Elucidating the Mechanisms Underlying Enhanced Drought Tolerance in Plants Mediated by Arbuscular Mycorrhizal Fungi

. 2021 ; 12 () : 809473. [epub] 20211223

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35003041

Plants are often subjected to various environmental stresses during their life cycle, among which drought stress is perhaps the most significant abiotic stress limiting plant growth and development. Arbuscular mycorrhizal (AM) fungi, a group of beneficial soil fungi, can enhance the adaptability and tolerance of their host plants to drought stress after infecting plant roots and establishing a symbiotic association with their host plant. Therefore, AM fungi represent an eco-friendly strategy in sustainable agricultural systems. There is still a need, however, to better understand the complex mechanisms underlying AM fungi-mediated enhancement of plant drought tolerance to ensure their effective use. AM fungi establish well-developed, extraradical hyphae on root surfaces, and function in water absorption and the uptake and transfer of nutrients into host cells. Thus, they participate in the physiology of host plants through the function of specific genes encoded in their genome. AM fungi also modulate morphological adaptations and various physiological processes in host plants, that help to mitigate drought-induced injury and enhance drought tolerance. Several AM-specific host genes have been identified and reported to be responsible for conferring enhanced drought tolerance. This review provides an overview of the effect of drought stress on the diversity and activity of AM fungi, the symbiotic relationship that exists between AM fungi and host plants under drought stress conditions, elucidates the morphological, physiological, and molecular mechanisms underlying AM fungi-mediated enhanced drought tolerance in plants, and provides an outlook for future research.

Zobrazit více v PubMed

Abd_Allah E. F., Tabassum B., Alqarawi A. A., Alshahrani T. S., Malik J. A., Hashem A. (2019). Physiological markers mitigate drought stress in Panicum turgidum Forssk. By arbuscular mycorrhizal fungi. DOI

Al-Arjani A. B. F., Hashem A., Abd_Allah E. F. (2020). Arbuscular mycorrhizal fungi modulates dynamics tolerance expression to mitigate drought stress in PubMed DOI PMC

Ali M., Gul A., Hasan H., Alipour H., Abbasi A. A., Khan F. Z., et al. (2020a). “LEA proteins and drought stress in wheat,” in DOI

Ali R., Hassan S., Shah D., Sajjad N., Bhat E. A. (2020b). “Role of polyamines in mitigating abiotic stress,” in DOI

AlKahtani M. D. F., Hafez Y. M., Attia K., Rashwan E., Husnain L. A., AlGwaiz H. I. M., et al. (2021). Evaluation of silicon and proline application on the oxidative machinery in drought-stressed sugar beet. PubMed DOI PMC

Allen M. F. (2007). Mycorrhizal fungi: highways for water and nutrients in arid soils. DOI

Amiri R., Nikbakht A., Etemadi N. (2015). Alleviation of drought stress on rose geranium [ DOI

Aroca R., Bago A., Sutka M., Paz J. A., Cano C., Amodeo G., et al. (2009). Expression analysis of the first arbuscular mycorrhizal fungi aquaporin described reveals concerted gene expression between salt-stressed and non-stressed mycelium. PubMed DOI

Aroca R., Porcel R., Ruiz-Lozano J. M. (2007). How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporin in PubMed DOI

Aroca R., Vernieri P., Ruiz-Lozano J. M. (2008). Mycorrhizal and non-mycorrhizal PubMed DOI PMC

Asrar A. A., Abdel-Fattah G. M., Elhindi K. M. (2012). Improving growth, flower yield, and water relations of snapdragon ( DOI

Augé R. M. (2001). Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. DOI

Augé R. M. (2004). Arbuscular mycorrhizae and soilant water relations. DOI

Augé R. M., Stodola A. J. W., Tims J. E., Saxton A. M. (2001). Moisture retention properties of a mycorrhizal soil. DOI

Augé R. M., Sylvia D. M., Park S. J., Buttery B. R., Saxton A. M., Moore J. L., et al. (2004). Partitioning mycorrhizal influence on water relations of DOI

Bahadur A., Batool A., Nasir F., Jiang S. J., Qin M. S., Zhang Q., et al. (2019). Mechanistic insights into arbuscular mycorrhizal fungi-mediated drought stress tolerance in plants. PubMed DOI PMC

Balestrini R., Rosso L. C., Veronico P., Melillo M. T., De Luca F., Fanelli E., et al. (2019). Transcriptomic responses to water deficit and nematode infection in mycorrhizal tomato roots. PubMed DOI PMC

Bárzana G., Carvaja M. (2020). Genetic regulation of water and nutrient transport in water stress tolerance in roots. PubMed DOI

Bárzana G., Aroca R., Bienert P., Chaumont F., Ruiz-Lozano J. M. (2014). New insights into the regulation of aquaporins by the arbuscular mycorrhizal symbiosis in maize plants under drought stress and possible implications for plant performance. PubMed DOI

Begum N., Qin C., Ahanger M. A., Raza S., Khan M. I., Ashraf M., et al. (2019). Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance. PubMed DOI PMC

Bitterlich M., Sandmann M., Graefe J. (2018). Arbuscular mycorrhiza alleviates restrictions to substrate water flow and delays transpiration limitation to stronger drought in tomato. PubMed DOI PMC

Bryla D. R., Duniway J. M. (2010). Growth, phosphorus uptake, and water relations of safflower and wheat infected with an arbuscular mycorrhizal fungus. PubMed DOI

Chen M., Arato M., Borghi L., Nouri E., Reinhardt D. (2018). Beneficial services of arbuscular mycorrhizal fungi – from ecology to application. PubMed DOI PMC

Cheng H. Q., Ding Y. E., Shu B., Zou Y. N., Wu Q. S., Kuča K. (2020). Plant aquaporin responses to mycorrhizal symbiosis under abiotic stress. DOI

Cheng H. Q., Zou Y. N., Wu Q. S., Kuèa K. (2021). Arbuscular mycorrhizal fungi alleviate drought stress in trifoliate orange by regulating H PubMed DOI PMC

Cheng X. F., Wu H. H., Zou Y. N., Wu Q. S., Kuča K. (2021). Mycorrhizal response strategies of trifoliate orange under well-watered, salt stress, and waterlogging stress by regulating leaf aquaporin expression. PubMed DOI

Chi G. G., Srivastava A. K., Wu Q. S. (2018). Exogenous easily extractable glomalin-related soil protein improves drought tolerance of trifoliate orange. DOI

Chitarra W., Pagliarani C., Maserti B., Lumini E., Siciliano I., Cascone P., et al. (2016). Insights on the impact of arbuscular mycorrhizal symbiosis on tomato tolerance to water stress. PubMed DOI PMC

Corradi N., Ruffner B., Croll D., Colard A., Horak A., Sanders I. R. (2009). High-level molecular diversity of copper-zinc superoxide dismutase genes among and within species of arbuscular mycorrhizal fungi. PubMed DOI PMC

Egger K. N., Hibbett D. S. (2004). The evolutionary implications of exploitation in mycorrhizas. DOI

Esch H., Hundeshagen B., Schneider-Poetsch H., Bothe H. (1994). Demonstration of abscisic acid in spores and hyphae of the arbuscular-mycorrhizal fungus DOI

Ezawa T., Saito K. (2018). How do arbuscular mycorrhizal fungi handle phosphate? New insight into fine-tuning of phosphate metabolism. PubMed DOI

Farias D. D. H., Pinto M. A. B., Carra B., Schuch M. W., Souza P. V. D. D. (2014). Development of seedlings of blueberry inoculated arbuscular mycorrhizal fungi. DOI

Ferrol N., Barea J. M., Azcón-Aguilar C. (2000). The plasma membrane H PubMed DOI

Fester T., Hause G. (2005). Accumulation of reactive oxygen species in arbuscular mycorrhizal roots. PubMed DOI

Garg N., Saroy K. (2020). Interactive effects of polyamines and arbuscular mycorrhiza in modulating plant biomass, N PubMed DOI

Gholamhoseini M., Ghalavand A., Dolatabadian A., Jamshidi E., Khodaei-Joghan A. (2013). Effects of arbuscular mycorrhizal inoculation on growth, yield, nutrient uptake and irrigation water productivity of sunflowers grown under drought stress. DOI

Gholinezhad E., Darvishzadeh R. (2021). Influence of arbusular mycorrhizal fungi and drought stress on fatty acids profile of sesame ( DOI

Giovannetti M., Avio L., Sbrana C. (2010). “Fungal spore germination and pre-symbiotic mycelial growth–physiological and genetic aspects,” in DOI

Goicoechea N., Antolin M. C., Sanchez-Diaz M. (2010). Gas exchange is related to the hormone balance in mycorrhizal or nitrogen-fixing alfalfa subjected to drought. DOI

Gong M., Tang M., Chen H., Zhang Q. M., Feng X. X. (2013). Effects of two DOI

Grümberg B. C., Urcelay C., Shroeder M. A., Vargas-Gil S., Luna C. M. (2015). The role of inoculum identity in drought stress mitigation by arbuscular mycorrhizal fungi in soybean. DOI

Halder M., Dhar P. P., Mujib A. S. M., Khan M. S., Akhter S. (2015). Effect of arbuscular mycorrhiza fungi inoculation on growth and up take of mineral nutrition in DOI

Hashem A., Kumar A., Al-Dbass A. M., Alqarawi A. Z., Al-Arjani A. B. F., Singh G., et al. (2019). Arbuscular mycorrhizal fungi and biochar improves drought tolerance in chickpea. PubMed DOI PMC

He J. D., Dong T., Wu H. H., Zou Y. N., Wu Q. S., Kuča K. (2019). Mycorrhizas induce diverse responses of root DOI

He J. D., Zou Y. N., Wu Q. S., Kuča K. (2020). Mycorrhizas enhance drought tolerance of trifoliate orange by enhancing activities and gene expression of antioxidant enzymes. DOI

Herrera-Medina M. J., Steinkellner S., Vierheilig H., Bote J. A. O., Garrido J. M. G. (2007). Abscisic acid determines arbuscule development and functionality in tomato arbuscular mycorrhiza. PubMed DOI

Hu Y. B., Chen B. D. (2020). Arbuscular mycorrhiza induced putrescine degradation into γ-aminobutyric acid, malic acid accumulation, and improvement of nitrogen assimilation in roots of water-stressed maize plants. PubMed DOI

Hu Y. B., Xie W., Chen B. D. (2020). Arbuscular mycorrhiza improved drought tolerance of maize seedlings by altering photosystem II efficiency and the levels of key metabolites. DOI

Huang D., Wang Q., Jing G. Q., Ma M. N., Li C., Ma F. W. (2021a). Overexpression of PubMed DOI

Huang D., Wang Q., Zhang Z. J., Jing G. Q., Ma M. N., Ma F. W., et al. (2021b). Silencing PubMed DOI PMC

Hussain S., Rao M. J., Anjum M. A., Ejaz S., Zakir I., Ali M. A., et al. (2019). “Oxidative stress and antioxidant defense in plants under drought conditions,” in DOI

Igiehon N. O., Babalola O. O., Cheseto X., Torto B. (2021). Effects of rhizobia and arbuscular mycorrhizal fungi on yield, size distribution and fatty acid of soybean seeds grown under drought stress. PubMed DOI

Ji L. L., Tan W. F., Chen X. H. (2019). Arbuscular mycorrhizal mycelial networks and glomalin-related soil protein increase soil aggregation in Calcaric Regosol under well-watered and drought stress conditions. DOI

Jiang Y. N., Wang W. X., Xie Q. J., Liu N., Liu L. X., Wang D. P., et al. (2017). Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. PubMed DOI

Kandowangko N. Y., Suryatmana G., Nurlaeny N., Simanungkalit R. D. M. (2009). Proline and abscisic acid content in droughted corn plant inoculated with DOI

Kateřina P., Ugena L., Lukáš S., Karel D., Diego N. D. (2019). Phytohormones and polyamines regulate plant stress responses by altering GABA pathway. PubMed DOI

Kikuchi Y., Hijikata N., Ohtomo R., Handa Y., Kawaguchi M., Saito K., et al. (2016). Aquaporin-mediated long-distance polyphosphate translocation directed towards the host in arbuscular mycorrhizal symbiosis: application of virus-induced gene silencing. PubMed DOI

Kilpelainen J., Aphalo P. J., Lehto T. (2020b). Temperature affected the formation of arbuscular mycorrhizas and ectomycorrhizas in DOI

Kilpelainen J., Aphalo P. J., Barbero-Lopez A., Adamczyk B., Nipu S. A., Lehto T. (2020a). Are arbuscular-mycorrhizal PubMed DOI

Latef A. A. H. A., Hashem A., Rasool S., Abd-Allah E. F., Alqarawi A. A., Egamberdieva D., et al. (2016). Arbuscular mycorrhizal symbiosis and abiotic stress in plants: a review. DOI

Lenoir I., Fontaine J., Lounès-Hadj S. A. (2016). Arbuscular mycorrhizal fungal responses to abiotic stresses: A review. PubMed DOI

Li T., Chen B. D. (2012). Arbuscular mycorrhizal fungi improving drought tolerance of maize plants by up-regulating of aquaporin gene expressions in roots and the fungi themselves. DOI

Li F., Gao F., Duan T. Y. (2016). Response and mechanism of arbuscular mycorrhizal fungi to abiotic stress. DOI

Li J. Q., Meng B., Chai H., Yang X. C., Song W. Z., Li S. X., et al. (2019). Arbuscular mycorrhizal fungi alleviate drought stress in C3 ( PubMed DOI PMC

Li T., Hu Y. J., Hao Z. P., Li H., Wang Y. S., Chen B. D. (2013). First cloning and characterization of two functional aquaporin genes from an arbuscular mycorrhizal fungus PubMed DOI

Liang G. T., Bu J. W., Zhang S. Y., Jing G., Zhang G. G., Liu X. B. (2019). Effects of drought stress on the photosynthetic physiological parameters of DOI

Lin J., Wang Y., Sun S., Mu C., Yan X. (2017). Effects of arbuscular mycorrhizal fungi on the growth, photosynthesis and photosynthetic pigments of PubMed DOI

Liu C. Y., Zhang F., Zhang D. J., Srivastava A. K., Wu Q. S., Zou Y. N. (2018). Mycorrhiza stimulates root-hair growth and IAA synthesis and transport in trifoliate orange under drought stress. PubMed DOI PMC

Liu F., Xu Y., Han G., Wang W., Li X., Cheng B. (2018). Identification and functional characterization of a maize phosphate transporter induced by mycorrhiza formation. PubMed DOI

Liu J., Guo C., Chen Z. L., He J. D., Zou Y. N. (2016). Mycorrhizal inoculation modulates root morphology and root phytohormone responses in trifoliate orange under drought stress. DOI

Liu T., Li Z., Hui C., Tang M., Zhang H. (2016). Effect of DOI

Luo C., Sun Q. F., Zhang F., Zhang D. J., Liu C. Y., Wu Q. S., et al. (2020). Genome-wide identification and expression analysis of the Citrus malectin domain-containing receptor-like kinases in response to arbuscular mycorrhizal fungi colonization and drought. DOI

Luo Y. (2009).

Mahnaz Z., Ali E., Mohammad S., Sodabe J. (2020). Alleviating effect of 24-epibrassinolide on seed oil content and fatty acid composition under drought stress in safflower sciencedirect. DOI

Manoharan P. T., Shanmugaiah V., Balasubramanian N., Gomathinayagam S., Sharma M. P., Muthuchelian K. (2010). Influence of am fungi on the growth and physiological status of DOI

Marulanda A., Porcel R., Barea J. M., Azcón R. (2007). Drought tolerance and antioxidant activities in lavender plants colonized by native drought-tolerant or drought-sensitive PubMed DOI

Mathur S., Tomar R. S., Jajoo A. (2019). Arbuscular mycorrhizal fungi (AMF) protects photosynthetic apparatus of wheat under drought stress. PubMed DOI

Meddich A., Jaiti F., Bourzik W., Asli A. E., Hafidi M. (2015). Use of mycorrhizal fungi as a strategy for improving the drought tolerance in date palm ( DOI

Meng L.-L., Liu R.-C., Yang L., Zou Y.-N., Srivastava A. K., Kuča K., et al. (2021). The change in fatty acids and sugars reveals the association between trifoliate orange and endophytic fungi. PubMed DOI PMC

Mickan B. S., Hart M., Solaiman Z. M., Renton M., Siddique K. H. M., Jenkins S. N., et al. (2021). Arbuscular mycorrhizal fungus-mediated interspecific nutritional competition of a pasture legume and grass under drought-stress. DOI

Navarro-Ródenas A., Bárzana G., Nicolás E., Carra A., Schubert A., Morte A. (2013). Expression analysis of aquaporins from desert truffle mycorrhizal symbiosis reveals a fine-tuned regulation under drought. PubMed DOI

Navarro-Ródenas A., Ruiz-Lozano J. M., Kaldenhoff R., Morte A. (2012). The aquaporin PubMed DOI

Navarro-Ródenas A., Xu H., Kemppainen M., Pardo A. G., Zwiazek J. J. (2015). PubMed DOI

Nouri E., Matinizadeh M., Moshki A., Zolfaghari A., Rajaei S., Janouskova M. (2020). Arbuscular mycorrhizal fungi benefit drought-stressed DOI

Oldroyd G. E. (2013). Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. PubMed DOI

Omirou M., Ioannides I. M., Ehaliotis C. (2013). Mycorrhizal inoculation affects arbuscular mycorrhizal diversity in watermelon roots, but leads to improvd colonization and plant response under water stress only. DOI

Ozturk M., Unal B. T., Garcia-Caparros P., Khursheed A., Gul A., Hasanuzzaman M. (2021). Osmoregulation and its actions during the drought stress in plants. PubMed DOI

Pavithra D., Yapa N. (2018). Arbuscular mycorrhizal fungi inoculation enhances drought stress tolerance of plants. DOI

Pavla D., Eva V., Radka S. (2013). Arbuscular mycorrhizal symbiosis alleviates drought stress imposed on knautia arvensis plants in serpentine soil. DOI

Polcyn W., Paluch-Lubawa E., Lehmann T., Mikula R. (2019). Arbuscular mycorrhiza in highly fertilized maize cultures alleviates short-term drougth effects but does not improve fodder yield and quality. PubMed DOI PMC

Pons C., Voβ A. C., Schweiger R., Mulle C. (2020). Effects of drought and mycorrhiza on wheat and aphid infestation. PubMed DOI PMC

Poór P., Czékus Z., Ördög A. (2019). “Role and regulation of glucose as a signal molecule to salt stress,” in DOI

Porcel R., Aroca R., Azcón R., Ruiz-Lozano J. M. (2006). PubMed DOI

Pozo M. J., Lopez-Raez J. A., Azcon-Aguilar C., Garcia-Garrido J. M. (2015). Phytohormones as integrators of environmental signals in the regulation of mycorrhizal symbioses. PubMed DOI

Püschel D., Bitterlich M., Rydlová J., Jansa J. (2020). Facilitation of plant water uptake by an arbuscular mycorrhizal fungus: a Gordian knot of roots and hyphae. PubMed DOI

Püschel D., Bitterlich M., Rydlová J., Jansa J. (2021). Drought accentuates the role of mycorrhiza in phosphorus uptake. DOI

Querejeta J., Egerton-Warburton L. M., Allen M. F. (2003). Direct nocturnal water transfer from oaks to their mycorrhizal symbionts during severe soil drying. PubMed DOI

Quiroga G., Erice G., Aroca R., Chaumont F., Ruiz-Lozano J. M. (2017). Enhanced drought stress tolerance by the arbuscular mycorrhizal symbiosis in a drought-sensitive maize cultivar is related to a broader and differential regulation of host plant aquaporins than in a drought-tolerant cultivar. PubMed DOI PMC

Quiroga G., Erice G., Aroca R., Delgado-Huertas A., Ruiz-Lozano J. M. (2020a). Elucidating the possible involvement of maize aquaporins and arbuscular mycorrhizal symbiosis in the plant ammonium and urea transport under drought stress conditions. PubMed DOI PMC

Quiroga G., Erice G., Aroca R., Zamarreño A. M., García-Mina J. M., Ruiz-Lozano J. M. (2018). Arbuscular mycorrhizal symbiosis and salicylic acid regulate aquaporins and root hydraulic properties in maize plants subjected to drought. DOI

Quiroga G., Erice G., Aroca R., Zamarreño A. M., García-Mina J. M., Ruiz-Lozano J. M. (2020b). Radial water transport in arbuscular mycorrhizal maize plants under drought stress conditions is affeced by indole-acetic acid (IAA) application. PubMed DOI

Quiroga G., Erice G., Ding L., Chaumont F., Aroca R., Ruiz-Lozano J. M. (2019). The arbuscular mycorrhizal symbiosis regulates aquaporins activity and improves root cell water permeability in maize plants subjected to water stress. PubMed DOI

Rani B., Madan S., Sharma K. D., Pooja, Kumar A. (2018). Influence of arbuscular mycorrhiza on antioxidative system of wheat (

Rapparini F., Peñuelas J. (2014). “Mycorrhizal fungi to alleviate drought stress on plant growth,” in DOI

Remke M. J., Johnson N. C., Wright J., Williamson M., Bowker M. A. (2021). Sympatric pairings of dryland grass populations, mycorrhizal fungi and associated soil biota enhance mutualism and ameliorate drought stress. DOI

Rivero J., Alvarez D., Flors V., Azcon-Aguilar C., Pozo M. J. (2018). Root metabolic plasticity underlies functional diversity in mycorrhiza-enhanced stress tolerance in tomato. PubMed DOI

Ruiz-Lozano J. M., Aroca R. (2010a). “Host response to osmotic stresses: stomatal behaviour and water use efficiency of arbuscular mycorrhizal plants,” in DOI

Ruiz-Lozano J. M., Aroca R. (2010b). “Modulation of aquaporin genes by the arbuscular mycorrhizal symbiosis in relation to osmotic stress tolerance,” in

Ruiz-Lozano J. M., Porcel R., Aroca R. (2008). “Evaluation of the possible participation of drought-induced genes in the enhanced tolerance of arbuscular mycorrhizal plants to water deficit,” in DOI

Salloum M. S., Menduni M. F., Benavides M. P., Larrauri M., Luna C. M., Silvente S. (2018). Polyamines and flavonoids: key compounds in mycorrhizal colonization of improved and unimproved soybean genotypes. DOI

Sanchez-Romera B., Calvo-Polanco M., Ruiz-Lozano J. M., Zamarreno A. M., Arbona V., Garcia-Mina J. M., et al. (2018). Involvement of the PubMed DOI

Sannazzaro A., Echeverria M., Olberto E. O., Ruiz O. A., Menendez A. B. (2007). Modulation of polyamine balance in Lotus glaber by salinity and arbuscular mycorrhiza. PubMed DOI

Schüβler A., Schwarzott D., Walker C. (2001). A new fungal phylum, the Glomeromycota: phylogeny and evolution. DOI

Sendek A., Karakoc C., Wagg C., Dominguez-Begines J., do Couto G. M., van der Heijden M. G. A., et al. (2019). Drought modulates interactions between arbuscular mycorrhizal fungal diversity and barley genotype diversity. PubMed DOI PMC

Sepahvand T., Etemad V., Matinizade M., Shirvany A. (2021). Symbiosis of AMF with growth modulation and antioxidant capacity of Caucasian Hackberry ( DOI

Shinozaki K., Yamaguchi-Shinozaki K. (2007). Gene networks involved in drought stress response and tolerance. PubMed DOI

Shu B., Cai D., Zhang F., Zhang D. J., Liu C. Y., Wu Q. S., et al. (2020a). Identifying citrus DOI

Shu B., Jue D. W., Zhang F., Zhang D. J., Liu C. Y., Wu Q. S., et al. (2020b). Genome-wide identification and expression analysis of the citrus calcium-dependent protein kinase (CDPK) genes in response to arbuscular mycorrhizal fungi colonization and drought. DOI

Song H. X. (2005). Effects of vam on host plant in the condition of drought stress andits mechanisms. DOI

Sugiura Y., Tanaka S., Yano K., Kameoka H., Marui S., et al. (2020). Myristate can be used as a carbon and energy source for the asymbiotic growth of arbuscular mycorrhizal fungi. PubMed DOI PMC

Sylvia D. M., Williams S. E. (1992). “Vesicular-arbuscular mycorrhizae and environmental stress,” in DOI

Symanczik S., Lehmann M. F., Wiemken A., Boller T., Courty P. E. (2018). Effects of two contrasted arbuscular mycorrhizal fungal isolates on nutrient uptake by PubMed DOI

Tisserant E., Malbreil M., Kuo A., Kohler A., Symeonidi A., Balestrini R., et al. (2013). Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. PubMed DOI PMC

Valentine A. J., Mortimer P. E., Lintnaar M., Borgo R. (2006). Drought responses of arbusuclar mycorrhizal grapevines. PubMed DOI PMC

van der Heijden M. G. A., Martin F. M., Selosse M. A., Sanders I. R. (2015). Mycorrhizal ecology and evolution: the past, the present, and the future. PubMed DOI

Vasar M., Davison J., Sepp S. K., Opik M., Moora M., Koorem K., et al. (2021). Arbuscular mycorrhizal fungal communities in the soils of desert habitats. PubMed DOI PMC

Vergani C., Graf F. (2016). Soil permeability, aggregate stability and root growth: a pot experiment from a soil bioengineering perspective. DOI

Volpe V., Chitarra W., Cascone P., Volpe M. G., Bartolini P., Moneti G., et al. (2018). The association with two different arbuscular mycorrhizal fungi differently affects water stress tolerance in tomato. PubMed DOI PMC

Wu H. H., Zou Y. N., Rahman M. M., Ni Q. D., Wu Q. S. (2017). Mycorrhizas alter sucrose and proline metabolism in trifoliate orange exposed to drought stress. PubMed DOI PMC

Wu Q. S., Xia R. (2006b). Effects of arbuscular mycorrhizal fungi on leaf solutes and root absorption areas of trifoliate orange seedlings under water stress conditions. DOI

Wu Q. S., Xia R. X. (2006a). Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. PubMed DOI

Wu Q. S., Zou Y. N. (2009). Mycorrhizal influence on nutrient uptake of citrus exposed to drought stress. DOI

Wu Q. S., Zou Y. N. (2017). “Arbuscular mycorrhizal fungi and tolerance of drought stress in plants,” in DOI

Wu Q. S., He J. D., Srivastava A. K., Zou Y. N., Kuča K. (2019). Mycorrhizas enhance drought tolerance of citrus by altering root fatty acid compositions and their saturation levels. PubMed DOI

Wu Q. S., Srivastava A. K., Zou Y. N. (2013). AMF-induced tolerance to drought stress in citrus: a review. DOI

Wu Q. S., Zou Y. N., He X. H. (2010a). Exogenous putrescine, not spermine or spermidine, enhances root mycorrhizal development and plant growth of trifoliate orange ( DOI

Wu Q. S., Zou Y. N., Zhan T. T., Liu C. Y. (2010b). Polyamines participate in mycorrhizal and root development of citrus ( PubMed DOI PMC

Xie W., Hao Z. P., Zhou X. F., Jiang X. L., Xu L. J., Wu S. L., et al. (2018). Arbuscular mycorrhiza facilitates the accumulation of glycyrrhizin and liquiritin in PubMed DOI

Xu L. J., Hao Z. P., Xie W., Li F., Chen B. D. (2018a). Transmembrane H DOI

Xu L. J., Li T., Wu Z. X., Feng H. Y., Yu M., Zhang X., et al. (2018b). Arbuscular mycorrhiza enhances drought tolerance of tomato plants by regulating the 14-3-3 genes in the ABA signaling pathway. DOI

Yao Q., Wang L. R., Xing Q. X., Chen J. Z., Zhu H. H. (2010). Exogenous polyamines influence root morphogenesis and arbuscular mycorrhizal development of DOI

Ye J. S., Li T., Hu Y. J., Hao Z. P., Gao Y. Z., Wang Y. S., et al. (2013). Influences of AM fungi on plant growth and water-stable soil aggregates under drought stresses. DOI

Yooyongwech S., Phaukinsang N., Cha-Um S., Supaibulwatana K. (2013). Arbuscular mycorrhiza improved growth performance in DOI

Yooyongwech S., Samphumphuang T., Tisarum R., Theerawitaya C., Cha-Um S. (2016). Arbuscular mycorrhizal fungi (AMF) improved water deficit tolerance in two different sweet potato genotypes involves osmotic adjustments via soluble sugar and free proline. DOI

Zézél A., Brou Y. C., Meddich A., Marty F. (2008). Molecular identification of MIP genes expressed in the roots of an arbuscular mycorrhizal PubMed DOI

Zhang C. X., Meng S., Li M. J., Zhao Z. (2016). Genomic identification and expression analysis of the phosphate transporter gene family in poplar. PubMed DOI PMC

Zhang F., Ni Q. D., Zou Y. N., Wu Q. S., Huang Y. M. (2017). Preliminary study on the mechanism of AMF in enhancing the drought tolerance of plants. DOI

Zhang F., Zou Y. N., Wu Q. S. (2018). Quantitative estimation of water uptake by mycorrhizal extraradical hyphae in citrus under drought stress. DOI

Zhang F., Zou Y. N., Wu Q. S., Kuča K. (2020). Arbuscular mycorrhizas modulate root polyamine metabolism to enhance drought tolerance of trifoliate orange. DOI

Zhang H. Y., Duan W. X., Xie B. T., Dong S. X., Wang B. Q., Shi C. Y., et al. (2018). Effects of drought stress at different growth stages on endogenous hormones and its relationship with storage root yield in sweet potato. DOI

Zhang T., Hu Y. J., Zhang K., Tian C. Y., Guo J. X. (2018). Arbuscular mycorrhizal fungi improve plant growth of DOI

Zhang Y. M., Ma K. M., Li F. L., Qu L. Y. (2016). Arbuscular mycorrhizal fungi (AMF) promotes DOI

Zhang Z., Zhang J., Xu G., Zhou L., Li Y. (2018). Arbuscular mycorrhizal fungi improve the growth and drought tolerance of DOI

Zhao R., Guo W., Bi N., Guo J., Zhang J. (2015). Arbuscular mycorrhizal fungi affect the growth, nutrient uptake and water status of maize ( DOI

Zheng F. L., Liang S. M., Chu X. N., Yang Y. L., Wu Q. S. (2020). Mycorrhizal fungi enhance flooding tolerance of peach through inducing proline accumulation and improving root architecture. DOI

Zhu X. Q., Wang C. Y., Chen H., Tang M. (2014). Effects of arbuscular mycorrhizal fungi on photosynthesis, carbon content, and calorific value of black locust seedlings. DOI

Zou Y. N., Srivastava A. K., Wu Q. S., Huang Y. M. (2014). Glomalin-related soil protein and water relations in mycorrhizal citrus ( DOI

Zou Y. N., Wang P., Liu C. Y., Ni Q. D., Zhan D. J., Wu Q. S. (2017). Mycorrhizal trifoliate orange has greater root adaptation of morphology and phytohormones in response to drought stress. PubMed DOI PMC

Zou Y. N., Wu H. H., Giri B., Wu Q. S., Kuča K. (2019). Mycorrhizal symbiosis down-regulates or does not change root aquaporin expression in trifoliate orange under drought stress. PubMed DOI

Zou Y. N., Wu Q. S., Kuča K. (2021a). Unravelling the role of arbuscular mycorrhizal fungi in mitigating the oxidative burst of plants under drought stress. PubMed DOI

Zou Y. N., Wu Q. S., Huang Y. M., Ni Q. D., He X. H. (2013). Mycorrhizal-mediated lower proline accumulation in PubMed DOI PMC

Zou Y. N., Zhang F., Srivastava A. K., Wu Q. S., Kuèa K. (2021b). Arbuscular mycorrhizal fungi regulate polyamine homeostasis in roots of trifoliate orange for improved adaptation to soil moisture deficit stress. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...