Elucidating the Mechanisms Underlying Enhanced Drought Tolerance in Plants Mediated by Arbuscular Mycorrhizal Fungi
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
35003041
PubMed Central
PMC8733408
DOI
10.3389/fmicb.2021.809473
Knihovny.cz E-zdroje
- Klíčová slova
- drought tolerance, mycorrhizae, plant physiology, symbiosis, water deficit,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Plants are often subjected to various environmental stresses during their life cycle, among which drought stress is perhaps the most significant abiotic stress limiting plant growth and development. Arbuscular mycorrhizal (AM) fungi, a group of beneficial soil fungi, can enhance the adaptability and tolerance of their host plants to drought stress after infecting plant roots and establishing a symbiotic association with their host plant. Therefore, AM fungi represent an eco-friendly strategy in sustainable agricultural systems. There is still a need, however, to better understand the complex mechanisms underlying AM fungi-mediated enhancement of plant drought tolerance to ensure their effective use. AM fungi establish well-developed, extraradical hyphae on root surfaces, and function in water absorption and the uptake and transfer of nutrients into host cells. Thus, they participate in the physiology of host plants through the function of specific genes encoded in their genome. AM fungi also modulate morphological adaptations and various physiological processes in host plants, that help to mitigate drought-induced injury and enhance drought tolerance. Several AM-specific host genes have been identified and reported to be responsible for conferring enhanced drought tolerance. This review provides an overview of the effect of drought stress on the diversity and activity of AM fungi, the symbiotic relationship that exists between AM fungi and host plants under drought stress conditions, elucidates the morphological, physiological, and molecular mechanisms underlying AM fungi-mediated enhanced drought tolerance in plants, and provides an outlook for future research.
College of Horticulture and Gardening Yangtze University Jingzhou China
Department of Botany and Microbiology College of Science King Saud University Riyadh Saudi Arabia
Department of Chemistry Faculty of Science University of Hradec Kralove Hradec Kralove Czechia
Zobrazit více v PubMed
Abd_Allah E. F., Tabassum B., Alqarawi A. A., Alshahrani T. S., Malik J. A., Hashem A. (2019). Physiological markers mitigate drought stress in Panicum turgidum Forssk. By arbuscular mycorrhizal fungi. Pak. J. Bot. 51 2003–2011. 10.30848/PJB2019-6(12 DOI
Al-Arjani A. B. F., Hashem A., Abd_Allah E. F. (2020). Arbuscular mycorrhizal fungi modulates dynamics tolerance expression to mitigate drought stress in Ephedra faliata Boiss. Saudi J. Biol. Sci. 27 380–394. 10.1016/j.sjbs.2019.10.008 PubMed DOI PMC
Ali M., Gul A., Hasan H., Alipour H., Abbasi A. A., Khan F. Z., et al. (2020a). “LEA proteins and drought stress in wheat,” in Climate Change and Food Security with Emphasis on Wheat, eds Ozturk M., Gul A. (London: Academic Press; ), 193–205. 10.1016/B978-0-12-819527-7.00012-1 DOI
Ali R., Hassan S., Shah D., Sajjad N., Bhat E. A. (2020b). “Role of polyamines in mitigating abiotic stress,” in Protective Chemical Agents in the Amelioation of Plant Abiotic Stress: Biochemical and Molecular Perspectives, eds Roychoudhury A., Tripathi D. K. (Hoboken, USA: John Wiley & Sons Ltd; ), 291–305. 10.1002/9781119552154.ch13 DOI
AlKahtani M. D. F., Hafez Y. M., Attia K., Rashwan E., Husnain L. A., AlGwaiz H. I. M., et al. (2021). Evaluation of silicon and proline application on the oxidative machinery in drought-stressed sugar beet. Antioxidants 10:398. 10.3390/antiox10030398 PubMed DOI PMC
Allen M. F. (2007). Mycorrhizal fungi: highways for water and nutrients in arid soils. Vadose Zone J. 6 291–297. 10.2136/vzj2006.0068 DOI
Amiri R., Nikbakht A., Etemadi N. (2015). Alleviation of drought stress on rose geranium [Pelargonium graveolens (L.) herit.] in terms of antioxidant activity and secondary metabolites by mycorrhizal inoculation. Sci. Hortic. 197 373–380. 10.1016/j.scienta.2015.09.062 DOI
Aroca R., Bago A., Sutka M., Paz J. A., Cano C., Amodeo G., et al. (2009). Expression analysis of the first arbuscular mycorrhizal fungi aquaporin described reveals concerted gene expression between salt-stressed and non-stressed mycelium. Mol. Plant-Microbe Interact. 22 1169–1178. 10.1094/MPMI-22-9-1169 PubMed DOI
Aroca R., Porcel R., Ruiz-Lozano J. M. (2007). How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporin in Phaseolus vulgaris under drought, cold or salinity stresses? New Phytol. 173 808–816. 10.1111/j.1469-8137.2006.01961.x PubMed DOI
Aroca R., Vernieri P., Ruiz-Lozano J. M. (2008). Mycorrhizal and non-mycorrhizal Lactuca sativa plants exhibit contrasting responses to exogenous ABA during drought stress and recovery. J. Exp. Bot. 59 2029–2041. 10.1093/jxb/ern057 PubMed DOI PMC
Asrar A. A., Abdel-Fattah G. M., Elhindi K. M. (2012). Improving growth, flower yield, and water relations of snapdragon (Antirhinum majus L.) plants grown under well-watered and water-stress conditions using arbuscular mycorrhizal fungi. Photosynthetica 50 305–316. 10.1007/s11099-012-0024-8 DOI
Augé R. M. (2001). Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11 3–42. 10.1007/s005720100097 DOI
Augé R. M. (2004). Arbuscular mycorrhizae and soilant water relations. Can. J. Soil Sci. 84 373–381. 10.4141/S04-002 DOI
Augé R. M., Stodola A. J. W., Tims J. E., Saxton A. M. (2001). Moisture retention properties of a mycorrhizal soil. Plant Soil 230 87–97. 10.1023/A:1004891210871 DOI
Augé R. M., Sylvia D. M., Park S. J., Buttery B. R., Saxton A. M., Moore J. L., et al. (2004). Partitioning mycorrhizal influence on water relations of Phaseolus vulgaris into soil and plant components. Can. J. Bot. 82 503–514. 10.1139/B04-020 DOI
Bahadur A., Batool A., Nasir F., Jiang S. J., Qin M. S., Zhang Q., et al. (2019). Mechanistic insights into arbuscular mycorrhizal fungi-mediated drought stress tolerance in plants. Int. J. Mol. Sci. 20:4199. 10.3390/ijms20174199 PubMed DOI PMC
Balestrini R., Rosso L. C., Veronico P., Melillo M. T., De Luca F., Fanelli E., et al. (2019). Transcriptomic responses to water deficit and nematode infection in mycorrhizal tomato roots. Front. Microbiol. 10:1087. 10.3389/fmicb.2019.01807 PubMed DOI PMC
Bárzana G., Carvaja M. (2020). Genetic regulation of water and nutrient transport in water stress tolerance in roots. J. Biotehcnol. 324 134–142. 10.1016/j.jbiotec.2020.10.003 PubMed DOI
Bárzana G., Aroca R., Bienert P., Chaumont F., Ruiz-Lozano J. M. (2014). New insights into the regulation of aquaporins by the arbuscular mycorrhizal symbiosis in maize plants under drought stress and possible implications for plant performance. Mol. Plant-Microbe Interact. 27 349–363. 10.1094/MPMI-09-13-0268-R PubMed DOI
Begum N., Qin C., Ahanger M. A., Raza S., Khan M. I., Ashraf M., et al. (2019). Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance. Front. Plant Sci. 10:1068. 10.3389/fpls.2019.01068 PubMed DOI PMC
Bitterlich M., Sandmann M., Graefe J. (2018). Arbuscular mycorrhiza alleviates restrictions to substrate water flow and delays transpiration limitation to stronger drought in tomato. Front. Plant Sci. 9:154. 10.3389/fpls.2018.00154 PubMed DOI PMC
Bryla D. R., Duniway J. M. (2010). Growth, phosphorus uptake, and water relations of safflower and wheat infected with an arbuscular mycorrhizal fungus. New Phytol. 136 581–590. 10.1046/j.1469-8137.1997.00780.x PubMed DOI
Chen M., Arato M., Borghi L., Nouri E., Reinhardt D. (2018). Beneficial services of arbuscular mycorrhizal fungi – from ecology to application. Front. Plant Sci. 9:1270. 10.3389/fpls.2018.01270 PubMed DOI PMC
Cheng H. Q., Ding Y. E., Shu B., Zou Y. N., Wu Q. S., Kuča K. (2020). Plant aquaporin responses to mycorrhizal symbiosis under abiotic stress. Int. J. Agric. Biol. 23 786–794. 10.17957/IJAB/15.1353 PubMed DOI
Cheng H. Q., Zou Y. N., Wu Q. S., Kuèa K. (2021). Arbuscular mycorrhizal fungi alleviate drought stress in trifoliate orange by regulating H+-ATPase activity and gene expression. Front. Plant Sci. 12:659694. 10.3389/fpls.2021.659694 PubMed DOI PMC
Cheng X. F., Wu H. H., Zou Y. N., Wu Q. S., Kuča K. (2021). Mycorrhizal response strategies of trifoliate orange under well-watered, salt stress, and waterlogging stress by regulating leaf aquaporin expression. Plant Physiol. Biochem. 162 27–35. 10.1016/j.plaphy.2021.02.026 PubMed DOI
Chi G. G., Srivastava A. K., Wu Q. S. (2018). Exogenous easily extractable glomalin-related soil protein improves drought tolerance of trifoliate orange. Arch. Agron. Soil Sci. 64 1341–1350. 10.1080/03650340.2018.1432854 DOI
Chitarra W., Pagliarani C., Maserti B., Lumini E., Siciliano I., Cascone P., et al. (2016). Insights on the impact of arbuscular mycorrhizal symbiosis on tomato tolerance to water stress. Plant Physiol. 171 1009–1023. 10.1104/pp.16.00307 PubMed DOI PMC
Corradi N., Ruffner B., Croll D., Colard A., Horak A., Sanders I. R. (2009). High-level molecular diversity of copper-zinc superoxide dismutase genes among and within species of arbuscular mycorrhizal fungi. App. Environ. Microbiol. 75 1970–1978. 10.1128/AEM.01974-08 PubMed DOI PMC
Egger K. N., Hibbett D. S. (2004). The evolutionary implications of exploitation in mycorrhizas. Can. J. Bot. 82 1110–1121. 10.1139/b04-056 DOI
Esch H., Hundeshagen B., Schneider-Poetsch H., Bothe H. (1994). Demonstration of abscisic acid in spores and hyphae of the arbuscular-mycorrhizal fungus Glomus and in the N2-fixing cyanobacterium Anabaena variabilis. Plant Sci. 99 9–16. 10.1016/0168-9452(94)90115-5 DOI
Ezawa T., Saito K. (2018). How do arbuscular mycorrhizal fungi handle phosphate? New insight into fine-tuning of phosphate metabolism. New Phytol. 220 1116–1121. 10.1111/nph.15187 PubMed DOI
Farias D. D. H., Pinto M. A. B., Carra B., Schuch M. W., Souza P. V. D. D. (2014). Development of seedlings of blueberry inoculated arbuscular mycorrhizal fungi. Rev. Bras. Frutic. 36 655–663. 10.1590/0100-2945-128/13 DOI
Ferrol N., Barea J. M., Azcón-Aguilar C. (2000). The plasma membrane H+-ATPase gene family in the arbuscular mycorrhizal fungus Glomus mosseae. Curr. Genet. 37 112–118. 10.1007/s002940050017 PubMed DOI
Fester T., Hause G. (2005). Accumulation of reactive oxygen species in arbuscular mycorrhizal roots. Mycorrhiza 15 373–379. 10.1007/s00572-005-0363-4 PubMed DOI
Garg N., Saroy K. (2020). Interactive effects of polyamines and arbuscular mycorrhiza in modulating plant biomass, N2 fixation, ureide, and trehalose metabolism in Cajanus cajan (L.) Millsp. genotypes under nickel stress. Environ. Sci. Pollut. Res. 27 3043–3064. 10.1007/s11356-019-07300-6 PubMed DOI
Gholamhoseini M., Ghalavand A., Dolatabadian A., Jamshidi E., Khodaei-Joghan A. (2013). Effects of arbuscular mycorrhizal inoculation on growth, yield, nutrient uptake and irrigation water productivity of sunflowers grown under drought stress. Agric. Water Manag. 117 106–114. 10.1016/j.agwat.2012.11.007 DOI
Gholinezhad E., Darvishzadeh R. (2021). Influence of arbusular mycorrhizal fungi and drought stress on fatty acids profile of sesame (Sesamum indicum L.). Field Crop. Res. 262:108035. 10.1016/j.fcr.2020.108035 DOI
Giovannetti M., Avio L., Sbrana C. (2010). “Fungal spore germination and pre-symbiotic mycelial growth–physiological and genetic aspects,” in Arbuscular Mycorrhizas: Physiology and Function, eds Koltai H., Kapulnik Y. (Dordrecht: Springer; ), 3–32. 10.1007/978-90-481-9489-6_1 DOI
Goicoechea N., Antolin M. C., Sanchez-Diaz M. (2010). Gas exchange is related to the hormone balance in mycorrhizal or nitrogen-fixing alfalfa subjected to drought. Physiol. Plant. 100 989–997. 10.1111/j.1399-3054.1997.tb00027.x DOI
Gong M., Tang M., Chen H., Zhang Q. M., Feng X. X. (2013). Effects of two Glomus species on the growth and physiological performance of Sophora davidii seedlings under water stress. New For. 44 399–408. 10.1007/s11056-012-9349-1 DOI
Grümberg B. C., Urcelay C., Shroeder M. A., Vargas-Gil S., Luna C. M. (2015). The role of inoculum identity in drought stress mitigation by arbuscular mycorrhizal fungi in soybean. Biol. Fert. Soils 51 1–10. 10.1007/s00374-014-0942-7 DOI
Halder M., Dhar P. P., Mujib A. S. M., Khan M. S., Akhter S. (2015). Effect of arbuscular mycorrhiza fungi inoculation on growth and up take of mineral nutrition in Ipomoea aquatica. Curr. World Environ. 10 67–75. 10.12944/CWE.10.1.08 DOI
Hashem A., Kumar A., Al-Dbass A. M., Alqarawi A. Z., Al-Arjani A. B. F., Singh G., et al. (2019). Arbuscular mycorrhizal fungi and biochar improves drought tolerance in chickpea. Saud. J. Biol. Sci. 26 614–624. 10.1016/j.sjbs.2018.11.005 PubMed DOI PMC
He J. D., Dong T., Wu H. H., Zou Y. N., Wu Q. S., Kuča K. (2019). Mycorrhizas induce diverse responses of root TIP aquaporin gene expression to drought stress in trifoliate orange. Sci. Hortic. 243 64–69. 10.1016/j.scienta.2018.08.010 DOI
He J. D., Zou Y. N., Wu Q. S., Kuča K. (2020). Mycorrhizas enhance drought tolerance of trifoliate orange by enhancing activities and gene expression of antioxidant enzymes. Sci. Hortic. 262:108745. 10.1016/j.scienta.2019.108745 DOI
Herrera-Medina M. J., Steinkellner S., Vierheilig H., Bote J. A. O., Garrido J. M. G. (2007). Abscisic acid determines arbuscule development and functionality in tomato arbuscular mycorrhiza. Proc. Natl. Acad. Sci. U S A. 104 14658–14663. 10.1073/pnas.0703594104 PubMed DOI
Hu Y. B., Chen B. D. (2020). Arbuscular mycorrhiza induced putrescine degradation into γ-aminobutyric acid, malic acid accumulation, and improvement of nitrogen assimilation in roots of water-stressed maize plants. Mycorrhiza 30 329–339. 10.1007/s00572-020-00952-0 PubMed DOI
Hu Y. B., Xie W., Chen B. D. (2020). Arbuscular mycorrhiza improved drought tolerance of maize seedlings by altering photosystem II efficiency and the levels of key metabolites. Chem. Biol. Technol. Agric. 7:20. 10.1186/s40538-020-00186-4 DOI
Huang D., Wang Q., Jing G. Q., Ma M. N., Li C., Ma F. W. (2021a). Overexpression of MdIAA24 improves apple drought resistance by positively regulating strigolactone biosynthesis and mycorrhization. Tree Physiol. 41 134–146. 10.1093/treephys/tpaa109 PubMed DOI
Huang D., Wang Q., Zhang Z. J., Jing G. Q., Ma M. N., Ma F. W., et al. (2021b). Silencing MdGH3-2/12 in apple reduces drought resistance by regulating AM colonization. Hortic. Res. 8:84. 10.1038/s41438-021-00524-z PubMed DOI PMC
Hussain S., Rao M. J., Anjum M. A., Ejaz S., Zakir I., Ali M. A., et al. (2019). “Oxidative stress and antioxidant defense in plants under drought conditions,” in Plant Abiotic Stress Tolerance, eds Hasanuzzaman M., Hakeem K., Nahar K., Alharby H. (Cham: Springer; ), 207–219. 10.1007/978-3-030-06118-0_9 DOI
Igiehon N. O., Babalola O. O., Cheseto X., Torto B. (2021). Effects of rhizobia and arbuscular mycorrhizal fungi on yield, size distribution and fatty acid of soybean seeds grown under drought stress. Microbiol. Res. 242:126640. 10.1016/j.micres.2020.126640 PubMed DOI
Ji L. L., Tan W. F., Chen X. H. (2019). Arbuscular mycorrhizal mycelial networks and glomalin-related soil protein increase soil aggregation in Calcaric Regosol under well-watered and drought stress conditions. Soil Till. Res. 185 1–8. 10.1016/j.still.2018.08.010 DOI
Jiang Y. N., Wang W. X., Xie Q. J., Liu N., Liu L. X., Wang D. P., et al. (2017). Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science 356 1172–1175. 10.1126/science.aam9970 PubMed DOI
Kandowangko N. Y., Suryatmana G., Nurlaeny N., Simanungkalit R. D. M. (2009). Proline and abscisic acid content in droughted corn plant inoculated with Azospirillum sp. and arbuscular mycorrhizae fungi. Hayati J. Biosci. 16 1–42. 10.4308/hjb.16.1.15 PubMed DOI
Kateřina P., Ugena L., Lukáš S., Karel D., Diego N. D. (2019). Phytohormones and polyamines regulate plant stress responses by altering GABA pathway. New Biotechnol. 48 53–65. 10.1016/j.nbt.2018.07.003 PubMed DOI
Kikuchi Y., Hijikata N., Ohtomo R., Handa Y., Kawaguchi M., Saito K., et al. (2016). Aquaporin-mediated long-distance polyphosphate translocation directed towards the host in arbuscular mycorrhizal symbiosis: application of virus-induced gene silencing. New Phytol. 211 1202–1208. 10.1111/nph.14016 PubMed DOI
Kilpelainen J., Aphalo P. J., Lehto T. (2020b). Temperature affected the formation of arbuscular mycorrhizas and ectomycorrhizas in Populus angustifolia seedlings more than a mild drought. Soil Biol. Biochem. 146:107798. 10.1016/j.soilbio.2020.107798 DOI
Kilpelainen J., Aphalo P. J., Barbero-Lopez A., Adamczyk B., Nipu S. A., Lehto T. (2020a). Are arbuscular-mycorrhizal Alnus incana seedlings more resistance to drought than ectomycorrhizal and nonmycorrhizal ones? Tree Physiol. 40 782–795. 10.1093/treephys/tpaa035 PubMed DOI
Latef A. A. H. A., Hashem A., Rasool S., Abd-Allah E. F., Alqarawi A. A., Egamberdieva D., et al. (2016). Arbuscular mycorrhizal symbiosis and abiotic stress in plants: a review. J. Plant Biol. 59 407–426. 10.1007/s12374-016-0237-7 DOI
Lenoir I., Fontaine J., Lounès-Hadj S. A. (2016). Arbuscular mycorrhizal fungal responses to abiotic stresses: A review. Phytochem 123 4–15. 10.1016/j.phytochem.2016.01.002 PubMed DOI
Li T., Chen B. D. (2012). Arbuscular mycorrhizal fungi improving drought tolerance of maize plants by up-regulating of aquaporin gene expressions in roots and the fungi themselves. Chin. J. Plant Ecol. 36, 973–981. 10.3724/SP.J.1258.2012.00973 DOI
Li F., Gao F., Duan T. Y. (2016). Response and mechanism of arbuscular mycorrhizal fungi to abiotic stress. Acta Agrestia Sin. 24 491–500. 10.11733/j.issn.1007-0435.2016.03.003 DOI
Li J. Q., Meng B., Chai H., Yang X. C., Song W. Z., Li S. X., et al. (2019). Arbuscular mycorrhizal fungi alleviate drought stress in C3 (Leymus chinensis) and C4 (Hemarthria altissima) grasses via altering antioxidant enzyme activities and photosynthesis. Front. Plant Sci. 10:499. 10.3389/fpls.2019.00499 PubMed DOI PMC
Li T., Hu Y. J., Hao Z. P., Li H., Wang Y. S., Chen B. D. (2013). First cloning and characterization of two functional aquaporin genes from an arbuscular mycorrhizal fungus Glomus intraradices. New Phytol. 197 617–630. 10.1111/nph.12011 PubMed DOI
Liang G. T., Bu J. W., Zhang S. Y., Jing G., Zhang G. G., Liu X. B. (2019). Effects of drought stress on the photosynthetic physiological parameters of Populus×euramericana “Neva”. J. For. Res. 30 409–416. 10.1007/s11676-018-0667-9 DOI
Lin J., Wang Y., Sun S., Mu C., Yan X. (2017). Effects of arbuscular mycorrhizal fungi on the growth, photosynthesis and photosynthetic pigments of Leymus chinensis seedlings under salt-alkali stress and nitrogen deposition. Sci. Total Environ. 576 234–241. 10.1016/j.scitotenv.2016.10.091 PubMed DOI
Liu C. Y., Zhang F., Zhang D. J., Srivastava A. K., Wu Q. S., Zou Y. N. (2018). Mycorrhiza stimulates root-hair growth and IAA synthesis and transport in trifoliate orange under drought stress. Sci. Rep. 8:1978. 10.1038/s41598-018-20456-4 PubMed DOI PMC
Liu F., Xu Y., Han G., Wang W., Li X., Cheng B. (2018). Identification and functional characterization of a maize phosphate transporter induced by mycorrhiza formation. Plant Cell Physiol. 59 1683–1694. 10.1093/pcp/pcy094 PubMed DOI
Liu J., Guo C., Chen Z. L., He J. D., Zou Y. N. (2016). Mycorrhizal inoculation modulates root morphology and root phytohormone responses in trifoliate orange under drought stress. Emir. J. Food Agric. 28 251–256. 10.9755/ejfa.2015-11-1044 DOI
Liu T., Li Z., Hui C., Tang M., Zhang H. (2016). Effect of Rhizophagus irregularis on osmotic adjustment, antioxidation and aquaporin pip genes expression of Populus × canadensis ‘neva’ under drought stress. Acta Physiol. Plant. 38:191. 10.1007/s11738-016-2207-6 DOI
Luo C., Sun Q. F., Zhang F., Zhang D. J., Liu C. Y., Wu Q. S., et al. (2020). Genome-wide identification and expression analysis of the Citrus malectin domain-containing receptor-like kinases in response to arbuscular mycorrhizal fungi colonization and drought. Hortic. Environ. Biotechnol. 61 891–901. 10.1007/s13580-020-00273-3 DOI
Luo Y. (2009). The effects of AMF on cell membrane, endogenous polyamines, and salicylic acid in citrus under drought stress. Ph. D. thesis. Wuhan: Huazhong Agriculture University.
Mahnaz Z., Ali E., Mohammad S., Sodabe J. (2020). Alleviating effect of 24-epibrassinolide on seed oil content and fatty acid composition under drought stress in safflower sciencedirect. J. Food Compos. Analy. 92:103544. 10.1016/j.jfca.2020.103544 DOI
Manoharan P. T., Shanmugaiah V., Balasubramanian N., Gomathinayagam S., Sharma M. P., Muthuchelian K. (2010). Influence of am fungi on the growth and physiological status of Erythrina variegata linn. grown under different water stress conditions. Eur. J. Soil Biol. 46 151–156. 10.1016/j.ejsobi.2010.01.001 DOI
Marulanda A., Porcel R., Barea J. M., Azcón R. (2007). Drought tolerance and antioxidant activities in lavender plants colonized by native drought-tolerant or drought-sensitive Glomus species. Microb. Ecol. 54 543–552. 10.1007/s00248-007-9237-y PubMed DOI
Mathur S., Tomar R. S., Jajoo A. (2019). Arbuscular mycorrhizal fungi (AMF) protects photosynthetic apparatus of wheat under drought stress. Photosyn. Res. 139 227–238. 10.1007/s11120-018-0538-4 PubMed DOI
Meddich A., Jaiti F., Bourzik W., Asli A. E., Hafidi M. (2015). Use of mycorrhizal fungi as a strategy for improving the drought tolerance in date palm (Phoenix dactylifera). Sci. Hortic. 192 468–474. 10.1016/j.scienta.2015.06.024 DOI
Meng L.-L., Liu R.-C., Yang L., Zou Y.-N., Srivastava A. K., Kuča K., et al. (2021). The change in fatty acids and sugars reveals the association between trifoliate orange and endophytic fungi. J. Fungi 7:716. 10.3390/jof7090716 PubMed DOI PMC
Mickan B. S., Hart M., Solaiman Z. M., Renton M., Siddique K. H. M., Jenkins S. N., et al. (2021). Arbuscular mycorrhizal fungus-mediated interspecific nutritional competition of a pasture legume and grass under drought-stress. Rhizosphere 18:100349. 10.1016/j.rhisph.2021.100349 DOI
Navarro-Ródenas A., Bárzana G., Nicolás E., Carra A., Schubert A., Morte A. (2013). Expression analysis of aquaporins from desert truffle mycorrhizal symbiosis reveals a fine-tuned regulation under drought. Mol. Plant-Microbe Interact. 26 1068–1078. 10.1094/MPMI-07-12-0178-R PubMed DOI
Navarro-Ródenas A., Ruiz-Lozano J. M., Kaldenhoff R., Morte A. (2012). The aquaporin TcAQP1 of the desert truffle Terfezia claveryi is a membrane pore water and CO2 transport. Mol. Plant-Microbe Interact. 25 259–266. 10.1094/MPMI-07-11-0190 PubMed DOI
Navarro-Ródenas A., Xu H., Kemppainen M., Pardo A. G., Zwiazek J. J. (2015). Laccaria bicolor aquaporin LbAQP1 is required for Harting net development in trembling aspen (Populus tremuloides). Plant Cell Environ. 38 2475–2486. 10.1111/pce.12552 PubMed DOI
Nouri E., Matinizadeh M., Moshki A., Zolfaghari A., Rajaei S., Janouskova M. (2020). Arbuscular mycorrhizal fungi benefit drought-stressed Salsola laricina. Plant Ecol. 221 683–694. 10.1007/s11258-020-01042-z DOI
Oldroyd G. E. (2013). Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat. Rev. Microbiol. 11 252–263. 10.1038/nrmicro2990 PubMed DOI
Omirou M., Ioannides I. M., Ehaliotis C. (2013). Mycorrhizal inoculation affects arbuscular mycorrhizal diversity in watermelon roots, but leads to improvd colonization and plant response under water stress only. Appl. Soil Ecol. 63 112–119. 10.1016/j.apsoil.2012.09.013 DOI
Ozturk M., Unal B. T., Garcia-Caparros P., Khursheed A., Gul A., Hasanuzzaman M. (2021). Osmoregulation and its actions during the drought stress in plants. Physiol. Plant. 172 1321–1335. 10.1111/ppl.13297 PubMed DOI
Pavithra D., Yapa N. (2018). Arbuscular mycorrhizal fungi inoculation enhances drought stress tolerance of plants. Groundwater Sust. Dev. 7 490–494. 10.1016/j.gsd.2018.03.005 DOI
Pavla D., Eva V., Radka S. (2013). Arbuscular mycorrhizal symbiosis alleviates drought stress imposed on knautia arvensis plants in serpentine soil. Plant Soil 370 149–161. 10.1007/s11104-013-1610-7 DOI
Polcyn W., Paluch-Lubawa E., Lehmann T., Mikula R. (2019). Arbuscular mycorrhiza in highly fertilized maize cultures alleviates short-term drougth effects but does not improve fodder yield and quality. Front. Plant Sci. 10:496. 10.3389/fpls.2019.00496 PubMed DOI PMC
Pons C., Voβ A. C., Schweiger R., Mulle C. (2020). Effects of drought and mycorrhiza on wheat and aphid infestation. Ecol. Evol. 10 10481–10491. 10.1002/ece3.6703 PubMed DOI PMC
Poór P., Czékus Z., Ördög A. (2019). “Role and regulation of glucose as a signal molecule to salt stress,” in Plant Signaling Molecule: Role and Regulation under Stressful Environments, eds Iqbal M., Khan R., Reddy P. S., Ferrante A., Khan N. A. (Cambridge: Woodhead Publishing; ), 193–205. 10.1016/B978-0-12-816451-8.00012-5 DOI
Porcel R., Aroca R., Azcón R., Ruiz-Lozano J. M. (2006). PIP aquaporin gene expression in arbuscular mycorrhizal Glycine max and Lactuca sativa plants in relation to drought stress tolerance. Plant Mol. Biol. 60 389–404. 10.1007/s11103-005-4210-y PubMed DOI
Pozo M. J., Lopez-Raez J. A., Azcon-Aguilar C., Garcia-Garrido J. M. (2015). Phytohormones as integrators of environmental signals in the regulation of mycorrhizal symbioses. New Phytol. 205 1431–1436. 10.1111/nph.13252 PubMed DOI
Püschel D., Bitterlich M., Rydlová J., Jansa J. (2020). Facilitation of plant water uptake by an arbuscular mycorrhizal fungus: a Gordian knot of roots and hyphae. Mycorrhiza 30 299–313. 10.1007/s00572-020-00949-9 PubMed DOI
Püschel D., Bitterlich M., Rydlová J., Jansa J. (2021). Drought accentuates the role of mycorrhiza in phosphorus uptake. Soil Biol. Biochem. 157:108243. 10.1016/j.soilbio.2021.108243 DOI
Querejeta J., Egerton-Warburton L. M., Allen M. F. (2003). Direct nocturnal water transfer from oaks to their mycorrhizal symbionts during severe soil drying. Oecologia 134 55–65. 10.1007/s00442-002-1078-2 PubMed DOI
Quiroga G., Erice G., Aroca R., Chaumont F., Ruiz-Lozano J. M. (2017). Enhanced drought stress tolerance by the arbuscular mycorrhizal symbiosis in a drought-sensitive maize cultivar is related to a broader and differential regulation of host plant aquaporins than in a drought-tolerant cultivar. Front. Plant Sci. 8:1056. 10.3389/fpls.2017.01056 PubMed DOI PMC
Quiroga G., Erice G., Aroca R., Delgado-Huertas A., Ruiz-Lozano J. M. (2020a). Elucidating the possible involvement of maize aquaporins and arbuscular mycorrhizal symbiosis in the plant ammonium and urea transport under drought stress conditions. Plants 9:148. 10.3390/plants9020148 PubMed DOI PMC
Quiroga G., Erice G., Aroca R., Zamarreño A. M., García-Mina J. M., Ruiz-Lozano J. M. (2018). Arbuscular mycorrhizal symbiosis and salicylic acid regulate aquaporins and root hydraulic properties in maize plants subjected to drought. Agric. Water Manage. 202 271–284. 10.1016/j.agwat.2017.12.012 DOI
Quiroga G., Erice G., Aroca R., Zamarreño A. M., García-Mina J. M., Ruiz-Lozano J. M. (2020b). Radial water transport in arbuscular mycorrhizal maize plants under drought stress conditions is affeced by indole-acetic acid (IAA) application. J. Plant Physiol. 246-247:153115. 10.1016/j.jplph.2020.153115 PubMed DOI
Quiroga G., Erice G., Ding L., Chaumont F., Aroca R., Ruiz-Lozano J. M. (2019). The arbuscular mycorrhizal symbiosis regulates aquaporins activity and improves root cell water permeability in maize plants subjected to water stress. Plant Cell Environ. 42 2274–2290. 10.1111/pce.13551 PubMed DOI
Rani B., Madan S., Sharma K. D., Pooja, Kumar A. (2018). Influence of arbuscular mycorrhiza on antioxidative system of wheat (Triticum aestivum) under drought stress. Ind. J. Agric. Sci. 88 289–295.
Rapparini F., Peñuelas J. (2014). “Mycorrhizal fungi to alleviate drought stress on plant growth,” in Use of Microbes for the Alleviation of Soil Stresses, ed. Miransari M. (New York, NY: Springer; ), 165–174. 10.1007/978-1-4614-9466-9_2 DOI
Remke M. J., Johnson N. C., Wright J., Williamson M., Bowker M. A. (2021). Sympatric pairings of dryland grass populations, mycorrhizal fungi and associated soil biota enhance mutualism and ameliorate drought stress. J. Ecol. 109 1210–1223. 10.1111/1365-2745.13546 DOI
Rivero J., Alvarez D., Flors V., Azcon-Aguilar C., Pozo M. J. (2018). Root metabolic plasticity underlies functional diversity in mycorrhiza-enhanced stress tolerance in tomato. New Phytol. 220 1322–1336. 10.1111/nph.15295 PubMed DOI
Ruiz-Lozano J. M., Aroca R. (2010a). “Host response to osmotic stresses: stomatal behaviour and water use efficiency of arbuscular mycorrhizal plants,” in Arbuscular Mycorrhizas: Physiology and Function, eds Koltai H., Kapulnik Y. (Dordrecht: Springer; ), 239–256. 10.1007/978-90-481-9489-6_11 DOI
Ruiz-Lozano J. M., Aroca R. (2010b). “Modulation of aquaporin genes by the arbuscular mycorrhizal symbiosis in relation to osmotic stress tolerance,” in Symbioses and Stress. Cellular Origin, Life in Extreme Habitats and Astrobiology, eds Seckbach J., Grube M. (Dordrecht: Springer; ), 357–374.
Ruiz-Lozano J. M., Porcel R., Aroca R. (2008). “Evaluation of the possible participation of drought-induced genes in the enhanced tolerance of arbuscular mycorrhizal plants to water deficit,” in Mycorrhiza: State of the Art, Genetics and Molecular Biology, Eco-Function, Biotechnology, Eco-Physiology, Structure and Systematics, ed. Varma A. (Berlin: Springer; ), 185–205. 10.1007/978-3-540-78826-3_10 DOI
Salloum M. S., Menduni M. F., Benavides M. P., Larrauri M., Luna C. M., Silvente S. (2018). Polyamines and flavonoids: key compounds in mycorrhizal colonization of improved and unimproved soybean genotypes. Symbiosis 76 265–275. 10.1007/s13199-018-0558-z DOI
Sanchez-Romera B., Calvo-Polanco M., Ruiz-Lozano J. M., Zamarreno A. M., Arbona V., Garcia-Mina J. M., et al. (2018). Involvement of the def-1 mutation in the response to tomato plants to arbuscular mycorrhizal symbiosis under well-watered and drought conditions. Plant Cell Physiol. 59 248–261. 10.1093/pcp/pcx178 PubMed DOI
Sannazzaro A., Echeverria M., Olberto E. O., Ruiz O. A., Menendez A. B. (2007). Modulation of polyamine balance in Lotus glaber by salinity and arbuscular mycorrhiza. Plant Physiol. Biochem. 45 39–46. 10.1016/j.plaphy.2006.12.008 PubMed DOI
Schüβler A., Schwarzott D., Walker C. (2001). A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol. Res. 105 1413–1421. 10.1017/S0953756201005196 DOI
Sendek A., Karakoc C., Wagg C., Dominguez-Begines J., do Couto G. M., van der Heijden M. G. A., et al. (2019). Drought modulates interactions between arbuscular mycorrhizal fungal diversity and barley genotype diversity. Sci. Rep. 9:9650. 10.1038/s41598-019-45702-1 PubMed DOI PMC
Sepahvand T., Etemad V., Matinizade M., Shirvany A. (2021). Symbiosis of AMF with growth modulation and antioxidant capacity of Caucasian Hackberry (Celtis Caucasica L.) seedlings under drought stress. Cent. Asian J. Environ. Sci. Technol. Innov. 2 20–35. 10.22034/CAJESTI.2021.01.03 DOI
Shinozaki K., Yamaguchi-Shinozaki K. (2007). Gene networks involved in drought stress response and tolerance. J. Exp. Bot. 58, 221–227. 10.1093/jxb/erl164 PubMed DOI
Shu B., Cai D., Zhang F., Zhang D. J., Liu C. Y., Wu Q. S., et al. (2020a). Identifying citrus CBL and CIPK gene families and their expressions in response to drought and arbuscular mycorrhizal fungi colonization. Biol. Plant. 64 773–783. 10.32615/bp.2020.123 DOI
Shu B., Jue D. W., Zhang F., Zhang D. J., Liu C. Y., Wu Q. S., et al. (2020b). Genome-wide identification and expression analysis of the citrus calcium-dependent protein kinase (CDPK) genes in response to arbuscular mycorrhizal fungi colonization and drought. Biotechnol. Biotechnol. Equip. 34 1304–1314. 10.1080/13102818.2020.1837011 DOI
Song H. X. (2005). Effects of vam on host plant in the condition of drought stress andits mechanisms. Genomics 5 91–99. 10.1016/0888-7543(89)90091-8 DOI
Sugiura Y., Tanaka S., Yano K., Kameoka H., Marui S., et al. (2020). Myristate can be used as a carbon and energy source for the asymbiotic growth of arbuscular mycorrhizal fungi. Proc. Natl. Acad. Sci. U S A. 117 25779–25788. 10.1073/pnas.2006948117 PubMed DOI PMC
Sylvia D. M., Williams S. E. (1992). “Vesicular-arbuscular mycorrhizae and environmental stress,” in Mycorrhizae in Sustainable Agriculture, eds Bethlenfalvay G. T., Linderman R. D. (Madison, WI: ASA Special Publication; ), 101–124. 10.2134/asaspecpub54.c5 DOI
Symanczik S., Lehmann M. F., Wiemken A., Boller T., Courty P. E. (2018). Effects of two contrasted arbuscular mycorrhizal fungal isolates on nutrient uptake by Sorghum bicolor under drought. Mycorrhiza 28 779–785. 10.1007/s00572-018-0853-9 PubMed DOI
Tisserant E., Malbreil M., Kuo A., Kohler A., Symeonidi A., Balestrini R., et al. (2013). Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proc. Natl. Acad. Sci. U S A. 110 20117–20122. 10.1073/pnas.1313452110 PubMed DOI PMC
Valentine A. J., Mortimer P. E., Lintnaar M., Borgo R. (2006). Drought responses of arbusuclar mycorrhizal grapevines. Symbiosis 41 127–133. 10.3390/jof7090686 PubMed DOI PMC
van der Heijden M. G. A., Martin F. M., Selosse M. A., Sanders I. R. (2015). Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol. 205 1406–1423. 10.1111/nph.13288 PubMed DOI
Vasar M., Davison J., Sepp S. K., Opik M., Moora M., Koorem K., et al. (2021). Arbuscular mycorrhizal fungal communities in the soils of desert habitats. Microorganims 9:229. 10.3390/microorganisms9020229 PubMed DOI PMC
Vergani C., Graf F. (2016). Soil permeability, aggregate stability and root growth: a pot experiment from a soil bioengineering perspective. Ecohydrology 9 830–842. 10.1002/eco.1686 DOI
Volpe V., Chitarra W., Cascone P., Volpe M. G., Bartolini P., Moneti G., et al. (2018). The association with two different arbuscular mycorrhizal fungi differently affects water stress tolerance in tomato. Front. Plant Sci. 9:1840. 10.3389/fpls.2018.01480 PubMed DOI PMC
Wu H. H., Zou Y. N., Rahman M. M., Ni Q. D., Wu Q. S. (2017). Mycorrhizas alter sucrose and proline metabolism in trifoliate orange exposed to drought stress. Sci. Rep. 7:42389. 10.1038/srep42389 PubMed DOI PMC
Wu Q. S., Xia R. (2006b). Effects of arbuscular mycorrhizal fungi on leaf solutes and root absorption areas of trifoliate orange seedlings under water stress conditions. Front. For. Chin. 1:312–317. 10.1007/s11461-006-0035-3 DOI
Wu Q. S., Xia R. X. (2006a). Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. J. Plant Physiol. 163 417–425. 10.1016/j.jplph.2005.04.024 PubMed DOI
Wu Q. S., Zou Y. N. (2009). Mycorrhizal influence on nutrient uptake of citrus exposed to drought stress. Philipp. Agric. 92 33–38. 10.1002/jsfa.3501 DOI
Wu Q. S., Zou Y. N. (2017). “Arbuscular mycorrhizal fungi and tolerance of drought stress in plants,” in Arbuscular Mycorrhizas and Stress Tolerance of Plants, ed. Wu Q. S. (Singapore: Springer; ), 25–41. 10.1007/978-981-10-4115-0_8 DOI
Wu Q. S., He J. D., Srivastava A. K., Zou Y. N., Kuča K. (2019). Mycorrhizas enhance drought tolerance of citrus by altering root fatty acid compositions and their saturation levels. Tree Physiol. 39 1149–1158. 10.1093/treephys/tpz039 PubMed DOI
Wu Q. S., Srivastava A. K., Zou Y. N. (2013). AMF-induced tolerance to drought stress in citrus: a review. Sci. Hortic. 164 77–87. 10.1016/j.scienta.2013.09.010 DOI
Wu Q. S., Zou Y. N., He X. H. (2010a). Exogenous putrescine, not spermine or spermidine, enhances root mycorrhizal development and plant growth of trifoliate orange (Poncirus trifoliata) seedlings. Int. J. Agric. Biol. 12 576–580. 10.1016/j.compag.2010.03.005 DOI
Wu Q. S., Zou Y. N., Zhan T. T., Liu C. Y. (2010b). Polyamines participate in mycorrhizal and root development of citrus (Citrus tangerine) seedlings. Not. Bot. Horti Agrobot. 38 25–31. 10.1111/J.1364-3703.2010.00617.X PubMed DOI PMC
Xie W., Hao Z. P., Zhou X. F., Jiang X. L., Xu L. J., Wu S. L., et al. (2018). Arbuscular mycorrhiza facilitates the accumulation of glycyrrhizin and liquiritin in Glycyrrhiza uralensis under drought stress. Mycorrhiza 28 285–300. 10.1007/s00572-018-0827-y PubMed DOI
Xu L. J., Hao Z. P., Xie W., Li F., Chen B. D. (2018a). Transmembrane H+ and Ca2+ fluxes through extraradical hyphae of arbuscular mycorrhizal fungi in response to drought stress. Chin. J. Plant Ecol. 42 764–773. 10.17521/cjpe.2018.0089 DOI
Xu L. J., Li T., Wu Z. X., Feng H. Y., Yu M., Zhang X., et al. (2018b). Arbuscular mycorrhiza enhances drought tolerance of tomato plants by regulating the 14-3-3 genes in the ABA signaling pathway. Appl. Soil Ecol. 125 213–221. 10.1016/j.apsoil.2018.01.012 DOI
Yao Q., Wang L. R., Xing Q. X., Chen J. Z., Zhu H. H. (2010). Exogenous polyamines influence root morphogenesis and arbuscular mycorrhizal development of Citrus limonia seedlings. Plant Growth Regul. 60 27–33. 10.1007/s10725-009-9415-7 DOI
Ye J. S., Li T., Hu Y. J., Hao Z. P., Gao Y. Z., Wang Y. S., et al. (2013). Influences of AM fungi on plant growth and water-stable soil aggregates under drought stresses. Acta Ecol. Sin. 33 1080–1090. 10.5846/stxb201205140707 DOI
Yooyongwech S., Phaukinsang N., Cha-Um S., Supaibulwatana K. (2013). Arbuscular mycorrhiza improved growth performance in Macadamia tetraphylla L. grown under water deficit stress involves soluble sugar and proline accumulation. Plant Growth Regul. 69 285–293. 10.1007/s10725-012-9771-6 DOI
Yooyongwech S., Samphumphuang T., Tisarum R., Theerawitaya C., Cha-Um S. (2016). Arbuscular mycorrhizal fungi (AMF) improved water deficit tolerance in two different sweet potato genotypes involves osmotic adjustments via soluble sugar and free proline. Sci. Hortic. 198 107–117. 10.1016/j.scienta.2015.11.002 DOI
Zézél A., Brou Y. C., Meddich A., Marty F. (2008). Molecular identification of MIP genes expressed in the roots of an arbuscular mycorrhizal Trifolium alexandrium L. under water stress. Afr. J. Agric. Res. 3 78–83. 10.1021/jf072612 PubMed DOI
Zhang C. X., Meng S., Li M. J., Zhao Z. (2016). Genomic identification and expression analysis of the phosphate transporter gene family in poplar. Front. Plant Sci. 7:1398. 10.3389/fpls.2016.01398 PubMed DOI PMC
Zhang F., Ni Q. D., Zou Y. N., Wu Q. S., Huang Y. M. (2017). Preliminary study on the mechanism of AMF in enhancing the drought tolerance of plants. J. Fungal Res. 15 8–13. 10.13341/j.jfr.2014.1702 DOI
Zhang F., Zou Y. N., Wu Q. S. (2018). Quantitative estimation of water uptake by mycorrhizal extraradical hyphae in citrus under drought stress. Sci. Hortic. 229 132–136. 10.1016/j.scienta.2017.10.038 DOI
Zhang F., Zou Y. N., Wu Q. S., Kuča K. (2020). Arbuscular mycorrhizas modulate root polyamine metabolism to enhance drought tolerance of trifoliate orange. Environ. Exp. Bot. 171 103926. 10.1016/j.envexpbot.2019.103926 DOI
Zhang H. Y., Duan W. X., Xie B. T., Dong S. X., Wang B. Q., Shi C. Y., et al. (2018). Effects of drought stress at different growth stages on endogenous hormones and its relationship with storage root yield in sweet potato. Acta Agron. Sin. 44 126–136. 10.3724/SP.J.1006.2018.00126 DOI
Zhang T., Hu Y. J., Zhang K., Tian C. Y., Guo J. X. (2018). Arbuscular mycorrhizal fungi improve plant growth of Ricinus communis by altering photosynthetic properties and increasing pigments under drought and salt stress. Indust. Crop. Prod. 117 13–19. 10.1016/j.indcrop.2018.02.087 DOI
Zhang Y. M., Ma K. M., Li F. L., Qu L. Y. (2016). Arbuscular mycorrhizal fungi (AMF) promotes Bauhinia faberi var. microphylla seedling growth under drought stress conditions. Acta Ecol. Sin. 36 3329–3337. 10.5846/stxb201506291320 DOI
Zhang Z., Zhang J., Xu G., Zhou L., Li Y. (2018). Arbuscular mycorrhizal fungi improve the growth and drought tolerance of Zenia insignis seedlings under drought stress. New For. 50 593–604. 10.1007/s11056-018-9681-1 DOI
Zhao R., Guo W., Bi N., Guo J., Zhang J. (2015). Arbuscular mycorrhizal fungi affect the growth, nutrient uptake and water status of maize (Zea mays L.) grown in two types of coal mine spoils under drought stress. Appl. Soil Ecol. 88 41–49. 10.1016/j.apsoil.2014.11.016 DOI
Zheng F. L., Liang S. M., Chu X. N., Yang Y. L., Wu Q. S. (2020). Mycorrhizal fungi enhance flooding tolerance of peach through inducing proline accumulation and improving root architecture. Plant Soil Environ. 66 624–631. 10.17221/520/2020-PSE DOI
Zhu X. Q., Wang C. Y., Chen H., Tang M. (2014). Effects of arbuscular mycorrhizal fungi on photosynthesis, carbon content, and calorific value of black locust seedlings. Photosynthetica 52 247–252. 10.1007/s11099-014-0031-z DOI
Zou Y. N., Srivastava A. K., Wu Q. S., Huang Y. M. (2014). Glomalin-related soil protein and water relations in mycorrhizal citrus (Citrus tangerina) during soil water deficit. Arch. Agron. Soil Sci. 60 1103–1114. 10.1080/03650340.2013.867950 DOI
Zou Y. N., Wang P., Liu C. Y., Ni Q. D., Zhan D. J., Wu Q. S. (2017). Mycorrhizal trifoliate orange has greater root adaptation of morphology and phytohormones in response to drought stress. Sci. Rep. 7:41134. 10.1038/srep41134 PubMed DOI PMC
Zou Y. N., Wu H. H., Giri B., Wu Q. S., Kuča K. (2019). Mycorrhizal symbiosis down-regulates or does not change root aquaporin expression in trifoliate orange under drought stress. Plant Physiol. Biochem. 144 292–299. 10.1016/j.plaphy.2019.10.001 PubMed DOI
Zou Y. N., Wu Q. S., Kuča K. (2021a). Unravelling the role of arbuscular mycorrhizal fungi in mitigating the oxidative burst of plants under drought stress. Plant Biol. 23 50–57. 10.1111/plb.13161 PubMed DOI
Zou Y. N., Wu Q. S., Huang Y. M., Ni Q. D., He X. H. (2013). Mycorrhizal-mediated lower proline accumulation in Poncirus trifoliata under water deficit derives from the integration of inhibition of proline synthesis with increase of proline degradation. PLoS One 8:e80568. 10.1371/journal.pone.0080568 PubMed DOI PMC
Zou Y. N., Zhang F., Srivastava A. K., Wu Q. S., Kuèa K. (2021b). Arbuscular mycorrhizal fungi regulate polyamine homeostasis in roots of trifoliate orange for improved adaptation to soil moisture deficit stress. Front. Plant Sci. 11:600792. 10.3389/fpls.2020.600792 PubMed DOI PMC
Metabolomics reveals arbuscular mycorrhizal fungi-mediated tolerance of walnut to soil drought