Influence of drought stress and mycorrhizal (Funneliformis mosseae) symbiosis on growth parameters, chlorophyll fluorescence, antioxidant activity, and essential oil composition of summer savory (Satureja hortensis L.) plants
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37342133
PubMed Central
PMC10278574
DOI
10.3389/fpls.2023.1151467
Knihovny.cz E-zdroje
- Klíčová slova
- antioxidant activity, arbuscular mycorrhiza fungi (AMF), chlorophyll fluorescence, drought stress, essential oil, growth parameters, summer savory (Satureja hortensis L.),
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: Drought stress unfavorably influences the growth and physiological traits of plants in the arid and semi-arid regions of the world. This study aimed to determine the effects of arbuscular mycorrhiza fungi (AMF; Funneliformis mosseae) inoculation on the physiological and biochemical responses of summer savory (Satureja hortensis L.) under different irrigation regimes. METHODS: The first factor was different irrigation regimes, including no drought stress (100% field capacity; FC), moderate drought stress (60% FC), and severe drought stress (30% FC); the second factor included the plants without AMF (AMF0) and with AMF inoculation (AMF1). RESULTS: The results showed that better values, higher plant height, shoot mass (fresh and dry weight), relative water content (RWC), membrane stability index (MSI), photosynthesis pigments, Fv, Fm, Fv/Fm, and total soluble proteins were obtained in the plants inoculated with AMF. The highest values were obtained for plants with no drought stress, then the plants subjected to AMF1 under 60% FC, and the lowest ones for plants under 30% FC without AMF inoculation. Thus, these properties are reduced under moderate and severe drought stress. At the same time, the utmost activity of superoxide dismutase (SOD), ascorbate peroxidase (APX), guaiacol peroxidase (GPX), and the highest malondialdehyde (MDA), H2O2, proline, and antioxidant activity (TAA) were achieved for 30% FC + AMF0. It was also found that AMF inoculation improved essential oil (EO) composition, also as EO obtained from plants under drought stress. Carvacrol (50.84-60.03%) was the dominant component in EO; γ-terpinene (19.03-27.33%), p-cymene, α-terpinene, and myrcene, were recognized as other important components in EO. The higher carvacrol and γ-terpinene contents were obtained from summer savory plants with AMF inoculation and the lowest for plants without AMF and under 30% FC. CONCLUSION: According to the present findings, using AMF inoculation could be a sustainable and eco-friendly approach to improve physiological and biochemical characteristics and the essential oil quality of summer savory plants under water shortage conditions.
Department of Horticulture Faculty of Agriculture Ataturk University Erzurum Türkiye
Department of Horticulture Faculty of Agriculture University of Maragheh Maragheh Iran
Zobrazit více v PubMed
Aalipour H., Nikbakht A., Etemadi N., Rejali F., Soleimani M. (2020). Biochemical response and interactions between arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria during establishment and stimulating growth of Arizona cypress (Cupressus arizonica g.) under drought stress. Sci. Hortic. 261, 108923. doi: 10.1016/j.scienta.2019.108923 DOI
Abbaspour H., Saeidi-Sar S., Afshari H., Abdel-Wahhab M. (2012). Tolerance of mycorrhiza infected pistachio (Pistacia vera l.) seedling to drought stress under glasshouse conditions. J. Plant Physiol. 169, 704–709. doi: 10.1016/j.jplph.2012.01.014 PubMed DOI
Agarwal S., Pandey V. (2004). Antioxidant enzyme responses to NaCl stress in Cassia angustifolia . Biol. Plant 48, 555–560. doi: 10.1023/B:BIOP.0000047152.07878.e7 DOI
Ahanger M. A., Hashem A., Abd-Allah E. F., Ahmad P. (2014). “Arbuscular mycorrhiza in crop improvement under environmental stress,” in Emerging technologies and management of crop stress tolerance (Elsevier; ), 69–95.
Alexieva V., Sergiev I., Mapelli S., Karanov E. (2001). The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ. 24, 1337–1344. doi: 10.1046/j.1365-3040.2001.00778.x DOI
Alhaithloul H. A., Soliman M. H., Ameta K. L., El-Esawi M. A., Elkelish A. (2019). Changes in ecophysiology, osmolytes, and secondary metabolites of the medicinal plants of Mentha piperita and Catharanthus roseus subjected to drought and heat stress. Biomolecules 10, 43. doi: 10.3390/biom10010043 PubMed DOI PMC
Amani Machiani M., Javanmard A., Morshedloo M. R., Aghaee A., Maggi F. (2021). Funneliformis mosseae inoculation under water deficit stress improves the yield and phytochemical characteristics of thyme in intercropping with soybean. Sci. Rep. 11, 1–13. doi: 10.1038/s41598-021-94681-9 PubMed DOI PMC
Arnon D. I. (1949). Copper enzymes in isolated chloroplasts. polyphenoloxidase in Beta vulgaris . Plant Physiol. 24, 1. doi: 10.1104/pp.24.1.1 PubMed DOI PMC
Asadi M., Rasouli F., Amini T., Hassanpouraghdam M. B., Souri S., Skrovankova S., et al. . (2022). Improvement of photosynthetic pigment characteristics, mineral content, and antioxidant activity of lettuce (Lactuca sativa l.) by arbuscular mycorrhizal fungus and seaweed extract foliar application. Agronomy 12, 1943. doi: 10.3390/agronomy12081943 DOI
Augé R. M. (2001). Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11, 3–42. doi: 10.1007/s005720100097 DOI
Bagheri V., Shamshiri M., Shirani H., Roosta H. (2011). Effect of mycorrhizal inoculation on ecophysiological responses of pistachio plants grown under different water regimes. Photosynthetica 49, 531–538. doi: 10.1007/s11099-011-0064-5 DOI
Balliu A., Sallaku G., Rewald B. (2015). AMF inoculation enhances growth and improves the nutrient uptake rates of transplanted, salt-stressed tomato seedlings. Sustainability 7, 15967–15981. doi: 10.3390/su71215799 DOI
Bangar P., Chaudhury A., Tiwari B., Kumar S., Kumari R., Bhat K. V. (2019). Morphophysiological and biochemical response of mungbean [Vigna radiata (L.) wilczek] varieties at different developmental stages under drought stress. Turk. J. Biol. 43, 58–69. doi: 10.3906/biy-1801-64 PubMed DOI PMC
Bashir A., Rizwan M., Ur Rehman M. Z., Zubair M., Riaz M., Qayyum M. F., et al. . (2020). Application of co-composted farm manure and biochar increased the wheat growth and decreased cadmium accumulation in plants under different water regimes. Chemosphere 246, 125809. doi: 10.1016/j.chemosphere.2019.125809 PubMed DOI
Bates L. S., Waldren R. P., Teare I. (1973). Rapid determination of free proline for water-stress studies. Plant Soil 39, 205–207. doi: 10.1007/BF00018060 DOI
Begum N., Ahanger M. A., Su Y., Lei Y., Mustafa N. S. A., Ahmad P., et al. . (2019). Improved drought tolerance by AMF inoculation in maize (Zea mays) involves physiological and biochemical implications. Plants 8, 579. doi: 10.3390/plants8120579 PubMed DOI PMC
Begum N., Wang L., Ahmad H., Akhtar K., Roy R., Khan M. I., et al. . (2022). Co-Inoculation of arbuscular mycorrhizal fungi and the plant growth-promoting rhizobacteria improve growth and photosynthesis in tobacco under drought stress by up-regulating antioxidant and mineral nutrition metabolism. Microb. Ecol. 83, 971–988. doi: 10.1007/s00248-021-01815-7 PubMed DOI
Benzie I. F., Strain J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal. Biochem. 239, 70–76. doi: 10.1006/abio.1996.0292 PubMed DOI
Boutasknit A., Baslam M., Ait-El-Mokhtar M., Anli M., Ben-Laouane R., Ait-Rahou Y., et al. . (2021). Assemblage of indigenous arbuscular mycorrhizal fungi and green waste compost enhance drought stress tolerance in carob (Ceratonia siliqua l.) trees. Sci. Rep. 11, 1–23. doi: 10.1038/s41598-021-02018-3 PubMed DOI PMC
Boutasknit A., Baslam M., Ait-El-Mokhtar M., Anli M., Ben-Laouane R., Douira A., et al. . (2020). Arbuscular mycorrhizal fungi mediate drought tolerance and recovery in two contrasting carob (Ceratonia siliqua l.) ecotypes by regulating stomatal, water relations, and (in) organic adjustments. Plants 9, 80. doi: 10.3390/plants9010080 PubMed DOI PMC
Bradford M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254. doi: 10.1016/0003-2697(76)90527-3 PubMed DOI
Cakmak O., Ozturk L., Karanlik S., Ozkan H., Kaya Z., Cakmak I. (2001). Tolerance of 65 durum wheat genotypes to zinc deficiency in a calcareous soil. J. Plant Nutr. 24, 1831–1847. doi: 10.1081/PLN-100107315 DOI
Chen G.-X., Asada K. (1992). Inactivation of ascorbate peroxidase by thiols requires hydrogen peroxide. Plant Cell Physiol. 33, 117–123. doi: 10.1093/oxfordjournals.pcp.a078229 DOI
Chitarra W., Pagliarani C., Maserti B., Lumini E., Siciliano I., Cascone P., et al. . (2016). Insights on the impact of arbuscular mycorrhizal symbiosis on tomato tolerance to water stress. Plant Physiol. 171, 1009–1023. doi: 10.1104/pp.16.00307 PubMed DOI PMC
Corradi N., Ruffner B., Croll D., Colard A., Horák A., Sanders I. R. (2009). High-level molecular diversity of copper-zinc superoxide dismutase genes among and within species of arbuscular mycorrhizal fungi. Appl. Environ. Microbiol. 75, 1970–1978. doi: 10.1128/AEM.01974-08 PubMed DOI PMC
Dhindsa R. S., Plumb-Dhindsa P., Thorpe T. A. (1981). Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J. Exp. Bot. 32, 93–101. doi: 10.1093/jxb/32.1.93 DOI
Dossa K., Yehouessi L. W., Likeng-Li-Ngue B. C., Diouf D., Liao B., Zhang X., et al. . (2017). Comprehensive screening of some west and central African sesame genotypes for drought resistance probing by agromorphological, physiological, biochemical and seed quality traits. Agronomy 7, 83. doi: 10.3390/agronomy7040083 DOI
Farooq M., Wahid A., Kobayashi N., Fujita D., Basra S. (2009). “Plant drought stress: effects, mechanisms and management,” in Sustainable agriculture (Springer; ), 153–188.
Fierascu I., Dinu-Pirvu C. E., Fierascu R. C., Velescu B. S., Anuta V., Ortan A., et al. . (2018). Phytochemical profile and biological activities of Satureja hortensis l.: a review of the last decade. Molecules 23, 2458. doi: 10.3390/molecules23102458 PubMed DOI PMC
Fouad M. O., Essahibi A., Benhiba L., Qaddoury A. (2014). Effectiveness of arbuscular mycorrhizal fungi in the protection of olive plants against oxidative stress induced by drought. Span. J. Agric. Res. 12, 763–771. doi: 10.5424/sjar/2014123-4815 DOI
Fu J., Huang B. (2001). Involvement of antioxidants and lipid peroxidation in the adaptation of two cool-season grasses to localized drought stress. Environ. Exp. Bot. 45, 105–114. doi: 10.1016/S0098-8472(00)00084-8 PubMed DOI
García-Caparrós P., Romero M. J., Llanderal A., Cermeño P., Lao M. T., Segura M. L. (2019). Effects of drought stress on biomass, essential oil content, nutritional parameters, and costs of production in six lamiaceae species. Water 11, 573. doi: 10.3390/w11030573 DOI
Giovannetti M., Mosse B. (1980). An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol. 83 (2), 489–500. doi: 10.1111/j.1469-8137.1980.tb04556.x DOI
Gong M., Tang M., Chen H., Zhang Q., Feng X. (2013). Effects of two glomus species on the growth and physiological performance of Sophora davidii seedlings under water stress. New For. 44, 399–408. doi: 10.1007/s11056-012-9349-1 DOI
Hanin M., Ebel C., Ngom M., Laplaze L., Masmoudi K. (2016). New insights on plant salt tolerance mechanisms and their potential use for breeding. Front. Plant Sci. 7. doi: 10.3389/fpls.2016.01787 PubMed DOI PMC
Hare P., Cress W. (1997). Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regul. 21, 79–102. doi: 10.1023/A:1005703923347 DOI
Hashem A., Abd_Allah E., Alqarawi A., Egamberdieva D. (2016). Bioremediation of adverse impact of cadmium toxicity on Cassia italica mill by arbuscular mycorrhizal fungi. Saudi J. Biol. Sci. 23, 39–47. doi: 10.1016/j.sjbs.2015.11.007 PubMed DOI PMC
Hayat S., Ali B., Hasan S. A., Ahmad A. (2007). Brassinosteroid enhanced the level of antioxidants under cadmium stress in Brassica juncea . Environ. Exp. Bot. 60, 33–41. doi: 10.1016/j.envexpbot.2006.06.002 DOI
Hazzoumi Z., Moustakime Y., Joutei K. A. (2015). Effect of arbuscular mycorrhizal fungi (AMF) and water stress on growth, phenolic compounds, glandular hairs, and yield of essential oil in basil (Ocimum gratissimum l). Chem. Biol. Technol. Agric. 2, 1–11. doi: 10.1186/s40538-015-0035-3 DOI
Hazzoumi Z., Moustakime Y., Joutei K. A. (2017). Effect of arbuscular mycorrhizal fungi and water stress on ultrastructural change of glandular hairs and essential oil compositions in Ocimum gratissimum . Chem. Biol. Technol. Agric. 4, 1–13. doi: 10.1186/s40538-017-0102-z DOI
Hossain M. A., Bhattacharjee S., Armin S.-M., Qian P., Xin W., Li H.-Y., et al. . (2015). Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: insights from ROS detoxification and scavenging. Front. Plant Sci. 6. doi: 10.3389/fpls.2015.00420 PubMed DOI PMC
Huang Y.-M., Zou Y.-N., Wu Q.-S. (2017). Alleviation of drought stress by mycorrhizas is related to increased root H2O2 efflux in trifoliate orange. Sci. Rep. 7, 1–9. doi: 10.1038/srep42335 PubMed DOI PMC
Jaleel C. A., Manivannan P., Sankar B., Kishorekumar A., Gopi R., Somasundaram R., et al. . (2007). Induction of drought stress tolerance by ketoconazole in Catharanthus roseus is mediated by enhanced antioxidant potentials and secondary metabolite accumulation. Colloids Surf. B: Biointerfaces 60, 201–206. doi: 10.1016/j.colsurfb.2007.06.010 PubMed DOI
Kafi M., Zand E., Kamkar B., Mahdavi-Damghani A., Abbasi F. (2010). Plant physiology 2 (translate) (Jihad-e-Daneshgahi of Mashhad press; ).
Karimi E., Ghasemnezhad A., Ghorbanpour M. (2022). Selenium-and silicon-mediated recovery of satureja (Satureja mutica fisch. & CA mey.) chemotypes subjected to drought stress followed by rewatering. Gesunde Pflanzen, 1–21. doi: 10.1007/s10343-022-00654-x DOI
Kishor P. K., Sangam S., Amrutha R., Laxmi P. S., Naidu K., Rao K. S., et al. . (2005). Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Curr. Sci. 84, 424–438.
Kyriazopoulos A. P., Orfanoudakis M., Abraham E. M., Parissi Z. M., Serafidou N. (2014). Effects of arbuscular mycorrhiza fungi on growth characteristics of Dactylis glomerata l. under drought stress conditions. Not. Bot. Horti Agrobot. 42, 132–137. doi: 10.15835/nbha4219411 DOI
Lu J., Liu M., Mao Y., Shen L. (2007). Effects of vesicular-arbuscular mycorrhizae on the drought resistance of wild jujube (Zizyphs spinosus hu) seedlings. Front. Agric. China. 1, 468–471. doi: 10.1007/s11703-007-0077-9 DOI
Mathur S., Sharma M. P., Jajoo A. (2018). Improved photosynthetic efficacy of maize (Zea mays) plants with arbuscular mycorrhizal fungi (AMF) under high temperature stress. J. J. Photochem. Photobiol. 180, 149–154. doi: 10.1016/j.jphotobiol.2018.02.002 PubMed DOI
Mirshad P., Puthur J. T. (2016). Arbuscular mycorrhizal association enhances drought tolerance potential of promising bioenergy grass (Saccharum arundinaceum retz.). Environ. Monit. Assess. 188, 1–20. doi: 10.1007/s10661-016-5428-7 PubMed DOI
Mirzai M., Moeini A., Ghanati F. (2013). Effects of drought stress on the lipid peroxidation and antioxidant enzyme activities in two canola (Brassica napus l.) cultivars. JAST 15 (3), 593–602. Available at: http://jast.modares.ac.ir/article-23-9016-en.html.
Oliveira R. S., Ma Y., Rocha I., Carvalho M. F., Vosátka M., Freitas H. (2016). Arbuscular mycorrhizal fungi are an alternative to the application of chemical fertilizer in the production of the medicinal and aromatic plant Coriandrum sativum l. J. Toxicol. Environ. Health Part A 79, 320–328. doi: 10.1080/15287394.2016.1153447 PubMed DOI
Ostadi A., Javanmard A., Machiani M. A., Morshedloo M. R., Nouraein M., Rasouli F., et al. . (2020). Effect of different fertilizer sources and harvesting time on the growth characteristics, nutrient uptakes, essential oil productivity and composition of Mentha x piperita l. Ind. Crops Prod. 148, 112290. doi: 10.1016/j.indcrop.2020.112290 DOI
Porcel R., Ruiz-Lozano J. M. (2004). Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress. J. Exp. Bot. 55, 1743–1750. doi: 10.1093/jxb/erh188 PubMed DOI
Qiu Z., Wang L., Zhou Q. (2013). Effects of bisphenol a on growth, photosynthesis and chlorophyll fluorescence in above-ground organs of soybean seedlings. Chemosphere 90, 1274–1280. doi: 10.1016/j.chemosphere.2012.09.085 PubMed DOI
Rabab A. M., Lamis D. S., Rabie G. H., Abdel-Fattah G. M. (2016). The impact of the arbuscular mycorrhizal fungi on growth and physiological parameters of cowpea plants grown under salt stress conditions. IJASBT 4, 372–379. doi: 10.3126/ijasbt.v4i3.15775 DOI
Rydlová J., Jelínková M., Dušek K., Dušková E., Vosátka M., Püschel D. (2016). Arbuscular mycorrhiza differentially affects synthesis of essential oils in coriander and dill. Mycorrhiza 26, 123–131. doi: 10.1007/s00572-015-0652-5 PubMed DOI
Sairam R. K., Rao K. V., Srivastava G. (2002). Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Sci. 163, 1037–1046. doi: 10.1016/S0168-9452(02)00278-9 DOI
Sannazzaro A. I., Ruiz O. A., Alberto E. O., Menéndez A. B. (2006). Alleviation of salt stress in lotus glaber by Glomus intraradices . Plant Soil 285, 279–287. doi: 10.1007/s11104-006-9015-5 DOI
Shariat A., Karimzadeh G., Assareh M. H., Zandi_Esfahan E. (2016). Drought stress in Iranian endemic savory (Satureja rechingeri): in vivo and in vitro studies. JPPB 6, 1–12.
Sheng M., Tang M., Chen H., Yang B., Zhang F., Huang Y. (2008). Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 18, 287–296. doi: 10.1007/s00572-008-0180-7 PubMed DOI
Sheteiwy M. S., Ali D. F. I., Xiong Y.-C., Brestic M., Skalicky M., Hamoud Y. A., et al. . (2021). Physiological and biochemical responses of soybean plants inoculated with arbuscular mycorrhizal fungi and bradyrhizobium under drought stress. BMC Plant Biol. 21, 1–21. doi: 10.1186/s12870-021-02949-z PubMed DOI PMC
Shirinbayan S., Khosravi H., Malakouti M. J. (2019). Alleviation of drought stress in maize (Zea mays) by inoculation with azotobacter strains isolated from semi-arid regions. Appl. Soil Ecol. 133, 138–145. doi: 10.1016/j.apsoil.2018.09.015 DOI
Simard S. W., Beiler K. J., Bingham M. A., Deslippe J. R., Philip L. J., Teste F. P. (2012). Mycorrhizal networks: mechanisms, ecology and modelling. Fungal Biol. Rev. 26, 39–60. doi: 10.1016/j.fbr.2012.01.001 DOI
Talaat N. B., Shawky B. T. (2014). Modulation of the ROS-scavenging system in salt-stressed wheat plants inoculated with arbuscular mycorrhizal fungi. J. Plant Nutr. Soil Sci. 177, 199–207. doi: 10.1002/jpln.201200618 DOI
Thokchom S. D., Gupta S., Kapoor R. (2020). Arbuscular mycorrhiza augments essential oil composition and antioxidant properties of Ocimum tenuiflorum l.–a popular green tea additive. Ind. Crops Prod. 153, 112418. doi: 10.1016/j.indcrop.2020.112418 DOI
Wężowicz K., Rozpądek P., Turnau K. (2017). Interactions of arbuscular mycorrhizal and endophytic fungi improve seedling survival and growth in post-mining waste. Mycorrhiza 27, 499–511. doi: 10.1007/s00572-017-0768-x PubMed DOI PMC
Wu Q.-S., Srivastava A. K., Zou Y.-N. (2013). AMF-induced tolerance to drought stress in citrus: a review. Sci. Horti. 164, 77–87. doi: 10.1016/j.scienta.2013.09.010 DOI
Wu Q., Zou Y. (2009). Mycorrhiza has a direct effect on reactive oxygen metabolism of drought-stressed citrus. Plant Soil Environ. 55, 436–442. doi: 10.17221/61/2009-PSE DOI
Wu Q. S., Zou Y. N., Xia R. X. (2006). Effects of water stress and arbuscular mycorrhizal fungi on reactive oxygen metabolism and antioxidant production by citrus (Citrus tangerine) roots. Eur. J. Soil Biol. 42, 166–172. doi: 10.1016/j.ejsobi.2005.12.006 DOI
Ye L., Zhao X., Bao E., Cao K., Zou Z. (2019). Effects of arbuscular mycorrhizal fungi on watermelon growth, elemental uptake, antioxidant, and photosystem II activities and stress-response gene expressions under salinity-alkalinity stresses. Front. Plant Sci. 10. doi: 10.3389/fpls.2019.00863 PubMed DOI PMC
Yousefzadeh Najafabadi M., Ehsanzadeh P. (2017). Photosynthetic and antioxidative upregulation in drought-stressed sesame (Sesamum indicum l.) subjected to foliar-applied salicylic acid. Photosynthetica 55, 611–622. doi: 10.1007/s11099-017-0673-8 DOI
Zaferanchi S., Salmasi S. Z., Salehi Lisar S. Y., Sarikhani M. R. (2019). Influence of organics and bio fertilizers on biochemical properties of Calendula officinalis l. Int. J. Hortic. Sci. Technol. 6, 125–136. doi: 10.22059/ijhst.2019.266831.258 DOI
Zhao Y., Cartabia A., Lalaymia I., Declerck S. (2022). Arbuscular mycorrhizal fungi and production of secondary metabolites in medicinal plants. Mycorrhiza 1-36. doi: 10.1007/s00572-022-01079-0 PubMed DOI PMC
Zhu X., Song F., Liu S., Liu T., Zhou X. (2012). Arbuscular mycorrhizae improves photosynthesis and water status of Zea mays l. under drought stress. Plant Soil Environ. 58, 186–191. doi: 10.17221/23/2011-PSE DOI
Zou Y.-N., Huang Y.-M., Wu Q.-S., He X.-H. (2015). Mycorrhiza-induced lower oxidative burst is related with higher antioxidant enzyme activities, net H2O2 effluxes, and Ca2+ influxes in trifoliate orange roots under drought stress. Mycorrhiza 25, 143–152. doi: 10.1007/s00572-014-0598-z PubMed DOI