymatic (e.g. GmarCuZnSOD and GintSOD1) and non-enzymatic (e.g. GintMT1, GinPDX1 and GintGRX1) antioxidant defence systems to scavenge ROS. Plants also respond to mycorrhization to enhance stress tolerance via metabolites and the induction of genes. The present review provides an overview of the network of plant - arbuscular mycorrhizal fungus dialogue in mitigating oxidative stress. Future studies should involve identifying genes and transcription factors from both AMF and host plants in response to drought stress, and utilize transcriptomics, proteomics and metabolomics to clarify a clear dialogue mechanism between plants and AMF in mitigating oxidative burst.

Zobrazit více v PubMed

Acuña-Rodríguez I.S., Newsham K.K., Gundel P.E., Torres-Díaz C., Molina-Montenegro M.A. (2020) Functional roles of microbial symbionts in plant cold tolerance. Ecology Letters, 23, 1034-1048.

Allen M.F. (2006) Water dynamics of mycorrhizas in arid soils. In: Gadd G. M. (Ed), Fungi in biogeochemical cycles. Cambridge University Press, Cambridge, UK, pp 74-97.

Allen M.F. (2007) Mycorrhizal fungi: highways for water and nutrients in arid soils. Vadose Zone Journal, 6, 291-297.

Aroca R., Bago A., Sutka M., Paz J.A., Cano C., Amodeo G., Ruiz-Lozano J.M. (2009) Expression analysis of the first arbuscular mycorrhizal fungi aquaporin described reveals concerted gene expression between salt-stressed and non-stressed mycelium. Molecular Plant-Microbe Interactions, 22, 1169-1178.

Arora A., Sairam R.K., Srivastava G.C. (2002) Oxidative stress and antioxidative system in plants. Current Science, 82, 1227-1238.

Aseel D.G., Rashad Y.M., Hammad S.M. (2019) Arbuscular mycorrhizal fungi trigger transcriptional expression of flavonoid and chlorogenic acid biosynthetic pathway genes in tomato against Tomato Mosaic Virus. Scientific Reports, 9, 9692.

Bagheri V., Shamshiri M.H., Alaei H., Salehi H. (2019) The role of inoculum identity for growth, photosynthesis, and chlorophyll fluorescence of zinnia plants by arbuscular mycorrhizal fungi under varying water regimes. Photosynthetica, 57, 409-419.

Bahadur A., Batool A., Nasir F., Jiang S.J., Qin M.S., Zhang Q., Pan J.B., Liu Y.J., Feng F.Y. (2019) Mechanistic insights into arbuscular mycorrhizal fungi-mediated drought stress tolerance in plants. International Journal of Molecular Sciences, 20, 4199.

Bashri G., Prasad S.M. (2016) Exogenous IAA differentially affects growth, oxidative stress and antioxidant system in Cd stressed Trigonella foenum-graceum L. seedlings: toxicity alleviation by up-regulation of ascorbate-glutathione cycle. Ecotoxicology and Environmental Safety, 132, 329-338.

Baslam M., Giocoechea N. (2012) Water deficit improved the capacity of arbuscular mycorrhizal fungi (AMF) for inducing the accumulation of antioxidant compounds in lettuce leaves. Mycorrhiza, 22, 347-359.

Baslam M., Esteban R., Garcia-Plazaola J.I., Goicoechea N. (2013) Effectiveness of arbuscular mycorrhizal fungi (AMF) for inducing the accumulation of major carotenoids, chlorophylls and tocopherol in green and red leaf lettuces. Applied Microbiology and Biotechnology, 97, 3119-3128.

Begum N., Ahanger M.A., Su Y.Y., Lei Y.F., Mustafa N.S.A., Ahmad P., Zhang L.X. (2019) Improved drought tolerance by AMF inoculation in maize (Zea mays) involves physiological and biochemical implications. Plants, 8, 579.

Belmondo S., Calcagno C., Genre A., Puppo A., Pauly N., Lanfranco L. (2016a) NADPH oxidases in the arbuscular mycorrhizal symbiosis. Plant Signaling and Behavior, 11, e1165379.

Belmondo S., Calcagno C., Genre A., Puppo A., Pauly N., Lanfranco L. (2016b) The Medicago truncatula MtRbohE gene is activated in arbusculated cells and is involved in root cortex colonization. Planta, 243, 251-262.

Benabdellah K., Azcón-Aguilar C., Valderas A., Speziga D. (2009a) GintPDX1 encodes a protein involved in vitamin B6 biosynthesis that is up-regulated by oxidative stress in the arbuscular mycorrhizal fungus Glomus intraradices. New Phytologist, 184, 682-693.

Benabdellah K., Merlos M.A., Azcón-Aguilar C., Ferrol N. (2009b) GintGRX1, the first characterized glomeromycotan glutaredoxin, is a multifunctional enzyme that responds to oxidative stress. Fungal Genetics and Biology, 46, 94-103.

Bhattacharjee S. (2005) Reactive oxygen species and oxidative burst: Roles in stress, senescence and signal transduction in plants. Current Science, 89, 1113-1121.

Bhattacharjee S. (2019) ROS and oxidative stress: origin and implication. In: Bhattacharjee S. (Ed), Reactive oxygen species in plant biology. Springer, New Delhi, India, pp 1-32.

Bitaraf N., Saadatmand S., Mehregan I., Ahmadvand R., Ebadi M. (2020) Evaluation of mitigation effects of Glomus mosseae on Triticum aestivum L., cv. Chamran under drought stress. Periodico Tche Quimica, 17, 1033-1045.

Blee K.A., Anderson A.J. (2000) Defence responses in plants to arbuscular mycorrhizal fungi. In: Podila G. K., Douds D. D. (Eds), Current advances in mycorrhizae research. The American Phytopathological Society, St Paul, MN, USA, pp 27-44.

Bonfante P. (2018) The future has roots in the past: the ideas and scientists that shaped mycorrhizal research. New Phytologist, 220, 982-995.

Cheng H.Q., Ding Y.E., Shu B., Zou Y.N., Wu Q.S., Kuča K. (2020) Plant aquaporin responses to mycorrhizal symbiosis under abiotic stress. International Journal of Agriculture and Biology, 23, 786-794.

Chialva M., Salvioli di Fossalunga A., Daghino S., Ghignone S., Bagnaresi P., Chiapello M., Novero M., Spadaro D., Perotto S., Bonfante P. (2018) Native soils with their microbiotas elicit a state of alert in tomato plants. New Phytologist, 220, 1296-1308.

Chiu C.H., Choi J., Paszkowski U. (2018) Independent signalling cues underpin arbuscular mycorrhizal symbiosis and large lateral root induction in rice. New Phytologist, 217, 552-557.

Choudhary K.K., Chaudhary N., Agrawal S.B., Agrawal M. (2018) Reactive oxygen species: generation, damage, and quenching in plants during stress. In: Singh V. P., Singh S., Tripathi D. K., Prasad S. M., Chauhan D. K. (Eds), Reactive oxygen species in plants: boon or bane - revisiting the role of ROS. Wiley, Hoboken, NJ, USA, pp 89-116.

Choudhury F.K., Rivero R.M., Blumwald E., Mittler R. (2017) Reactive oxygen species, abiotic stress and stress combination. The Plant Journal, 90, 856-867.

Corradi N., Buffner B., Croll D., Colard A., Horak A., Sanders I.R. (2009) High-level molecular diversity of copper-zinc superoxide dismutase genes among and within species of arbuscular mycorrhizal fungi. Applied and Environmental Microbiology, 75, 1970-1978.

Das K., Roychoudhury A. (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Frontiers in Environmental Science, 2, 53.

Ding Y.E., Fan Q.F., He J.D., Wu H.H., Zou Y.N., Wu Q.S., Kuča K. (2020) Effects of mycorrhizas on physiological performance and root TIPs expression in trifoliate orange under salt stress. Archives of Agronomy and Soil Science, 66, 182-192.

Essahibi A., Benhiba L., Babram M.A., Ghoulam C., Qaddoury A. (2018) Influence of arbuscular mycorrhizal fungi on the functional mechanisms associated with drought tolerance in carob (Ceratonia siliqua L.). Trees - Structure and Function, 32, 87-97.

Fester T., Hause G. (2005) Accumulation of reactive oxygen species in arbuscular mycorrhizal roots. Mycorrhiza, 15, 373-379.

Fonseca-García C., Zayas A.E., Montiel J., Nava N., Sánchez F., Quinto C. (2019) Transcriptome analysis of the differential effect of the NADPH oxidase gene RbohB in Phaseolus vulgaris roots following Rhizobium tropici and Rhizophagus irregularis inoculation. BMC Genomics, 20, 800.

Garg N., Sharma A. (2019) Role of putrescine (Put) in imparting salt tolerance through modulation of Put metabolism, mycorrhizal and rhizobial symbioses in Cajanus cajan (L.) Millsp. Symbiosis, 79, 59-74.

Gavito M.E., Jakobsen I., Mikkelsen T.N., Mora F. (2019) Direct evidence for modulation of photosynthesis by an arbuscular mycorrhiza-induced carbon sink strength. New Phytologist, 223, 896-907.

Gholinezhad E., Darvishzadeh R., Moghaddam S.S., Popovic-Djordjevic J. (2020) Effect of mycorrhizal inoculation in reducing water stress in sesame (Sesamum indicum L.): the assessment of agrobiochemical traits and enzymatic antioxidant activity. Agricultural Water Management, 238, 106234.

Giovannetti M., Balestrini R., Volpe V., Guether M., Straub D., Costa A., Ludewig U., Bonfante P. (2012) Two putative aquaporin genes are differentially expressed during arbuscular mycorrhizal symbiosis in Lotus japonicus. BMC Plant Biology, 12, 186.

González-Guerrero M., Cano C., Azcón-Aguilar C., Ferrol N. (2007) GintMT1 encodes a functional metallothionein in Glomus intraradices that responds to oxidative stress. Mycorrhiza, 17, 327-335.

González-Guerrero M., Oger E., Benabdellah K., Azcon-Aguilar C., Lanfranco L., Ferrol N. (2010) Characterization of a CuZn superoxide dismutase gene in the arbuscular mycorrhizal fungus Glomus intraradices. Current Genetics, 56, 265-274.

Guo H., Cui Y.N., Pan Y.Q., Wang S.M., Bao A.K. (2020) Sodium chloride facilitates the secretohalophyte Atriplex canescens adaptation to drought stress. Plant Physiology and Biochemistry, 150, 99-108.

He J.D., Dong T., Wu H.H., Zou Y.N., Wu Q.S., Kuča K. (2019) Mycorrhizas induce diverse responses of root TIP aquaporin gene expression to drought stress in trifoliate orange. Scientia Horticulturae, 243, 64-69.

He J.D., Zou Y.N., Wu Q.S., Kuča K. (2020) Mycorrhizas enhance drought tolerance of trifoliate orange by enhancing activities and gene expression of antioxidant enzymes. Scientia Horticulturae, 262, 108745.

Hu Y.B., Chen B.D. (2020) Arbuscular mycorrhiza induced putrescine degradation into γ-aminobutyric acid, malic acid accumulation, and improvement of nitrogen assimilation in roots of water-stressed maize plants. Mycorrhiza, 30, 329-339.

Huang Y.M., Srivastava A.K., Zou Y.N., Ni Q.D., Han Y., Wu Q.S. (2014) Mycorrhizal-induced calmodulin mediated changes in antioxidant enzymes and growth response of drought-stressed trifoliate orange. Frontiers in Microbiology, 5, 682.

Huang Y.M., Zou Y.N., Wu Q.S. (2017) Alleviation of drought stress by mycorrhizas is related to increased root H2O2 efflux in trifoliate orange. Scientific Reports, 7, 42335.

Humphreys C.P., Franks P.J., Rees M., Bidartondo M.I., Leake J.P., Beerling D.J. (2010) Mutualistic mycorrhiza-like symbiosis in the most ancient group of land plants. Nature Communications, 1, 103.

Jangra S., Mishra A., Priti Kamboj D., Yadav N.R., Yadav R.C. (2019) Plant responses and tolerance to drought. In: Hasanuzzaman M., Nahar K., Fujita M., Oku H., Tofazzal Islam M. (Eds), Approaches for enhancing abiotic stress tolerance in plants. CRC Press, Boca Raton, FL, USA, pp 79-98.

Kapoor R., Singh N. (2017) Arbuscular mycorrhiza and reactive oxygen species. In: Wu Q. S. (Ed), Arbuscular mycorrhizas and stress tolerance of plants. Springer, Singapore, pp 225-243.

Khajeeyan R., Salehi A., Dehnavi M.M., Farajee H., Kohanmoo M.A. (2019) Physiological and yield responses of Aloe vera plant to biofertilizers under different irrigation regimes. Agricultural Water Management, 225, 105768.

Kikuchi Y., Hijikata N., Ohtomo R., Handa Y., Kawaguchi M., Saito K., Masuta C., Ezawa T. (2016) Aquaporin-mediated long-distance polyphosphate translocation directed towards the host in arbuscular mycorrhizal symbiosis: application of virus-induced gene silencing. New Phytologist, 211, 1202-1208.

Kumar P., Pathak S. (2019) Responsiveness index of sorghum (Sorghum bicolor (L.) Moench) grown under cadmium contaminated soil treated with putrescine and mycorrhiza. Bangladesh Journal of Botany, 48, 139-143.

Lanfranco L., Novero M., Bonfante P. (2005) The mycorrhizal fungus Gigaspora margarita possesses a CuZn superoxide dismutase that is up-regulated during symbiosis with legume hosts. Plant Physiology, 137, 1319-1330.

Lanfranco L., Fiorilli V., Gutjahr C. (2018) Partner communication and role of nutrients in the arbuscular mycorrhizal symbiosis. New Phytologist, 220, 1031-1046.

Langeroodi A.R.S., Osipitan O.A., Radicetti E., Mancinelli R. (2020) To what extent arbuscular mycorrhiza can protect chicory (Cichorium intybus L.) against drought stress. Scientia Horticulturae, 263, 109109.

Lenoir I., Fontaine J., Sahraoui A.L.H. (2016) Arbuscular mycorrhizal fungal responses to abiotic stresses: a review. Phytochemistry, 123, 4-15.

Li T., Hu Y.J., Hao Z.P., Li H., Wang Y.S., Chen B.D. (2013) First cloning and characterization of two functional aquaporin genes from an arbuscular mycorrhizal fungus Glomus intraradices. New Phytologist, 197, 617-630.

Liu J.H., Wang W., Wu H., Gong X., Moriguchi T. (2015) Polyamines function in stress tolerance: from synthesis to regulation. Frontiers in Plant Science, 6, 827.

Liu C.Y., Zhang F., Zhang D.J., Srivastava A.K., Wu Q.S., Zou Y.N. (2018) Mycorrhiza stimulates root-hair growth and IAA synthesis and transport in trifoliate orange under drought stress. Scientific Reports, 8, 1978.

Lokhandwala A., Hoeksema J.D. (2019) Priming by arbuscular mycorrhizal fungi of plant antioxidant enzyme production: a meta-analysis. Annual Plant Reviews, 2, 1069-1084.

Luginbuehl L.H., Menard G.N., Kurup S., Van Erp H., Radhakrishnan G.V., Breakspear A., Oldroyd G.E.D., Eastmond P.J. (2017) Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant. Science, 356, 1175-1178.

Mayer Z., Duc N.H., Sasvari Z., Posta K. (2017) How arbuscular mycorrhizal fungi influence the defense system of sunflower during different abiotic stresses. Acta Biologica Hungarica, 68, 376-387.

Millar N.S., Bennett A.E. (2016) Stressed out symbiotes: hypotheses for the influence of abiotic stress on arbuscular mycorrhizal fungi. Oecologia, 182, 625-641.

Mirjani L., Salimi A., Matinizadeh M., Razavi K., Shahbazi M. (2019) The role of arbuscular mycorrhizal fungi on acclimatization of micropropagated plantlet Satureja khuzistanica Jam. by ameliorating of antioxidant activity and expression of PAL gene. Scientia Horticulturae, 253, 364-370.

Mustafa G., Khong N.G., Tisserant B., Randoux B., Fontaine J., Magnin-Robert M., Reignault P., Sahraoui A.L.H. (2017) Defence mechanisms associated with mycorrhiza-induced resistance in wheat against powdery mildew. Functional Plant Biology, 44, 443-454.

Nadeem M., Li J.J., Yahya M., Sher A., Ma C.X., Wang X.B., Qiu L.J. (2019) Research progress and perspective on drought stress in legumes: a review. International Journal of Molecular Sciences, 10, 2541.

Nath M., Bhatt D., Prasad R., Gill S.S., Anjum N.A., Tuteja N. (2016) Reactive oxygen species generation scavenging and signaling during plant-arbuscular mycorrhizal and Piriformospora indica interaction under stress condition. Frontiers in Plant Science, 7, 1574.

Nejad K.Z., Ghasemi M., Shamili M., Damizadeh G.R. (2019) Effect of mycorrhiza and vermicompost on drought tolerance of lime seedlings (Citrus aurantifolia cv. Mexican Lime). International Journal of Fruit Science. https://doi.org/10.1080/15538362.2019.1678448

Pottosin I., Velarde-Buendia A.M., Bose J., Zepeda-Jazo I., Shabala S., Dobrovinskaya O. (2014) Cross-talk between reactive oxygen species and polyamines in regulation of ion transport across the plasma membrane: implications for plant adaptive responses. Journal of Experimental Botany, 65, 1271-1283.

Qiao Y.G., Bai Y.X., Zhang Y.Q., She W.W., Lai Z.R., Qin S.G. (2019) Arbuscular mycorrhizal fungi shape the adaptive strategy of plants by mediating nutrient acquisition in a shrub-dominated community in the Mu Us Desert. Plant and Soil, 443, 549-564.

Rivero J., Alvarez D., Flors V., Azcon-Aguilar C., Pozo M.J. (2018) Root metabolic plasticity underlies functional diversity in mycorrhiza-enhanced stress tolerance in tomato. New Phytologist, 220, 1322-1336.

Ruiz-Lozano J.M., Collados C., Barea J.M., Azcón R. (2001) Cloning of cDNAs encoding SODs from lettuce plants which show differential regulation by arbuscular mycorrhizal symbiosis and by drought stress. Journal of Experimental Botany, 52, 2241-2242.

Ruiz-Lozano J.M., Porcel R., Azcón C., Aroca R. (2012) Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies. Journal of Experimental Botany, 63, 4033-4044.

Salloum M.S., Menduni M.F., Benavides M.P., Larrauri M., Luna C.M., Silvente S. (2018) Polyamines and flavonoids: key compounds in mycorrhizal colonization of improved and unimproved soybean genotypes. Symbiosis, 76, 265-275.

Salvioli A., Ghignone S., Novero M., Navazio L., Venice F., Bagnaresi P., Bonfante P. (2016) Symbiosis with an endobacterium increases the fitness of a mycorrhizal fungus, raising its bioenergetic potential. The ISME Journal, 10, 130-144.

Salzer P., Corbiere H., Boller T. (1999) Hydrogen peroxide accumulation in Medicago truncatula roots colonized by the arbuscular mycorrhiza-forming fungus Glomus intraradices. Planta, 208, 319-325.

Sannazzaro A.I., Echeverria M., Alberto E.O., Ruiz O.A., Menendez A.B. (2007) Modulation of polyamine balance in Lotus glaber by salinity and arbuscular mycorrhiza. Plant Physiology and Biochemistry, 45, 39-46.

Segal L.M., Wilson R.A. (2017) Reactive oxygen species metabolism and plant-fungal interactions. Fungal Genetics and Biology, 110, 1-9.

Sequera-Mutiozabal M., Tiburcio A.F., Alcázar R. (2016) Drought stress tolerance in relation to polyamine metabolism in plants. In: Hossain M., Wani S., Bhattacharjee S., Burritt D., Tran L. S. (Eds), Drought stress tolerance in plants, Vol 1. Springer, Cham, Switzerland, pp 267-286.

Sharma S., Anand G., Singh N., Kapoor R. (2017) Arbuscular mycorrhiza augments arsenic tolerance in wheat (Triticum aestivum L.) by strengthening antioxidant defense system and thiol metabolism. Frontiers in Plant Science, 8, 906.

Shi Y.M., Guo J.G., Zhang W., Jin L.F., Liu P.P., Chen X., Li F., Wei P., Li Z.F., Li W.Z., Wei C.Y., Zheng Q.X., Chen Q.S., Zhang J.F., Lin F.C., Qu L.B., Snyder J.H., Wang R. (2015) Cloning of the lycopene β-cyclase gene in Nicotiana tabacum and its overexpression confers salt and drought tolerance. International Journal of Molecular Sciences, 16, 30438-30457.

Song F.Q., Song G., Dong A.R., Kong X.S. (2011) Regulatory mechanisms of host plant defense responses to arbuscular mycorrhiza. Acta Ecologica Sinica, 31, 322-327.

Sousa-Lopes A., Antunes F., Cyrne L., Marinho H.S. (2004) Decreased cellular permeability to H2O2 protects Saccharomyces cerevisiae cells in stationary phase against oxidative stress. FEBS Letters, 587, 152-156.

Strullu-Derrien C., Kenrick P., Selosse M.A. (2017) Origins of the mycorrhizal symbioses. In: Martin F. (Ed), Molecular mycorrhizal symbiosis. Wiley, Hoboken, NJ, USA, pp 3-20.

Tani E., Chronopoulou E.G., Labrou N.E., Sarri E., Goufa M., Vaharidi X., Tornesaki A., Psychogiou M., Bebeli P.J., Abraham E.M. (2019) Growth, physiological, biochemical, and transcriptional responses to drought stress in seedlings of Medicago sativa L., Medicago arborea L., and their hybird (alborea). Agronomy, 9, 38.

Tarnabi Z.M., Iranbakhsh A., Mehregan I., Ahmadvand R. (2020) Impact of arbuscular mycorrhizal fungi (AMF) on gene expression of some cell wall and membrane elements of wheat (Triticum aestivum L.) under water deficit using transcriptome analysis. Physiology and Molecular Biology of Plants, 26, 143-162.

Tiwari S., Tiwari S., Singh M., Singh A., Prasad S.M. (2018) Generation mechanisms of reactive oxygen species in the plant cell: an overview. In: Singh V. P., Singh S., Tripathi D. K., Prasad S. M., Chauhan D. K. (Eds), Reactive oxygen species in plants: boon or bane - revisiting the role of ROS. Wiley, Hoboken, NJ, USA, pp 1-22.

Tong H.C., Wang X.H., Dong Y.Z., Hu Q.Q., Zhao Z.Y., Zhu Y., Dong L.X., Bai F., Dong X.Z. (2019) A Streptococcus aquaporin acts as peroxiporin for efflux of cellular hydrogen peroxide and alleviation of oxidative stress. Journal of Biological Chemistry, 294, 4583-4595.

Vangelisti A., Turrini A., Sbrana C., Avio L., Giordani T., Natali L., Giovannetti M., Cavallini A. (2020) Gene expression in Rhizoglomus irregulare at two different time points of mycorrhiza establishment in Helianthus annuus roots, as revealed by RNA-seq analysis. Mycorrhiza, 30, 373-387.

Vannini C., Carpentieri A., Salvioli A., Novero M., Marsoni M., Testa L., de Pinto M.C., Amoresano A., Ortolani F., Bracale M., Bonfante P. (2016) An interdomain network: the endobacterium of a mycorrhizal fungus promotes antioxidative responses in both fungal and plant hosts. New Phytologist, 211, 265-275.

Venice F., de Pinto M.C., Novero M., Ghignone S., Salvioli A., Bonfante P. (2017) Gigaspora margarita with and without its endobacterium shows adaptive responses to oxidative stress. Mycorrhiza, 27, 747-759.

Wu Q.S., Zou Y.N. (2017) Arbuscular mycorrhizal fungi and tolerance of drought stress in plants. In: Wu Q. S. (Ed), Arbuscular mycorrhizas and stress tolerance of plants. Springer, Singapore, pp 25-42.

Wu Q.S., Srivastava A.K., Zou Y.N. (2013) AMF-induced tolerance to drought stress in citrus: a review. Scientia Horticulturae, 164, 77-87.

Wu Q.S., Zou Y.N., Abd-Allah E.F. (2014) Mycorrhizal association and ROS in plants. In: Ahmad P. (Ed), Oxidative damage to plants: antioxidant networks and signaling. Academic Press, London, UK, pp 453-475.

Wu J.X., Chu Z.J., Ruan Z., Wang X.Y., Dai T.H., Hu X.Q. (2018) Changes of intracellular porphyrin, reactive oxygen species, and fatty acid profiles during inactivation of methicillin-resistant Staphylococcus aureus by antimicrobial blue light. Frontiers in Physiology, 9, 1658.

Wu Q.S., He J.D., Srivastava A.K., Zou Y.N., Kuča K. (2019) Mycorrhizas enhance drought tolerance of citrus by altering root fatty acid compositions and their saturation levels. Tree Physiology, 39, 1149-1158.

Yang Z., Chi X.Y., Guo F.F., Jin X.Y., Luo H.L., Hawar A., Chen Y.X., Feng K.K., Wang B., Qi J.L., Yang Y.H., Sun B. (2020a) SbWRKY30 enhances the drought tolerance of plants and regulates a drought stress-responsive gene, SbRD19, in sorghum. Journal of Plant Physiology, 246-247, 153142.

Yang C.F., Huang Y.Z., Lv W.H., Zhang Y.Y., Bhat J.A., Kong J.J., Xing H., Zhao J.M., Zhao T.J. (2020b) GmNAC8 acts as a positive regulator in soybean drought stress. Plant Science, 293, 110442.

Zhang F., Zou Y.N., Wu Q.S. (2018a) Quantitative estimation of water uptake by mycorrhizal extraradical hyphae in citrus under drought stress. Scientia Horticulturae, 229, 132-136.

Zhang T., Hu Y.J., Zhang K., Tian C.Y., Guo J.X. (2018b) Arbuscular mycorrhizal fungi improve plant growth of Ricinus communis by altering photosynthetic properties and increasing pigments under drought and salt stress. Industrial Crops and Products, 117, 13-19.

Zhang F., Zou Y.N., Wu Q.S. (2019a) Effects of Funneliformis mosseae on the expression of antioxidant enzyme genes in trifoliate orange exposed to drought stress. Mycosystema, 38, 2043-2050. (in Chinese with English abstract)

Zhang X., Zhang H., Lou X., Tang M. (2019b) Mycorrhizal and non-mycorrhizal Medicago truncatula roots exhibit differentially regulated NADPH oxidase and antioxidant response under Pb stress. Environmental and Experimental Botany, 164, 10-19.

Zhang F., Zou Y.N., Wu Q.S., Kuča K. (2020) Arbuscular mycorrhizas modulate root polyamine metabolism to enhance drought tolerance of trifoliate orange. Environmental and Experimental Botany, 171, 103962.

Zou Y.N., Huang Y.M., Wu Q.S., He X.H. (2015) Mycorrhiza-induced lower oxidative burst is related with higher antioxidant enzyme activities, net H2O2 effluxes, and Ca2+ influxes in trifoliate orange roots under drought stress. Mycorrhiza, 25, 143-152.

Zou Y.N., Srivastava A.K., Wu Q.S. (2018) Water redistribution in mycorrhizosphere of trifoliate orange. Indian Journal of Agricultural Sciences, 88, 1198-1201.

Zou Y.N., Wu H.H., Giri B., Wu Q.S., Kuča K. (2019) Mycorrhizal symbiosis down-regulates or does not change root aquaporin expression in trifoliate orange under drought stress. Plant Physiology and Biochemistry, 144, 292-299.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Common mycorrhizal networks improve survival and mediate facilitative plant interactions among Andropogon gerardii seedlings under drought stress

. 2025 Feb 03 ; 35 (1) : 8. [epub] 20250203

Antioxidant Responses and Redox Regulation Within Plant-Beneficial Microbe Interaction

. 2024 Dec 18 ; 13 (12) : . [epub] 20241218

Cloning of CAT genes in Satsuma mandarin and their expression characteristics in response to environmental stress and arbuscular mycorrhizal fungi

. 2024 Apr 20 ; 43 (5) : 123. [epub] 20240420

Metabolomics reveals arbuscular mycorrhizal fungi-mediated tolerance of walnut to soil drought

. 2023 Feb 28 ; 23 (1) : 118. [epub] 20230228

Arbuscular mycorrhiza induces low oxidative burst in drought-stressed walnut through activating antioxidant defense systems and heat shock transcription factor expression

. 2022 ; 13 () : 1089420. [epub] 20221129

Multi-Omics and Integrative Approach towards Understanding Salinity Tolerance in Rice: A Review

. 2022 Jul 07 ; 11 (7) : . [epub] 20220707

Elucidating the Mechanisms Underlying Enhanced Drought Tolerance in Plants Mediated by Arbuscular Mycorrhizal Fungi

. 2021 ; 12 () : 809473. [epub] 20211223

Arbuscular Mycorrhizal Fungi Alleviate Drought Stress in Trifoliate Orange by Regulating H+-ATPase Activity and Gene Expression

. 2021 ; 12 () : 659694. [epub] 20210325

Arbuscular Mycorrhizal Fungi Regulate Polyamine Homeostasis in Roots of Trifoliate Orange for Improved Adaptation to Soil Moisture Deficit Stress

. 2020 ; 11 () : 600792. [epub] 20210112

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...