Elucidating the Mechanisms Underlying Enhanced Drought Tolerance in Plants Mediated by Arbuscular Mycorrhizal Fungi
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
35003041
PubMed Central
PMC8733408
DOI
10.3389/fmicb.2021.809473
Knihovny.cz E-zdroje
- Klíčová slova
- drought tolerance, mycorrhizae, plant physiology, symbiosis, water deficit,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Plants are often subjected to various environmental stresses during their life cycle, among which drought stress is perhaps the most significant abiotic stress limiting plant growth and development. Arbuscular mycorrhizal (AM) fungi, a group of beneficial soil fungi, can enhance the adaptability and tolerance of their host plants to drought stress after infecting plant roots and establishing a symbiotic association with their host plant. Therefore, AM fungi represent an eco-friendly strategy in sustainable agricultural systems. There is still a need, however, to better understand the complex mechanisms underlying AM fungi-mediated enhancement of plant drought tolerance to ensure their effective use. AM fungi establish well-developed, extraradical hyphae on root surfaces, and function in water absorption and the uptake and transfer of nutrients into host cells. Thus, they participate in the physiology of host plants through the function of specific genes encoded in their genome. AM fungi also modulate morphological adaptations and various physiological processes in host plants, that help to mitigate drought-induced injury and enhance drought tolerance. Several AM-specific host genes have been identified and reported to be responsible for conferring enhanced drought tolerance. This review provides an overview of the effect of drought stress on the diversity and activity of AM fungi, the symbiotic relationship that exists between AM fungi and host plants under drought stress conditions, elucidates the morphological, physiological, and molecular mechanisms underlying AM fungi-mediated enhanced drought tolerance in plants, and provides an outlook for future research.
College of Horticulture and Gardening Yangtze University Jingzhou China
Department of Botany and Microbiology College of Science King Saud University Riyadh Saudi Arabia
Department of Chemistry Faculty of Science University of Hradec Kralove Hradec Kralove Czechia
Zobrazit více v PubMed
Abd_Allah E. F., Tabassum B., Alqarawi A. A., Alshahrani T. S., Malik J. A., Hashem A. (2019). Physiological markers mitigate drought stress in Panicum turgidum Forssk. By arbuscular mycorrhizal fungi. DOI
Al-Arjani A. B. F., Hashem A., Abd_Allah E. F. (2020). Arbuscular mycorrhizal fungi modulates dynamics tolerance expression to mitigate drought stress in PubMed DOI PMC
Ali M., Gul A., Hasan H., Alipour H., Abbasi A. A., Khan F. Z., et al. (2020a). “LEA proteins and drought stress in wheat,” in DOI
Ali R., Hassan S., Shah D., Sajjad N., Bhat E. A. (2020b). “Role of polyamines in mitigating abiotic stress,” in DOI
AlKahtani M. D. F., Hafez Y. M., Attia K., Rashwan E., Husnain L. A., AlGwaiz H. I. M., et al. (2021). Evaluation of silicon and proline application on the oxidative machinery in drought-stressed sugar beet. PubMed DOI PMC
Allen M. F. (2007). Mycorrhizal fungi: highways for water and nutrients in arid soils. DOI
Amiri R., Nikbakht A., Etemadi N. (2015). Alleviation of drought stress on rose geranium [ DOI
Aroca R., Bago A., Sutka M., Paz J. A., Cano C., Amodeo G., et al. (2009). Expression analysis of the first arbuscular mycorrhizal fungi aquaporin described reveals concerted gene expression between salt-stressed and non-stressed mycelium. PubMed DOI
Aroca R., Porcel R., Ruiz-Lozano J. M. (2007). How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporin in PubMed DOI
Aroca R., Vernieri P., Ruiz-Lozano J. M. (2008). Mycorrhizal and non-mycorrhizal PubMed DOI PMC
Asrar A. A., Abdel-Fattah G. M., Elhindi K. M. (2012). Improving growth, flower yield, and water relations of snapdragon ( DOI
Augé R. M. (2001). Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. DOI
Augé R. M. (2004). Arbuscular mycorrhizae and soilant water relations. DOI
Augé R. M., Stodola A. J. W., Tims J. E., Saxton A. M. (2001). Moisture retention properties of a mycorrhizal soil. DOI
Augé R. M., Sylvia D. M., Park S. J., Buttery B. R., Saxton A. M., Moore J. L., et al. (2004). Partitioning mycorrhizal influence on water relations of DOI
Bahadur A., Batool A., Nasir F., Jiang S. J., Qin M. S., Zhang Q., et al. (2019). Mechanistic insights into arbuscular mycorrhizal fungi-mediated drought stress tolerance in plants. PubMed DOI PMC
Balestrini R., Rosso L. C., Veronico P., Melillo M. T., De Luca F., Fanelli E., et al. (2019). Transcriptomic responses to water deficit and nematode infection in mycorrhizal tomato roots. PubMed DOI PMC
Bárzana G., Carvaja M. (2020). Genetic regulation of water and nutrient transport in water stress tolerance in roots. PubMed DOI
Bárzana G., Aroca R., Bienert P., Chaumont F., Ruiz-Lozano J. M. (2014). New insights into the regulation of aquaporins by the arbuscular mycorrhizal symbiosis in maize plants under drought stress and possible implications for plant performance. PubMed DOI
Begum N., Qin C., Ahanger M. A., Raza S., Khan M. I., Ashraf M., et al. (2019). Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance. PubMed DOI PMC
Bitterlich M., Sandmann M., Graefe J. (2018). Arbuscular mycorrhiza alleviates restrictions to substrate water flow and delays transpiration limitation to stronger drought in tomato. PubMed DOI PMC
Bryla D. R., Duniway J. M. (2010). Growth, phosphorus uptake, and water relations of safflower and wheat infected with an arbuscular mycorrhizal fungus. PubMed DOI
Chen M., Arato M., Borghi L., Nouri E., Reinhardt D. (2018). Beneficial services of arbuscular mycorrhizal fungi – from ecology to application. PubMed DOI PMC
Cheng H. Q., Ding Y. E., Shu B., Zou Y. N., Wu Q. S., Kuča K. (2020). Plant aquaporin responses to mycorrhizal symbiosis under abiotic stress. DOI
Cheng H. Q., Zou Y. N., Wu Q. S., Kuèa K. (2021). Arbuscular mycorrhizal fungi alleviate drought stress in trifoliate orange by regulating H PubMed DOI PMC
Cheng X. F., Wu H. H., Zou Y. N., Wu Q. S., Kuča K. (2021). Mycorrhizal response strategies of trifoliate orange under well-watered, salt stress, and waterlogging stress by regulating leaf aquaporin expression. PubMed DOI
Chi G. G., Srivastava A. K., Wu Q. S. (2018). Exogenous easily extractable glomalin-related soil protein improves drought tolerance of trifoliate orange. DOI
Chitarra W., Pagliarani C., Maserti B., Lumini E., Siciliano I., Cascone P., et al. (2016). Insights on the impact of arbuscular mycorrhizal symbiosis on tomato tolerance to water stress. PubMed DOI PMC
Corradi N., Ruffner B., Croll D., Colard A., Horak A., Sanders I. R. (2009). High-level molecular diversity of copper-zinc superoxide dismutase genes among and within species of arbuscular mycorrhizal fungi. PubMed DOI PMC
Egger K. N., Hibbett D. S. (2004). The evolutionary implications of exploitation in mycorrhizas. DOI
Esch H., Hundeshagen B., Schneider-Poetsch H., Bothe H. (1994). Demonstration of abscisic acid in spores and hyphae of the arbuscular-mycorrhizal fungus DOI
Ezawa T., Saito K. (2018). How do arbuscular mycorrhizal fungi handle phosphate? New insight into fine-tuning of phosphate metabolism. PubMed DOI
Farias D. D. H., Pinto M. A. B., Carra B., Schuch M. W., Souza P. V. D. D. (2014). Development of seedlings of blueberry inoculated arbuscular mycorrhizal fungi. DOI
Ferrol N., Barea J. M., Azcón-Aguilar C. (2000). The plasma membrane H PubMed DOI
Fester T., Hause G. (2005). Accumulation of reactive oxygen species in arbuscular mycorrhizal roots. PubMed DOI
Garg N., Saroy K. (2020). Interactive effects of polyamines and arbuscular mycorrhiza in modulating plant biomass, N PubMed DOI
Gholamhoseini M., Ghalavand A., Dolatabadian A., Jamshidi E., Khodaei-Joghan A. (2013). Effects of arbuscular mycorrhizal inoculation on growth, yield, nutrient uptake and irrigation water productivity of sunflowers grown under drought stress. DOI
Gholinezhad E., Darvishzadeh R. (2021). Influence of arbusular mycorrhizal fungi and drought stress on fatty acids profile of sesame ( DOI
Giovannetti M., Avio L., Sbrana C. (2010). “Fungal spore germination and pre-symbiotic mycelial growth–physiological and genetic aspects,” in DOI
Goicoechea N., Antolin M. C., Sanchez-Diaz M. (2010). Gas exchange is related to the hormone balance in mycorrhizal or nitrogen-fixing alfalfa subjected to drought. DOI
Gong M., Tang M., Chen H., Zhang Q. M., Feng X. X. (2013). Effects of two DOI
Grümberg B. C., Urcelay C., Shroeder M. A., Vargas-Gil S., Luna C. M. (2015). The role of inoculum identity in drought stress mitigation by arbuscular mycorrhizal fungi in soybean. DOI
Halder M., Dhar P. P., Mujib A. S. M., Khan M. S., Akhter S. (2015). Effect of arbuscular mycorrhiza fungi inoculation on growth and up take of mineral nutrition in DOI
Hashem A., Kumar A., Al-Dbass A. M., Alqarawi A. Z., Al-Arjani A. B. F., Singh G., et al. (2019). Arbuscular mycorrhizal fungi and biochar improves drought tolerance in chickpea. PubMed DOI PMC
He J. D., Dong T., Wu H. H., Zou Y. N., Wu Q. S., Kuča K. (2019). Mycorrhizas induce diverse responses of root DOI
He J. D., Zou Y. N., Wu Q. S., Kuča K. (2020). Mycorrhizas enhance drought tolerance of trifoliate orange by enhancing activities and gene expression of antioxidant enzymes. DOI
Herrera-Medina M. J., Steinkellner S., Vierheilig H., Bote J. A. O., Garrido J. M. G. (2007). Abscisic acid determines arbuscule development and functionality in tomato arbuscular mycorrhiza. PubMed DOI
Hu Y. B., Chen B. D. (2020). Arbuscular mycorrhiza induced putrescine degradation into γ-aminobutyric acid, malic acid accumulation, and improvement of nitrogen assimilation in roots of water-stressed maize plants. PubMed DOI
Hu Y. B., Xie W., Chen B. D. (2020). Arbuscular mycorrhiza improved drought tolerance of maize seedlings by altering photosystem II efficiency and the levels of key metabolites. DOI
Huang D., Wang Q., Jing G. Q., Ma M. N., Li C., Ma F. W. (2021a). Overexpression of PubMed DOI
Huang D., Wang Q., Zhang Z. J., Jing G. Q., Ma M. N., Ma F. W., et al. (2021b). Silencing PubMed DOI PMC
Hussain S., Rao M. J., Anjum M. A., Ejaz S., Zakir I., Ali M. A., et al. (2019). “Oxidative stress and antioxidant defense in plants under drought conditions,” in DOI
Igiehon N. O., Babalola O. O., Cheseto X., Torto B. (2021). Effects of rhizobia and arbuscular mycorrhizal fungi on yield, size distribution and fatty acid of soybean seeds grown under drought stress. PubMed DOI
Ji L. L., Tan W. F., Chen X. H. (2019). Arbuscular mycorrhizal mycelial networks and glomalin-related soil protein increase soil aggregation in Calcaric Regosol under well-watered and drought stress conditions. DOI
Jiang Y. N., Wang W. X., Xie Q. J., Liu N., Liu L. X., Wang D. P., et al. (2017). Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. PubMed DOI
Kandowangko N. Y., Suryatmana G., Nurlaeny N., Simanungkalit R. D. M. (2009). Proline and abscisic acid content in droughted corn plant inoculated with DOI
Kateřina P., Ugena L., Lukáš S., Karel D., Diego N. D. (2019). Phytohormones and polyamines regulate plant stress responses by altering GABA pathway. PubMed DOI
Kikuchi Y., Hijikata N., Ohtomo R., Handa Y., Kawaguchi M., Saito K., et al. (2016). Aquaporin-mediated long-distance polyphosphate translocation directed towards the host in arbuscular mycorrhizal symbiosis: application of virus-induced gene silencing. PubMed DOI
Kilpelainen J., Aphalo P. J., Lehto T. (2020b). Temperature affected the formation of arbuscular mycorrhizas and ectomycorrhizas in DOI
Kilpelainen J., Aphalo P. J., Barbero-Lopez A., Adamczyk B., Nipu S. A., Lehto T. (2020a). Are arbuscular-mycorrhizal PubMed DOI
Latef A. A. H. A., Hashem A., Rasool S., Abd-Allah E. F., Alqarawi A. A., Egamberdieva D., et al. (2016). Arbuscular mycorrhizal symbiosis and abiotic stress in plants: a review. DOI
Lenoir I., Fontaine J., Lounès-Hadj S. A. (2016). Arbuscular mycorrhizal fungal responses to abiotic stresses: A review. PubMed DOI
Li T., Chen B. D. (2012). Arbuscular mycorrhizal fungi improving drought tolerance of maize plants by up-regulating of aquaporin gene expressions in roots and the fungi themselves. DOI
Li F., Gao F., Duan T. Y. (2016). Response and mechanism of arbuscular mycorrhizal fungi to abiotic stress. DOI
Li J. Q., Meng B., Chai H., Yang X. C., Song W. Z., Li S. X., et al. (2019). Arbuscular mycorrhizal fungi alleviate drought stress in C3 ( PubMed DOI PMC
Li T., Hu Y. J., Hao Z. P., Li H., Wang Y. S., Chen B. D. (2013). First cloning and characterization of two functional aquaporin genes from an arbuscular mycorrhizal fungus PubMed DOI
Liang G. T., Bu J. W., Zhang S. Y., Jing G., Zhang G. G., Liu X. B. (2019). Effects of drought stress on the photosynthetic physiological parameters of DOI
Lin J., Wang Y., Sun S., Mu C., Yan X. (2017). Effects of arbuscular mycorrhizal fungi on the growth, photosynthesis and photosynthetic pigments of PubMed DOI
Liu C. Y., Zhang F., Zhang D. J., Srivastava A. K., Wu Q. S., Zou Y. N. (2018). Mycorrhiza stimulates root-hair growth and IAA synthesis and transport in trifoliate orange under drought stress. PubMed DOI PMC
Liu F., Xu Y., Han G., Wang W., Li X., Cheng B. (2018). Identification and functional characterization of a maize phosphate transporter induced by mycorrhiza formation. PubMed DOI
Liu J., Guo C., Chen Z. L., He J. D., Zou Y. N. (2016). Mycorrhizal inoculation modulates root morphology and root phytohormone responses in trifoliate orange under drought stress. DOI
Liu T., Li Z., Hui C., Tang M., Zhang H. (2016). Effect of DOI
Luo C., Sun Q. F., Zhang F., Zhang D. J., Liu C. Y., Wu Q. S., et al. (2020). Genome-wide identification and expression analysis of the Citrus malectin domain-containing receptor-like kinases in response to arbuscular mycorrhizal fungi colonization and drought. DOI
Luo Y. (2009).
Mahnaz Z., Ali E., Mohammad S., Sodabe J. (2020). Alleviating effect of 24-epibrassinolide on seed oil content and fatty acid composition under drought stress in safflower sciencedirect. DOI
Manoharan P. T., Shanmugaiah V., Balasubramanian N., Gomathinayagam S., Sharma M. P., Muthuchelian K. (2010). Influence of am fungi on the growth and physiological status of DOI
Marulanda A., Porcel R., Barea J. M., Azcón R. (2007). Drought tolerance and antioxidant activities in lavender plants colonized by native drought-tolerant or drought-sensitive PubMed DOI
Mathur S., Tomar R. S., Jajoo A. (2019). Arbuscular mycorrhizal fungi (AMF) protects photosynthetic apparatus of wheat under drought stress. PubMed DOI
Meddich A., Jaiti F., Bourzik W., Asli A. E., Hafidi M. (2015). Use of mycorrhizal fungi as a strategy for improving the drought tolerance in date palm ( DOI
Meng L.-L., Liu R.-C., Yang L., Zou Y.-N., Srivastava A. K., Kuča K., et al. (2021). The change in fatty acids and sugars reveals the association between trifoliate orange and endophytic fungi. PubMed DOI PMC
Mickan B. S., Hart M., Solaiman Z. M., Renton M., Siddique K. H. M., Jenkins S. N., et al. (2021). Arbuscular mycorrhizal fungus-mediated interspecific nutritional competition of a pasture legume and grass under drought-stress. DOI
Navarro-Ródenas A., Bárzana G., Nicolás E., Carra A., Schubert A., Morte A. (2013). Expression analysis of aquaporins from desert truffle mycorrhizal symbiosis reveals a fine-tuned regulation under drought. PubMed DOI
Navarro-Ródenas A., Ruiz-Lozano J. M., Kaldenhoff R., Morte A. (2012). The aquaporin PubMed DOI
Navarro-Ródenas A., Xu H., Kemppainen M., Pardo A. G., Zwiazek J. J. (2015). PubMed DOI
Nouri E., Matinizadeh M., Moshki A., Zolfaghari A., Rajaei S., Janouskova M. (2020). Arbuscular mycorrhizal fungi benefit drought-stressed DOI
Oldroyd G. E. (2013). Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. PubMed DOI
Omirou M., Ioannides I. M., Ehaliotis C. (2013). Mycorrhizal inoculation affects arbuscular mycorrhizal diversity in watermelon roots, but leads to improvd colonization and plant response under water stress only. DOI
Ozturk M., Unal B. T., Garcia-Caparros P., Khursheed A., Gul A., Hasanuzzaman M. (2021). Osmoregulation and its actions during the drought stress in plants. PubMed DOI
Pavithra D., Yapa N. (2018). Arbuscular mycorrhizal fungi inoculation enhances drought stress tolerance of plants. DOI
Pavla D., Eva V., Radka S. (2013). Arbuscular mycorrhizal symbiosis alleviates drought stress imposed on knautia arvensis plants in serpentine soil. DOI
Polcyn W., Paluch-Lubawa E., Lehmann T., Mikula R. (2019). Arbuscular mycorrhiza in highly fertilized maize cultures alleviates short-term drougth effects but does not improve fodder yield and quality. PubMed DOI PMC
Pons C., Voβ A. C., Schweiger R., Mulle C. (2020). Effects of drought and mycorrhiza on wheat and aphid infestation. PubMed DOI PMC
Poór P., Czékus Z., Ördög A. (2019). “Role and regulation of glucose as a signal molecule to salt stress,” in DOI
Porcel R., Aroca R., Azcón R., Ruiz-Lozano J. M. (2006). PubMed DOI
Pozo M. J., Lopez-Raez J. A., Azcon-Aguilar C., Garcia-Garrido J. M. (2015). Phytohormones as integrators of environmental signals in the regulation of mycorrhizal symbioses. PubMed DOI
Püschel D., Bitterlich M., Rydlová J., Jansa J. (2020). Facilitation of plant water uptake by an arbuscular mycorrhizal fungus: a Gordian knot of roots and hyphae. PubMed DOI
Püschel D., Bitterlich M., Rydlová J., Jansa J. (2021). Drought accentuates the role of mycorrhiza in phosphorus uptake. DOI
Querejeta J., Egerton-Warburton L. M., Allen M. F. (2003). Direct nocturnal water transfer from oaks to their mycorrhizal symbionts during severe soil drying. PubMed DOI
Quiroga G., Erice G., Aroca R., Chaumont F., Ruiz-Lozano J. M. (2017). Enhanced drought stress tolerance by the arbuscular mycorrhizal symbiosis in a drought-sensitive maize cultivar is related to a broader and differential regulation of host plant aquaporins than in a drought-tolerant cultivar. PubMed DOI PMC
Quiroga G., Erice G., Aroca R., Delgado-Huertas A., Ruiz-Lozano J. M. (2020a). Elucidating the possible involvement of maize aquaporins and arbuscular mycorrhizal symbiosis in the plant ammonium and urea transport under drought stress conditions. PubMed DOI PMC
Quiroga G., Erice G., Aroca R., Zamarreño A. M., García-Mina J. M., Ruiz-Lozano J. M. (2018). Arbuscular mycorrhizal symbiosis and salicylic acid regulate aquaporins and root hydraulic properties in maize plants subjected to drought. DOI
Quiroga G., Erice G., Aroca R., Zamarreño A. M., García-Mina J. M., Ruiz-Lozano J. M. (2020b). Radial water transport in arbuscular mycorrhizal maize plants under drought stress conditions is affeced by indole-acetic acid (IAA) application. PubMed DOI
Quiroga G., Erice G., Ding L., Chaumont F., Aroca R., Ruiz-Lozano J. M. (2019). The arbuscular mycorrhizal symbiosis regulates aquaporins activity and improves root cell water permeability in maize plants subjected to water stress. PubMed DOI
Rani B., Madan S., Sharma K. D., Pooja, Kumar A. (2018). Influence of arbuscular mycorrhiza on antioxidative system of wheat (
Rapparini F., Peñuelas J. (2014). “Mycorrhizal fungi to alleviate drought stress on plant growth,” in DOI
Remke M. J., Johnson N. C., Wright J., Williamson M., Bowker M. A. (2021). Sympatric pairings of dryland grass populations, mycorrhizal fungi and associated soil biota enhance mutualism and ameliorate drought stress. DOI
Rivero J., Alvarez D., Flors V., Azcon-Aguilar C., Pozo M. J. (2018). Root metabolic plasticity underlies functional diversity in mycorrhiza-enhanced stress tolerance in tomato. PubMed DOI
Ruiz-Lozano J. M., Aroca R. (2010a). “Host response to osmotic stresses: stomatal behaviour and water use efficiency of arbuscular mycorrhizal plants,” in DOI
Ruiz-Lozano J. M., Aroca R. (2010b). “Modulation of aquaporin genes by the arbuscular mycorrhizal symbiosis in relation to osmotic stress tolerance,” in
Ruiz-Lozano J. M., Porcel R., Aroca R. (2008). “Evaluation of the possible participation of drought-induced genes in the enhanced tolerance of arbuscular mycorrhizal plants to water deficit,” in DOI
Salloum M. S., Menduni M. F., Benavides M. P., Larrauri M., Luna C. M., Silvente S. (2018). Polyamines and flavonoids: key compounds in mycorrhizal colonization of improved and unimproved soybean genotypes. DOI
Sanchez-Romera B., Calvo-Polanco M., Ruiz-Lozano J. M., Zamarreno A. M., Arbona V., Garcia-Mina J. M., et al. (2018). Involvement of the PubMed DOI
Sannazzaro A., Echeverria M., Olberto E. O., Ruiz O. A., Menendez A. B. (2007). Modulation of polyamine balance in Lotus glaber by salinity and arbuscular mycorrhiza. PubMed DOI
Schüβler A., Schwarzott D., Walker C. (2001). A new fungal phylum, the Glomeromycota: phylogeny and evolution. DOI
Sendek A., Karakoc C., Wagg C., Dominguez-Begines J., do Couto G. M., van der Heijden M. G. A., et al. (2019). Drought modulates interactions between arbuscular mycorrhizal fungal diversity and barley genotype diversity. PubMed DOI PMC
Sepahvand T., Etemad V., Matinizade M., Shirvany A. (2021). Symbiosis of AMF with growth modulation and antioxidant capacity of Caucasian Hackberry ( DOI
Shinozaki K., Yamaguchi-Shinozaki K. (2007). Gene networks involved in drought stress response and tolerance. PubMed DOI
Shu B., Cai D., Zhang F., Zhang D. J., Liu C. Y., Wu Q. S., et al. (2020a). Identifying citrus DOI
Shu B., Jue D. W., Zhang F., Zhang D. J., Liu C. Y., Wu Q. S., et al. (2020b). Genome-wide identification and expression analysis of the citrus calcium-dependent protein kinase (CDPK) genes in response to arbuscular mycorrhizal fungi colonization and drought. DOI
Song H. X. (2005). Effects of vam on host plant in the condition of drought stress andits mechanisms. DOI
Sugiura Y., Tanaka S., Yano K., Kameoka H., Marui S., et al. (2020). Myristate can be used as a carbon and energy source for the asymbiotic growth of arbuscular mycorrhizal fungi. PubMed DOI PMC
Sylvia D. M., Williams S. E. (1992). “Vesicular-arbuscular mycorrhizae and environmental stress,” in DOI
Symanczik S., Lehmann M. F., Wiemken A., Boller T., Courty P. E. (2018). Effects of two contrasted arbuscular mycorrhizal fungal isolates on nutrient uptake by PubMed DOI
Tisserant E., Malbreil M., Kuo A., Kohler A., Symeonidi A., Balestrini R., et al. (2013). Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. PubMed DOI PMC
Valentine A. J., Mortimer P. E., Lintnaar M., Borgo R. (2006). Drought responses of arbusuclar mycorrhizal grapevines. PubMed DOI PMC
van der Heijden M. G. A., Martin F. M., Selosse M. A., Sanders I. R. (2015). Mycorrhizal ecology and evolution: the past, the present, and the future. PubMed DOI
Vasar M., Davison J., Sepp S. K., Opik M., Moora M., Koorem K., et al. (2021). Arbuscular mycorrhizal fungal communities in the soils of desert habitats. PubMed DOI PMC
Vergani C., Graf F. (2016). Soil permeability, aggregate stability and root growth: a pot experiment from a soil bioengineering perspective. DOI
Volpe V., Chitarra W., Cascone P., Volpe M. G., Bartolini P., Moneti G., et al. (2018). The association with two different arbuscular mycorrhizal fungi differently affects water stress tolerance in tomato. PubMed DOI PMC
Wu H. H., Zou Y. N., Rahman M. M., Ni Q. D., Wu Q. S. (2017). Mycorrhizas alter sucrose and proline metabolism in trifoliate orange exposed to drought stress. PubMed DOI PMC
Wu Q. S., Xia R. (2006b). Effects of arbuscular mycorrhizal fungi on leaf solutes and root absorption areas of trifoliate orange seedlings under water stress conditions. DOI
Wu Q. S., Xia R. X. (2006a). Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. PubMed DOI
Wu Q. S., Zou Y. N. (2009). Mycorrhizal influence on nutrient uptake of citrus exposed to drought stress. DOI
Wu Q. S., Zou Y. N. (2017). “Arbuscular mycorrhizal fungi and tolerance of drought stress in plants,” in DOI
Wu Q. S., He J. D., Srivastava A. K., Zou Y. N., Kuča K. (2019). Mycorrhizas enhance drought tolerance of citrus by altering root fatty acid compositions and their saturation levels. PubMed DOI
Wu Q. S., Srivastava A. K., Zou Y. N. (2013). AMF-induced tolerance to drought stress in citrus: a review. DOI
Wu Q. S., Zou Y. N., He X. H. (2010a). Exogenous putrescine, not spermine or spermidine, enhances root mycorrhizal development and plant growth of trifoliate orange ( DOI
Wu Q. S., Zou Y. N., Zhan T. T., Liu C. Y. (2010b). Polyamines participate in mycorrhizal and root development of citrus ( PubMed DOI PMC
Xie W., Hao Z. P., Zhou X. F., Jiang X. L., Xu L. J., Wu S. L., et al. (2018). Arbuscular mycorrhiza facilitates the accumulation of glycyrrhizin and liquiritin in PubMed DOI
Xu L. J., Hao Z. P., Xie W., Li F., Chen B. D. (2018a). Transmembrane H DOI
Xu L. J., Li T., Wu Z. X., Feng H. Y., Yu M., Zhang X., et al. (2018b). Arbuscular mycorrhiza enhances drought tolerance of tomato plants by regulating the 14-3-3 genes in the ABA signaling pathway. DOI
Yao Q., Wang L. R., Xing Q. X., Chen J. Z., Zhu H. H. (2010). Exogenous polyamines influence root morphogenesis and arbuscular mycorrhizal development of DOI
Ye J. S., Li T., Hu Y. J., Hao Z. P., Gao Y. Z., Wang Y. S., et al. (2013). Influences of AM fungi on plant growth and water-stable soil aggregates under drought stresses. DOI
Yooyongwech S., Phaukinsang N., Cha-Um S., Supaibulwatana K. (2013). Arbuscular mycorrhiza improved growth performance in DOI
Yooyongwech S., Samphumphuang T., Tisarum R., Theerawitaya C., Cha-Um S. (2016). Arbuscular mycorrhizal fungi (AMF) improved water deficit tolerance in two different sweet potato genotypes involves osmotic adjustments via soluble sugar and free proline. DOI
Zézél A., Brou Y. C., Meddich A., Marty F. (2008). Molecular identification of MIP genes expressed in the roots of an arbuscular mycorrhizal PubMed DOI
Zhang C. X., Meng S., Li M. J., Zhao Z. (2016). Genomic identification and expression analysis of the phosphate transporter gene family in poplar. PubMed DOI PMC
Zhang F., Ni Q. D., Zou Y. N., Wu Q. S., Huang Y. M. (2017). Preliminary study on the mechanism of AMF in enhancing the drought tolerance of plants. DOI
Zhang F., Zou Y. N., Wu Q. S. (2018). Quantitative estimation of water uptake by mycorrhizal extraradical hyphae in citrus under drought stress. DOI
Zhang F., Zou Y. N., Wu Q. S., Kuča K. (2020). Arbuscular mycorrhizas modulate root polyamine metabolism to enhance drought tolerance of trifoliate orange. DOI
Zhang H. Y., Duan W. X., Xie B. T., Dong S. X., Wang B. Q., Shi C. Y., et al. (2018). Effects of drought stress at different growth stages on endogenous hormones and its relationship with storage root yield in sweet potato. DOI
Zhang T., Hu Y. J., Zhang K., Tian C. Y., Guo J. X. (2018). Arbuscular mycorrhizal fungi improve plant growth of DOI
Zhang Y. M., Ma K. M., Li F. L., Qu L. Y. (2016). Arbuscular mycorrhizal fungi (AMF) promotes DOI
Zhang Z., Zhang J., Xu G., Zhou L., Li Y. (2018). Arbuscular mycorrhizal fungi improve the growth and drought tolerance of DOI
Zhao R., Guo W., Bi N., Guo J., Zhang J. (2015). Arbuscular mycorrhizal fungi affect the growth, nutrient uptake and water status of maize ( DOI
Zheng F. L., Liang S. M., Chu X. N., Yang Y. L., Wu Q. S. (2020). Mycorrhizal fungi enhance flooding tolerance of peach through inducing proline accumulation and improving root architecture. DOI
Zhu X. Q., Wang C. Y., Chen H., Tang M. (2014). Effects of arbuscular mycorrhizal fungi on photosynthesis, carbon content, and calorific value of black locust seedlings. DOI
Zou Y. N., Srivastava A. K., Wu Q. S., Huang Y. M. (2014). Glomalin-related soil protein and water relations in mycorrhizal citrus ( DOI
Zou Y. N., Wang P., Liu C. Y., Ni Q. D., Zhan D. J., Wu Q. S. (2017). Mycorrhizal trifoliate orange has greater root adaptation of morphology and phytohormones in response to drought stress. PubMed DOI PMC
Zou Y. N., Wu H. H., Giri B., Wu Q. S., Kuča K. (2019). Mycorrhizal symbiosis down-regulates or does not change root aquaporin expression in trifoliate orange under drought stress. PubMed DOI
Zou Y. N., Wu Q. S., Kuča K. (2021a). Unravelling the role of arbuscular mycorrhizal fungi in mitigating the oxidative burst of plants under drought stress. PubMed DOI
Zou Y. N., Wu Q. S., Huang Y. M., Ni Q. D., He X. H. (2013). Mycorrhizal-mediated lower proline accumulation in PubMed DOI PMC
Zou Y. N., Zhang F., Srivastava A. K., Wu Q. S., Kuèa K. (2021b). Arbuscular mycorrhizal fungi regulate polyamine homeostasis in roots of trifoliate orange for improved adaptation to soil moisture deficit stress. PubMed DOI PMC
Metabolomics reveals arbuscular mycorrhizal fungi-mediated tolerance of walnut to soil drought