Quantification of volatile metabolites in exhaled breath by selected ion flow tube mass spectrometry, SIFT-MS
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
34820516
PubMed Central
PMC8601014
DOI
10.1016/j.clinms.2020.02.001
PII: S2376-9998(20)30004-0
Knihovny.cz E-zdroje
- Klíčová slova
- Biomarkers, Breath VOCs, Metabolites, SIFT-MS,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Selected ion flow tube mass spectrometry, SIFT-MS, is a non-separative method for direct quantitative analyses of volatile compounds, VOCs, in air and humid breath based on chemical ionization. Selected reagent ions, either H3O+, NO+ or O2 + (non-reactive with major components of air), ionize analyte molecules during a defined time in a flow tube by ion-molecule reactions thus producing analyte ions that are characteristic of the neutral analyte VOCs. Concentrations can be calculated in real-time from the ion count rates. Direct on-line analysis of single or multiple breath exhalations or off-line analysis of breath samples collected into bags can be performed. Several volatile breath metabolites have been quantified by SIFT-MS, including ammonia, acetone, hydrogen cyanide, alcohols, pentane, acetic acid, methane, and sulphur compounds. Their potential as biomarkers is discussed.
Zobrazit více v PubMed
Turner C. Techniques and issues in breath and clinical sample headspace analysis for disease diagnosis. Bioanalysis. 2016;8:677–690. doi: 10.4155/bio.16.22. PubMed DOI
Casas-Ferreira A.M., del Nogal-Sanchez M., Perez-Pavon J.L., Moreno-Cordero B. Non-separative mass spectrometry methods for non-invasive medical diagnostics based on volatile organic compounds: a review. Anal. Chim. Acta. 2019;1045:10–22. doi: 10.1016/j.aca.2018.07.005. PubMed DOI
Smith D., Španěl P., Herbig J., Beauchamp J. Mass spectrometry for real-time quantitative breath analysis. J. Breath Res. 2014;8 doi: 10.1088/1752-7155/8/2/027101. PubMed DOI
Sinues P.M.L., Kohler M., Zenobi R. Monitoring diurnal changes in exhaled human breath. Anal. Chem. 2013;85:369–373. doi: 10.1021/ac3029097. PubMed DOI
Španěl P., Smith D. Progress in SIFT-MS; breath analysis and other applications. Mass Spectrom. Rev. 2011;30:236–267. doi: 10.1002/mas.20303. PubMed DOI
Smith D., Španěl P. Selected ion flow tube mass spectrometry (SIFT-MS) for on-line trace gas analysis. Mass Spectrom. Rev. 2005;24:661–700. doi: 10.1002/mas.20033. PubMed DOI
Smith D., Španěl P. Ambient analysis of trace compounds in gaseous media by SIFT-MS. Analyst. 2011;136:2009–2032. doi: 10.1039/c1an15082k. PubMed DOI
Hera D., Langford V.S., McEwan M.J., McKellar T.I., Milligan D.B. Negative reagent ions for real time detection using SIFT-MS. Environments. 2017;4:16. doi: 10.3390/environments4010016. DOI
Španěl P., Dryahina K., Smith D. A general method for the calculation of absolute trace gas concentrations in air and breath from selected ion flow tube mass spectrometry data. Int. J. Mass Spectrom. 2006;249:230–239. doi: 10.1016/j.ijms.2005.12.024. DOI
Španěl P., Smith D. Advances in on-line absolute trace gas analysis by SIFT-MS. Curr. Anal. Chem. 2013;9:525–539.
Spanel P., Zabka J., Zymak I., Smith D. Selected ion flow tube study of the reactions of H3O+ and NO+ with a series of primary alcohols in the presence of water vapour in support of selected ion flow tube mass spectrometry. Rapid Commun. Mass Spectrom. 2017;31:437–446. doi: 10.1002/rcm.7811. PubMed DOI
Smith D., Chippendale T.W.E., Španěl P. Reactions of the selected ion flow tube mass spectrometry reagent ions H3O+ and NO+ with a series of volatile aldehydes of biogenic significance. Rapid Commun. Mass Spectrom. 2014;28:1917–1928. doi: 10.1002/Rcm.6977. PubMed DOI
Španěl P., Smith D. Influence of weakly bound adduct ions on breath trace gas analysis by selected ion flow tube mass spectrometry (SIFT-MS) Int. J. Mass Spectrom. 2009;280:128–135. doi: 10.1016/j.ijms.2008.07.021. DOI
Zhu J.H., Nones C., Li Y., Milligan D., Prince B., Polster M., Dearth M. Ultra-trace real time VOC measurements by SIFT-MS for VIAQ. SAE Int. J. Engines. 2017;10:1815–1819. doi: 10.4271/2017-01-0989. DOI
Smith D., Spanel P. Pitfalls in the analysis of volatile breath biomarkers: suggested solutions and SIFT-MS quantification of single metabolites. J. Breath Res. 2015;9:11. doi: 10.1088/1752-7155/9/2/022001. PubMed DOI
Wondimu T., Wang R., Ross B. Hydrogen sulphide in human nasal air quantified using thermal desorption and selected ion flow tube mass spectrometry. J. Breath Res. 2014;8:8. doi: 10.1088/1752-7155/8/3/036002. PubMed DOI
Dummer J., Storer M., Sturney S., Scott-Thomas A., Chambers S., Swanney M., Epton M. Quantification of hydrogen cyanide (HCN) in breath using selected ion flow tube mass spectrometry-HCN is not a biomarker of Pseudomonas in chronic suppurative lung disease. J. Breath Res. 2013;7 doi: 10.1088/1752-7155/7/1/017105. PubMed DOI
Smith D., Chippendale T.W.E., Dryahina K., Španěl P. SIFT-MS analysis of nose-exhaled breath; mouth contamination and the influence of exercise. Curr. Anal. Chem. 2013;9:565–575.
Smith D., Španěl P. Pitfalls in the analysis of volatile breath biomarkers; suggested solutions and SIFT-MS quantification of single metabolites. J. Breath Res. 2015;9 PubMed
Davies S.J., Španěl P., Smith D. Breath analysis of ammonia, volatile organic compounds and deuterated water vapor in chronic kidney disease and during dialysis. Bioanalysis. 2014;6:843–857. PubMed
Spanel P., Smith D. What is the real utility of breath ammonia concentration measurements in medicine and physiology? J. Breath Res. 2018;12 doi: 10.1088/1752-7163/aa907f. PubMed DOI
Ross B.M., Babgi R. Volatile compounds in blood headspace and nasal breath. J. Breath Res. 2017;11 doi: 10.1088/1752-7163/aa7d10. PubMed DOI
Smith D., Turner C., Španěl P. Volatile metabolites in the exhaled breath of healthy volunteers: their levels and distributions. J. Breath Res. 2007;1 doi: 10.1088/1752-7155/1/1/014004. PubMed DOI
Smith D., Španěl P., Davies S. Trace gases in breath of healthy volunteers when fasting and after a protein-calorie meal: a preliminary study. J. Appl. Physiol. 1999;87:1584–1588. PubMed
C. Penault, P. Španěl, D. Smith, Detection of H-pylori infection by breath ammonia following urea ingestion, in: Breath Analysis: for Clinical Diagnosis and Therapeutic Monitoring, A. Amann, D. Smith (Eds.), 2005, pp. 393–399.
Davies S., Španěl P., Smith D. Quantitative analysis of ammonia on the breath of patients in end-stage renal failure. Kidney Int. 1997;52:223–228. PubMed
Španěl P., Dryahina K., Smith D. A quantitative study of the influence of inhaled compounds on their concentrations in exhaled breath. J. Breath Res. 2013;7 doi: 10.1088/1752-7155/7/1/017106. PubMed DOI
Laffel L. Ketone bodies: a review of physiology, pathophysiology and application of monitoring to diabetes. Diabetes-Metab. Res. Rev. 1999;15:412–426. PubMed
Smith D., Španěl P., Fryer A.A., Hanna F., Ferns G.A.A. Can volatile compounds in exhaled breath be used to monitor control in diabetes mellitus? J. Breath Res. 2011;5 doi: 10.1088/1752-7155/5/2/022001. PubMed DOI
Walton C., Patel M., Pitts D., Knight P., Hoashi S., Evans M., Turner C. The use of a portable breath analysis device in monitoring type 1 diabetes patients in a hypoglycaemic clamp: validation with SIFT-MS data. J. Breath Res. 2014;8 doi: 10.1088/1752-7155/8/3/037108. PubMed DOI
Španěl P., Dryahina K., Rejskova A., Chippendale T.W.E., Smith D. Breath acetone concentration; biological variability and the influence of diet. Physiol. Meas. 2011;32:N23–N31. doi: 10.1088/0967-3334/32/8/n01. PubMed DOI
Ajibola O.A., Smith D., Španěl P., Ferns G.A.A. Effects of dietary nutrients on volatile breath metabolites. J. Nutr. Sci. 2013:e34. doi: 10.1017/jns.2013.26. PubMed DOI PMC
Turner C. Potential of breath and skin analysis for monitoring blood glucose concentration in diabetes. Expert. Rev. Mol. Diagn. 2011;11:497–503. doi: 10.1586/erm.11.31. PubMed DOI
Boshier P.R., Fehervari M., Markar S.R., Purkayastha S., Spanel P., Smith D., Hanna G.B. Variation in exhaled acetone and other ketones in patients undergoing bariatric surgery: a prospective cross-sectional study. Obes. Surg. 2018;28:2439–2446. doi: 10.1007/s11695-018-3180-5. PubMed DOI
Carroll W., Lenney W., Wang T.S., Španěl P., Alcock A., Smith D. Detection of volatile compounds emitted by Pseudomonas aeruginosa using selected ion flow tube mass spectrometry. Pediatr. Pulmonol. 2005;39:452–456. doi: 10.1002/ppul.20170. PubMed DOI
Smith D., Španěl P., Gilchrist F.J., Lenney W. Hydrogen cyanide, a volatile biomarker of Pseudomonas aeruginosa infection. J. Breath Res. 2013;7 doi: 10.1088/1752-7155/7/4/044001. PubMed DOI
Wang T.S., Pysanenko A., Dryahina K., Španěl P., Smith D. Analysis of breath, exhaled via the mouth and nose, and the air in the oral cavity. J. Breath Res. 2008;2 doi: 10.1088/1752-7155/2/3/037013. PubMed DOI
Gilchrist F.J., Bright-Thomas R.J., Jones A.M., Smith D., Španěl P., Webb A.K., Lenney W. Hydrogen cyanide concentrations in the breath of adult cystic fibrosis patients with and without Pseudomonas aeruginosa infection. J. Breath Res. 2013;7 doi: 10.1088/1752-7155/7/2/026010. PubMed DOI
Gilchrist F.J., Alcock A., Belcher J., Brady M., Jones A., Smith D., Španěl P., Webb K., Lenney W. Variation in hydrogen cyanide production between different strains of Pseudomonas aeruginosa. Eur. Respir. J. 2011;38:409–414. doi: 10.1183/09031936.00166510. PubMed DOI
Shestivska V., Nemec A., Drevinek P., Sovová K., Dryahina K., Španěl P. Quantification of methyl thiocyanate in the headspace of Pseudomonas aeruginosa cultures and in the breath of cystic fibrosis patients by selected ion flow tube mass spectrometry. Rapid. Commun. Mass Spectrom. 2011;25:2459–2467. doi: 10.1002/rcm.5146. PubMed DOI
Gilchrist F.J., Sims H., Alcock A., Belcher J., Jones A.M., Smith D., Španěl P., Webb A.K., Lenney W. Quantification of hydrogen cyanide and 2-aminoacetophenone in the headspace of Pseudomonas aeruginosa cultured under biofilm and planktonic conditions. Anal. Methods. 2012;4:3661–3665. doi: 10.1039/c2ay25652e. DOI
Gilchrist F.J., Belcher J., Jones A.M., Smith D., Smyth A.R., Southern K.W., Španěl P., Webb A.K., Lenney W. Exhaled breath hydrogen cyanide as a marker of early Pseudomonas aeruginosa infection in children with cystic fibrosis. ERJ Open Res. 2015;1:00044–02015. doi: 10.1183/23120541.00044-2015. PubMed DOI PMC
Shestivska V., Španěl P., Dryahina K., Sovová K., Smith D., Musilek M., Nemec A. Variability in the concentrations of volatile metabolites emitted by genotypically different strains of Pseudomonas aeruginosa. J. Appl. Microbiol. 2012;113:701–713. doi: 10.1111/j.1365-2672.2012.05370.x. PubMed DOI
Turner C., Španěl P., Smith D. A longitudinal study of ethanol and acetaldehyde in the exhaled breath of healthy volunteers using selected-ion flow-tube mass spectrometry. Rapid. Commun. Mass Spectrom. 2006;20:61–68. doi: 10.1002/rcm.2275. PubMed DOI
Španěl P., Turner C., Wang T.S., Bloor R., Smith D. Generation of volatile compounds on mouth exposure to urea and sucrose: implications for exhaled breath analysis. Physiol. Meas. 2006;27:N7–N17. doi: 10.1088/0967-3334/27/2/n01. PubMed DOI
Spanel P., Dryahina K., Vicherková P., Smith D. Increase of methanol in exhaled breath quantified by SIFT-MS following aspartame ingestion. J. Breath Res. 2015;9 PubMed
Smith D., Pysanenko A., Španěl P. Kinetics of ethanol decay in mouth- and nose-exhaled breath measured on-line by selected ion flow tube mass spectrometry following varying doses of alcohol. Rapid. Commun. Mass Spectrom. 2010;24:1066–1074. doi: 10.1002/rcm.4481. PubMed DOI
Pysanenko A., Španěl P., Smith D. Analysis of the isobaric compounds propanol, acetic acid and methyl formate in humid air and breath by selected ion flow tube mass spectrometry SIFT-MS. Int. J. Mass Spectrom. 2009;285:42–48. doi: 10.1016/j.ijms.2009.04.002. DOI
Španěl P., Wang T.S., Smith D. A selected ion flow tube, SIFT, study of the reactions of H3O+, NO+ and O2+ ions with a series of diols. Int. J. Mass Spectrom. 2002;218:227–236.
Krautt J.A., Kurtztt I. Toxic alcohol ingestions: clinical features, diagnosis, and management. Clin. J. Am. Soc. Nephrol. 2008;3:208–225. doi: 10.2215/cjn.03220807. PubMed DOI
Kurada S., Alkhouri N., Fiocchi C., Dweik R., Rieder F. Review article: breath analysis in inflammatory bowel diseases. Aliment Pharmacol. Ther. 2015;41:329–341. doi: 10.1111/apt.13050. PubMed DOI
Patel N., Alkhouri N., Eng K., Cikach F., Mahajan L., Yan C., Grove D., Rome E.S., Lopez R., Dweik R.A. Metabolomic analysis of breath volatile organic compounds reveals unique breathprints in children with inflammatory bowel disease: a pilot study. Aliment Pharmacol. Ther. 2014;40:498–507. doi: 10.1111/apt.12861. PubMed DOI PMC
Strober W., Fuss I., Mannon P. The fundamental basis of inflammatory bowel disease. J. Clin. Invest. 2007;117:514–521. PubMed PMC
Dryahina K., Španěl P., Pospisilova V., Sovova K., Hrdlicka L., Machkova N., Lukas M., Smith D. Quantification of pentane in exhaled breath, a potential biomarker of bowel disease, using selected ion flow tube mass spectrometry. Rapid. Commun. Mass Spectrom. 2013;27:1983–1992. doi: 10.1002/rcm.6660. PubMed DOI
Dryahina K., Smith D., Bortlík M., Machková N., Lukáš M., Španěl P. Pentane and other volatile organic compounds, including carboxylic acids, in the exhaled breath of patients with Crohn’s disease and ulcerative colitis. J. Breath Res. 2017;12 PubMed
Shaker M., Hunt J. An economic analysis of an acid-reflux breath test in the evaluation of chronic cough. J. Breath Res. 2008;2 doi: 10.1088/1752-7155/2/3/037006. PubMed DOI
Dryahina K., Pospisilova V., Sovova K., Shestivska V., Kubista J., Spesyvyi A., Pehal F., Turzikova J., Votruba J., Spanel P. Exhaled breath concentrations of acetic acid vapour in gastro-esophageal reflux disease. J. Breath Res. 2014;8 doi: 10.1088/1752-7155/8/3/037109. PubMed DOI
Smith D., Sovová K., Dryahina K., Doušová T., Dřevínek P., Španěl P. Breath concentration of acetic acid vapour is elevated in patients with cystic fibrosis. J. Breath Res. 2016;10 PubMed
Španěl P., Sovová K., Dryahina K., Doušová T., Dřevínek P., Smith D. Acetic acid is elevated in the exhaled breath of cystic fibrosis patients. J. Cyst. Fibros. 2017;16:e17–e18. doi: 10.1016/j.jcf.2017.02.001. PubMed DOI
Pysanenko A., Španěl P., Smith D. A study of sulfur-containing compounds in mouth- and nose-exhaled breath and in the oral cavity using selected ion flow tube mass spectrometry. J. Breath Res. 2008;2 doi: 10.1088/1752-7155/2/4/046004. PubMed DOI
Alkhouri N., Cikach F., Eng K., Moses J., Patel N., Yan C., Hanouneh I., Grove D., Lopez R., Dweik R. Analysis of breath volatile organic compounds as a noninvasive tool to diagnose nonalcoholic fatty liver disease in children. Eur. J. Gastroenterol. Hepatol. 2014;26:82–87. doi: 10.1097/MEG.0b013e3283650669. PubMed DOI
Chan C., Smith D., Španěl P., McIntyre C.W., Davies S.J. A non-invasive, on-line deuterium dilution technique for the measurement of total body water in haemodialysis patients. Nephrol. Dial. Transplant. 2008;23:2064–2070. doi: 10.1093/ndt/gfn045. PubMed DOI PMC
Davies S.J., Engel B., Chan C., Tan B.K., Yu Z.Z., Asghar R., John B., Španěl P., Smith D. Breath analysis and the measurement of total body water using isotope dilution - applications in the dialysis clinic. Curr. Anal. Chem. 2013;9:593–599.
Spesyvyi A., Smith D., Spanel P. Selected ion flow-drift tube mass spectrometry: quantification of volatile compounds in air and breath. Anal. Chem. 2015;87:12151–12160. doi: 10.1021/acs.analchem.5b02994. PubMed DOI
Guntner A.T., Abegg S., Konigstein K., Gerber P.A., Schmidt-Trucksass A., Pratsinis S.E. Breath sensors for health monitoring. ACS Sensors. 2019;4:268–280. doi: 10.1021/acssensors.8b00937. PubMed DOI
Recent developments and applications of selected ion flow tube mass spectrometry (SIFT-MS)