Alleviation of drought stress by mycorrhizas is related to increased root H2O2 efflux in trifoliate orange
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28176859
PubMed Central
PMC5296721
DOI
10.1038/srep42335
PII: srep42335
Knihovny.cz E-zdroje
- MeSH
- biomasa MeSH
- fyziologický stres * MeSH
- lineární modely MeSH
- malondialdehyd metabolismus MeSH
- mykorhiza růst a vývoj fyziologie MeSH
- období sucha * MeSH
- peroxid vodíku metabolismus MeSH
- počet mikrobiálních kolonií MeSH
- Poncirus mikrobiologie fyziologie MeSH
- superoxidy metabolismus MeSH
- voda metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- malondialdehyd MeSH
- peroxid vodíku MeSH
- superoxidy MeSH
- voda MeSH
The Non-invasive Micro-test Technique (NMT) is used to measure dynamic changes of specific ions/molecules non-invasively, but information about hydrogen peroxide (H2O2) fluxes in different classes of roots by mycorrhiza is scarce in terms of NMT. Effects of Funneliformis mosseae on plant growth, H2O2, superoxide radical (O2·-), malondialdehyde (MDA) concentrations, and H2O2 fluxes in the taproot (TR) and lateral roots (LRs) of trifoliate orange seedlings under well-watered (WW) and drought stress (DS) conditions were studied. DS strongly inhibited mycorrhizal colonization in the TR and LRs, whereas mycorrhizal inoculation significantly promoted plant growth and biomass production. H2O2, O2·-, and MDA concentrations in leaves and roots were dramatically lower in mycorrhizal seedlings than in non-mycorrhizal seedlings under DS. Compared with non-mycorrhizal seedlings, mycorrhizal seedlings had relatively higher net root H2O2 effluxes in the TR and LRs especially under WW, as well as significantly higher total root H2O2 effluxes in the TR and LRs under WW and DS. Total root H2O2 effluxes were significantly positively correlated with root colonization but negatively with root H2O2 and MDA concentrations. It suggested that mycorrhizas induces more H2O2 effluxes of the TR and LRs, thus, alleviating oxidative damage of DS in the host plant.
College of Horticulture and Gardening Yangtze University Jingzhou Hubei 434025 China
Institute of Fruit and Tea Hubei Academy of Agricultural Sciences Wuhan Hubei 430064 China
Institute of Root Biology Yangtze University Jingzhou Hubei 434025 China
Zobrazit více v PubMed
Halliwell B. Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol. 141, 312–322 (2006). PubMed PMC
Bienert G. P. et al.. Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J. Biol. Chem. 282, 1183–1192 (2007). PubMed
Mittler R. et al.. ROS signaling: the new wave? Trends Plant Sci. 16, 300–309 (2011). PubMed
Ahmad P. et al.. [Oxidative damage and antioxidants in plants] Oxidative damage to plants Ahmad P. (ed.) 345–367 (Elsevier, 2014).
Petrov V. D. & Van Breusegem F. Hydrogen peroxide—a central hub for information flow in plant cells. AoB Plants. pls014 (2012). PubMed PMC
Twig G., Jung S. K., Messerli M. A., Smith P. J. S. & Shirihai O. S. Real-time detection of reactive oxygen intermediates from single microglial cells. Biol. Bull. 201, 261–262 (2001). PubMed
Loschen G., Azzi A. & Flohe L. Mitochondrial H2O2 formation: relationship with energy conservation. FEBS Lett. 33, 84–87 (1973). PubMed
Treberg J. R., Quinlan C. L. & Brand M. D. Hydrogen peroxide efflux from mitochondria underestimates matrix superoxide production—a correction using glutathione depletion. FEBS J. 277, 2766–2778 (2010). PubMed PMC
Sousa-Lopes A., Antunes F., Cyrne L. & Marinho H. S. Decreased cellular permeability to H2O2 protects Saccharomyces cerevisiae cells in stationary phase against oxidative stress. FEBS Lett. 587, 152–156 (2004). PubMed
Branco M. R., Marinho H. S., Cyrne L. & Antunes F. Decrease of H2O2 plasma membrane permeability during adaptation to H2O2 in Saccharomyces cerevisiae. J. Biol. Chem. 279, 6501–6506 (2004). PubMed
Zou Y. N., Huang Y. M., Wu Q. S. & He X. H. Mycorrhiza-induced lower oxidative burst is related with higher antioxidant enzyme activities, net H2O2 effluxes, and Ca2+ influxes in trifoliate orange roots under drought stress. Mycorrhiza 25, 143–152 (2015). PubMed
Smith S. E. & Smith F. A. Roles of arbuscular mycorrhizas in plant nutrient and growth: new paradigms from cellular to ecosystem scales. Annu. Rev. Plant Biol. 62, 227–250 (2011). PubMed
Wagg C., Jansa J., Schmid B. & van der Heijden M. G. A. Belowground biodiversity effects of plant symbionts support aboveground productivity. Ecol. Lett. 14, 1001–1009 (2011). PubMed
Philippot L., Raaijmakers J. M., Lemanceau P. & van der Putten W. H. Going back to the roots: the microbial ecology of the rhizosphere. Nat. Rev. Microbiol. 11, 789–799 (2013). PubMed
Wu Q. S., Xia R. X. & Zou Y. N. Reactive oxygen metabolism in mycorrhizal and non-mycorrhizal citrus (Poncirus trifoliata) seedlings subjected to water stress. J. Plant Physiol. 163, 1101–1110 (2006). PubMed
Huang Y. M. et al.. Mycorrhizal-induced calmodulin mediated changes in antioxidant enzymes and growth response of drought-stressed trifoliate orange. Front. Microbiol. 5, 682 (2014). PubMed PMC
Zhu X. C., Song F. B. & Liu S. Q. Arbuscular mycorrhiza impacts on drought stress of maize plants by lipid peroxidation, proline content and activity of antioxidant system. J. Food Agric. Environ. 9, 583–587 (2011).
Bompadre M. J. et al.. Arbuscular mycorrhizal fungi alleviate oxidative stress in pomegranate plants growing under different irrigation conditions. Botany 92, 187–193 (2014).
Salzer P., Corbiere H. & Boller T. Hydrogen peroxide accumulation in Medicago truncatula roots colonized by the arbuscular mycorrhiza-forming fungus Glomus intraradices. Planta 208, 319–325 (1999).
Fester T. & Hause T. Accumulation of reactive oxygen species in arbuscular mycorrhizal roots. Mycorrhiza 15, 373–379 (2005). PubMed
Zhang Z. Y., Wang W. J., Pan L. J., Xu Y. & Zhang Z. M. Measuring Ca2+ influxes of TRPC1-dependent Ca2+ channels in HL-7702 cells with Non-invasive Micro-test Technique. World J. Gastroentero. 15, 4150–4155 (2009). PubMed PMC
Chen S. Q., Yu N., Ye S. N., Yang S. M. & Zhai S. Q. Measurement of Ca2+ flow in cochlear cells using Non-invasive Micro-test Technique. J. Otol. 5, 90–96 (2010).
Ding X. D. et al.. Synergistic interactions between Glomus mosseae and Bradyrhizobium japonicum in enhancing proton release from nodules and hyphae. Mycorrhiza 22, 51–58 (2012). PubMed
Fagbola O., Osonubi O., Mulongoy K. & Odunfa S. A. Effects of drought stress and arbuscular mycorrhiza on the growth of Gliricidia sepium (Jacq). Walp, and Leucaena leucocephala (Lam.) de Wit. in simulated eroded soil conditions. Mycorrhiza 11, 215–223 (2001).
Oláh B., Brière C., Bécard G., Dénarié J. & Gough C. Nod factors and a diffusible factor from arbuscular mycorrhizal fungi stimulate lateral root formation in Medicago truncatula via the DMI1/DMI2 signalling pathway. Plant J. 44, 195–207 (2005). PubMed
Wu Q. S., Zou Y. N., He X. H. & Luo P. Arbuscular mycorrhizal fungi can alter some root characters and physiological status in trifoliate orange (Poncirus trifoliata L. Raf.) seedlings. Plant Growth Regul. 65, 273–278 (2011).
Wang P., Wu S. H., Wen M. X., Wang Y. & Wu Q. S. Effects of combined inoculation with Rhizophagus intratradices and Paenibacillus mucilaginosus on plant growth, root morphology and physiological status of trifoliate orange (Poncirus trifoliata L. Raf.) seedlings under different levels of phosphorus. Sci. Hortic. 205, 97–105 (2016).
Berta G., Fusconi A., Trotta A. & Scannerini S. Morphogenetic modifications induced by the mycorrhizal fungus Glomus strain E3 in the root system of Allium porrum L. New Phytol. 114, 207–215 (1990).
Schellenbaum L. et al.. Influence of endomycorrhizal infection on root morphology in a micropropagated woody plant species (Vitis vinifera L.). Ann. Bot. 68, 135–141 (1991).
Guo D. L. et al.. Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species. New Phytol. 180, 673–683 (2008). PubMed
Maillet F. et al.. Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature 469, 58–63 (2011). PubMed
Hodge A., Berta G., Doussan C., Merchan F. & Crespi M. Plant root growth, architecture and function. Plant Soil 321, 153–187 (2009).
Wu Q. S. et al.. Arbuscular mycorrhizas alter root system architecture of Citrus tangerine through regulating metabolism of endogenous polyamines. Plant Growth Regul. 68, 27–35 (2012).
Li J. G. et al.. The fluxes of H2O2 and O2 can be used to evaluate seed germination and vigor of Caragana korshinskii. Planta 239, 1363–1373 (2014). PubMed
Ren G. W. et al.. Effects of aphids Myzus persicae on the changes of Ca2+ and H2O2 flux and enzyme activities in tobacco. J. Plant Interact. 9, 883–888 (2014).
Li T. et al.. First cloning and characterization of two functional aquaporin genes from an arbuscular mycorrhizal fungus Glomus intraradices. New Phytol. 197, 617–630 (2013). PubMed
Hackket C. A study of the root system of barley. І. Effects of nutrition on two varieties. New Phytol. 67, 287–300 (1968).
Phillips J. M. & Hayman D. S. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 55, 158–161 (1970).
Bajji M., Lutts S. & Kinet J. M. Water deficit effects on solute contribution to osmotic adjustment as a function of leaf ageing in three durum wheat (Triticum durum Desf.) cultivars performing differently in arid conditions. Plant Sci. 160, 669–681 (2001). PubMed
Sudhakar C., Lakshmi A. & Giridarakumar S. Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity. Plant Sci. 161, 613–619 (2001).
Velikova V., Yordanov I. & Edreva A. Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci. 151, 59–66 (2000).
Wang A. G. & Luo G. H. Quantitative relation between the reaction of hydroxylamine and superoxide anion radicals in plants. Plant Physiol. Commu. 26, 55–57 (1990).
Sun J. et al.. H2O2 and cytosolic Ca2+ signals triggered by the PM H+-coupled transport system mediate K+/Na+ homeostasis in NaCl-stressed Populus euphratica cells. Plant Cell Environ. 33, 943–958 (2010). PubMed