• This record comes from PubMed

Mycorrhiza stimulates root-hair growth and IAA synthesis and transport in trifoliate orange under drought stress

. 2018 Jan 31 ; 8 (1) : 1978. [epub] 20180131

Language English Country Great Britain, England Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 29386587
PubMed Central PMC5792640
DOI 10.1038/s41598-018-20456-4
PII: 10.1038/s41598-018-20456-4
Knihovny.cz E-resources

Root-hair growth and development regulated by soil microbes is associated with auxin. In this background, we hypothesized that mycorrhizal fungal inoculation induces greater root-hair growth through stimulated auxin synthesis and transport under water stress conditions. Trifoliate orange (Poncirus trifoliata) was inoculated with an arbuscular mycorrhizal (AM) fungus (Funneliformis mosseae) under well-watered (WW) and drought stress (DS) for 9 weeks. Compared with non-AM seedlings, AM seedlings displayed significantly higher density, length, and diameter of root hairs and root indoleacetic acid (IAA) level, whereas lower total root IAA efflux, regardless of soil moisture status. Root PtYUC3 and PtYUC8 involved in IAA biosynthesis were up-regulated by mycorrhization under WW and DS, whereas AM-modulated expression in PtTAA1, PtTAR2, PtYUC4, and PtYUC6 depended on status of soil moisture. Mycorrhizal inoculation down-regulated the transcript level of root auxin efflux carriers like PtPIN1 and PtPIN3, whereas significantly up-regulated the expression of root auxin-species influx carriers like PtABCB19 and PtLAX2 under DS. These results indicated that AMF-stimulated greater root-hair growth of trifoliate orange under DS that is independent on AMF species is related with mycorrhiza-modulated auxin synthesis and transport, which benefits the host plant to enhance drought tolerance.

See more in PubMed

Forni C, Duca D, Glick BR. Mechanisms of plant response to salt and drought stress and their alteration by rhizobacteria. Plant Soil. 2017;410:335–356. doi: 10.1007/s11104-016-3007-x. DOI

Smith, S. E. & Read, D. J. Mycorrhizal symbiosis, 3rd edn. Academic Press, Amsterdam (2008).

Ruth B, Khalvati M, Schmidhalter U. Quantification of mycorrhizal water uptake via high-resolution on-line water content sensors. Plant Soil. 2011;342:459–468. doi: 10.1007/s11104-010-0709-3. DOI

Wu QS, Xia RX. Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. J. Plant Physiol. 2006;163:417–425. doi: 10.1016/j.jplph.2005.04.024. PubMed DOI

Wu HH, Zou YN, Rahman MM, Ni QD, Wu QS. Mycorrhizas alter sucrose and proline metabolism in trifoliate orange exposed to drought stress. Sci. Rep. 2017;7:42389. doi: 10.1038/srep42389. PubMed DOI PMC

Huang YM, Srivastava AK, Zou YN, Ni QD, Han Y, Wu QS. Mycorrhizal-induced calmodulin mediated changes in antioxidant enzymes and growth response of drought-stressed trifoliate orange. Front. Microbiol. 2014;5:682. doi: 10.3389/fmicb.2014.00682. PubMed DOI PMC

Huang YM, Zou YN, Wu QS. Alleviation of drought stress by mycorrhizas is related to increased root H2O2 efflux in trifoliate orange. Sci. Rep. 2017;7:42335. doi: 10.1038/srep42335. PubMed DOI PMC

Pedranzani H, Rodríguez-Rivera M, Gutiérrez M, Porcel R, Hause B, Ruiz-Lozano JM. Arbuscular mycorrhizal symbiosis regulates physiology and performance of Digitaria eriantha plants subjected to abiotic stresses by modulating antioxidant and jasmonate levels. Mycorrhiza. 2016;26:141–152. doi: 10.1007/s00572-015-0653-4. PubMed DOI

Zou YN, Srivastava AK, Wu QS, Huang YM. Glomalin-related soil protein and water relations in mycorrhizal citrus (Citrus tangerina) during soil water deficit. Arch. Agron. Soil Sci. 2014;60:1103–1114. doi: 10.1080/03650340.2013.867950. DOI

Li TC, et al. Comparative transcriptome analysis of root hairs proliferation induced by water deficiency in maize. J. Plant Biol. 2017;60:26–34. doi: 10.1007/s12374-016-0412-x. DOI

Vincent C, Rowland D, Na C, Schaffer B. A high-throughput method to quantify root hair area in digital images taken in situ. Plant Soil. 2017;412:61–80. doi: 10.1007/s11104-016-3016-9. DOI

Wu QS, et al. Mycorrhiza alters the profile of root hairs in trifoliate orange. Mycorrhiza. 2016;26:237–247. doi: 10.1007/s00572-015-0666-z. PubMed DOI

Zou YN, Wang P, Liu CY, Ni QD, Zhang DJ, Wu QS. Mycorrhizal trifoliate orange has greater root adaptation of morphology and phytohormones in response to drought stress. Sci. Rep. 2017;7:41134. doi: 10.1038/srep41134. PubMed DOI PMC

Li T, Lin G, Zhang X, Chen YL, Zhang SB, Chen BD. Relative importance of an arbuscular mycorrhizal fungus (Rhizophagus intraradices) and root hairs in plant drought tolerance. Mycorrhiza. 2014;24:595–602. doi: 10.1007/s00572-014-0578-3. PubMed DOI

Ravnskov S, Larsen J. Functional compatibility in cucumber mycorrhizas in terms of plant g-rowth performance and foliar nutrient. Plant Biol. 2016;18:816–823. doi: 10.1111/plb.12465. PubMed DOI

Cho HT, Cosgrove DJ. Regulation of root hair initiation and expansin gene expression in Arabidopsis. Plant Cell. 2002;14:3237–3253. doi: 10.1105/tpc.006437. PubMed DOI PMC

Lee RDW, Cho HT. Auxin, the organizer of the hormonal/environmental signals for root hair growth. Front. Plant Sci. 2013;4:448. PubMed PMC

Zhang DJ, Xia RX, Cao X, Shu B, Chen CC. Root hair development of Poncirus trifoliata grown in different growth cultures and treated with 3-indolebutyric acid and ethephon. Sci. Hortic. 2013;160:389–397. doi: 10.1016/j.scienta.2013.06.007. DOI

Zhang DJ, Xia RX, Cao X. Ethylene modulates root hair development in trifoliate orange through auxin-signaling pathway. Sci. Hortic. 2016;213:252–259. doi: 10.1016/j.scienta.2016.11.007. DOI

Rigas S, et al. Root gravitropism and root hair development constitute coupled developmental responses regulated by auxin homeostasis in the Arabidopsis root apex. New Phytol. 2013;197:1130–1141. doi: 10.1111/nph.12092. PubMed DOI

Yang HB, Murphy AS. Functional expression and characterization of Arabidopsis ABCB, AUX1 and PIN auxin transporters in Schizosaccharomyces pombe. Plant J. 2009;59:179–191. doi: 10.1111/j.1365-313X.2009.03856.x. PubMed DOI

Tromas A, Perrot-Rechenmann C. Recent progress in auxin biology. Compt. Rend. Biol. 2010;333:297–306. doi: 10.1016/j.crvi.2010.01.005. PubMed DOI

Mano Y, Nemoto K. The pathway of auxin biosynthesis in plants. J. Exp. Bot. 2012;63:2853–2872. doi: 10.1093/jxb/ers091. PubMed DOI

Srivastava AK, Singh S. Citrus decline: Soil fertility and plant nutrition. J. Plant Nutri. 2009;32:197–245. doi: 10.1080/01904160802592706. DOI

Wu QS, Srivastava AK, Zou YN, Malhotra SK. Mycorrhizas in citrus: Beyond soil fertility and plant nutrition. Ind J Agric Sci. 2017;87:427–432.

Ribaut JM, Pilet PE. Water stress and indol-3yl-acetic acid content of maize roots. Planta. 1994;193:502–507. doi: 10.1007/BF02411554. DOI

Kramer EM, Bennett MJ. Auxin transport: a field in flux. Trends Plant Sci. 2006;11:382–386. doi: 10.1016/j.tplants.2006.06.002. PubMed DOI

Bruex A, et al. A gene regulatory network for root epidermis cell differentiation in Arabidopsis. PLoS. Gene. 2012;8:e1002446. PubMed PMC

Wen R, et al. UBC13, an E2 enzyme for Lys63-linked ubiquitination, functions in root development by affecting auxin signaling and Aux/IAA protein stability. Plant J. 2014;80:424–436. doi: 10.1111/tpj.12644. PubMed DOI

Ljung K. Auxin metabolism and homeostasis during plant development. Development. 2013;140:943–950. doi: 10.1242/dev.086363. PubMed DOI

Yu ZM, et al. Root hair-specific expansins modulate root hair elongation in rice. Plant J. 2011;66:725–734. doi: 10.1111/j.1365-313X.2011.04533.x. PubMed DOI

Rutschow HL, Baskin TI, Kramer EM. The carrier AUXIN RESISTANT (AUX1) dominates auxin flux into Arabidopsis protoplasts. New Phytol. 2014;204:536–544. doi: 10.1111/nph.12933. PubMed DOI

Nishimura T, et al. Identification of IAA transport inhibitors including compounds affecting cellular PIN trafficking by two chemical screening approaches using maize coleoptile systems. Plant Cell Physiol. 2012;53:1671–1682. doi: 10.1093/pcp/pcs112. PubMed DOI

Zažímalová E, Murphy AS, Yang HB, Hoyerová K, Hošek P. Auxin transporters-Why so many? Cold Spring Harbor Perspective in Biology. 2010;2:a001552. PubMed PMC

Li XM, He XY, Zhang LH, Chen. W, Chen Q. Influence of elevated CO2 and O3 on IAA, IAA oxidase and peroxidase in the leaves of ginkgo trees. Biol. Plant. 2009;53:339–342. doi: 10.1007/s10535-009-0062-7. DOI

Phillips JM, Hayman DS. Improved procedures for clearing roots and staining parasitic and vesicular–arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 1970;55:158–161. doi: 10.1016/S0007-1536(70)80110-3. DOI

Chen Q, Qi WB, Reiter RJ, Wei W, Wang BM. Exogenously applied melatonin stimulates root growth and raises endogenous indoleacetic acid in roots of etiolated seedlings of Brassica juncea. J. Plant Physiol. 2009;166:324–328. doi: 10.1016/j.jplph.2008.06.002. PubMed DOI

Yan, S. L., Jiao, C. Y., McLamore, E. S., Wang, N. N., Yao, H. J. & Shen, Y. B. Insect herbivory of leaves affects the auxin flux along root apices in Arabidopsis thaliana. J. Plant Growth Regul. 10.1007/s00344-017-9688-4 (2017).

Kenneth JL, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and 2−ΔΔCt method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...