Recent developments and applications of selected ion flow tube mass spectrometry (SIFT-MS)
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
36776107
PubMed Central
PMC11792439
DOI
10.1002/mas.21835
Knihovny.cz E-zdroje
- Klíčová slova
- SIFT‐MS, VOCs, cation and anion gas phase chemistry, nitrogen carrier gas, selected ion flow tube mass spectrometry, volatile organic compounds,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Selected ion flow tube mass spectrometry (SIFT-MS) is now recognized as the most versatile analytical technique for the identification and quantification of trace gases down to the parts-per-trillion by volume, pptv, range. This statement is supported by the wide reach of its applications, from real-time analysis, obviating sample collection of very humid exhaled breath, to its adoption in industrial scenarios for air quality monitoring. This review touches on the recent extensions to the underpinning ion chemistry kinetics library and the alternative challenge of using nitrogen carrier gas instead of helium. The addition of reagent anions in the Voice200 series of SIFT-MS instruments has enhanced the analytical capability, thus allowing analyses of volatile trace compounds in humid air that cannot be analyzed using reagent cations alone, as clarified by outlining the anion chemistry involved. Case studies are reviewed of breath analysis and bacterial culture volatile organic compound (VOC), emissions, environmental applications such as air, water, and soil analysis, workplace safety such as transport container fumigants, airborne contamination in semiconductor fabrication, food flavor and spoilage, drugs contamination and VOC emissions from packaging to demonstrate the stated qualities and uniqueness of the new generation SIFT-MS instrumentation. Finally, some advancements that can be made to improve the analytical capability and reach of SIFT-MS are mentioned.
Department of Chemistry University of Canterbury Christchurch New Zealand
J Heyrovský Institute of Physical Chemistry Czech Academy of Sciences Prague Czechia
Zobrazit více v PubMed
Adams NG, Smith D. Selected ion flow tube (SIFT)—technique for studying ion‐neutral reactions. Int. J. Mass Spectrom. Ion Process. 1976;21:349‐359. 10.1016/0020-7381(76)80133-7 DOI
Adams NG, Smith D, Paulson JF. An experimental survey of the reactions of NHn + ions (n = 0 to 4) with several diatomic and polyatomic molecules at 300 K. J. Chem. Phys. 1980;72:288‐297. 10.1063/1.438893 DOI
Ajibola OA, Smith D, Španěl P, Ferns GAA. Effects of dietary nutrients on volatile breath metabolites. J. Nutritional Sci. 2013;2:e34. 10.1017/jns.2013.26 PubMed DOI PMC
Allen ND, Perkins M, Bacquart T, Li J. Determining modified reaction parameters for the real‐time measurement of BTEX in biogas and nitrogen using selected ion flow tube mass spectrometry (SIFT‐MS). Accreditation Qual. Assur. 2019;24:361‐368. 10.1007/s00769-019-01394-8 DOI
Allpress C, Crittenden D, Ma J, McEwan M, Robinson S, Wilson P, Wu M. Real‐time differentiation of ethylbenzene and the xylenes using selected ion flow tube mass spectrometry. Rapid Commun. Mass Spectrom. 2019;33:1844‐1849. 10.1002/rcm.8550 PubMed DOI
Baerenzung dit Baron T, Yobrégat O, Jacques A, Simon V, Geffroy O. A novel approach to discriminate the volatilome of Vitis vinifera berries by selected ion flow tube mass spectrometry analysis and chemometrics. Food Res. Int. 2022;157:111434. 10.1016/j.foodres.2022.111434 PubMed DOI
Barringer S. From mold worms to fake honey: using SIFT‐MS to improve food quality. In: Beauchamp JD, ed. Dynamic Flavor: Capturing Aroma Using Real‐Time Mass Spectrometry. American Chemical Society; 2021:99‐105. 10.1021/bk-2021-1402.ch008 DOI
Baur X, Poschadel B, Budnik LT. High frequency of fumigants and other toxic gases in imported freight containers—an underestimated occupational and community health risk. Occup. Environ. Med. 2010;67:207‐212. 10.1136/oem.2008.043893 PubMed DOI
Beauchamp J, Davis C, Pleil J. 2020. Breathborne Biomarkers and the Human Volatilome: Elsevier Science. 10.1016/C2018-0-04980-4 DOI
Belluomo I, Boshier PR, Myridakis A, Vadhwana B, Markar SR, Spanel P, Hanna GB. Selected ion flow tube mass spectrometry for targeted analysis of volatile organic compounds in human breath. Nat. Protoc. 2021;16:3419‐3438. 10.1038/s41596-021-00542-0 PubMed DOI
Biba E, Perkins M, Langford V. Stimuli to the revision process: high‐throughput residual solvent analysis using selected ion flow tube mass spectrometry (SIFT‐MS). United States Pharmacopeia. Pharmacopeial Forum 2021;47:1.
Bierbaum VM. Go with the flow: fifty years of innovation and ion chemistry using the flowing afterglow. Int. J. Mass Spectrom. 2015;377:456‐466. 10.1016/j.ijms.2014.07.021 DOI
Borras E, Tortajada‐Genaro LA, Rodenas M, Vera T, Speak T, Seakins P, Shaw MD, Lewis AC, Munoz A. On‐line solid phase microextraction derivatization for the sensitive determination of multi‐oxygenated volatile compounds in air. Atmos. Meas. Tech. 2021;14:4989‐4999. 10.5194/amt-14-4989-2021 DOI
Boshier PR, Cushnir JR, Mistry V, Knaggs A, Španěl P, Smith D, Hanna GB. On‐line, real time monitoring of exhaled trace gases by SIFT‐MS in the perioperative setting: a feasibility study. Analyst 2011;136:3233‐3237. 10.1039/c1an15356k PubMed DOI
Bouchoux G, Salpin JY, Leblanc D. A relationship between the kinetics and thermochemistry of proton transfer reactions in the gas phase. Int. J. Mass Spectrom. Ion Process. 1996;153:37‐48. 10.1016/0168-1176(95)04353-5 DOI
Bruneel J, Follert JLH, Laforce B, Vincze L, Van Langenhove H, Walgraeve C. Dynamic performance of a fungal biofilter packed with perlite for the abatement of hexane polluted gas streams using SIFT‐MS and packing characterization with advanced X‐ray spectroscopy. Chemosphere 2020;253:126684. 10.1016/j.chemosphere.2020.126684 PubMed DOI
Bruneel J, Walgraeve C, Dumortier S, Stockman J, Demeyer P, Van Langenhove H. Increasing mass transfer of volatile organic compounds in air scrubbers: a fundamental study for different gas‐liquid systems. J. Chem. Technol. Biotechnol. 2018;93:1468‐1476. 10.1002/jctb.5515 DOI
Bruneel J, Walgraeve C, Mukurarinda J, Boon N, Van Langenhove H. Biofiltration of hexane, acetone and dimethyl sulphide using wood, compost and silicone foam. J. Chem. Technol. Biotechnol. 2018;93:2234‐2243. 10.1002/jctb.5566 DOI
Bruneel J, Walgraeve C, Van Huffel K, Van Langenhove H. Determination of the gas‐to‐liquid partitioning coefficients using a new dynamic absorption method (DynAb method). Chem. Eng. J. 2016;283:544‐552. 10.1016/j.cej.2015.07.053 DOI
Bryant DJ, Dixon WJ, Hopkins JR, Dunmore RE, Pereira K, Shaw M, Squires FA, Bannan TJ, Mehra A, Worrall SD, Bacak A, Coe H, Percival CJ, Whalley LK, Heard DE, Slater EJ, Ouyang B, Cui TQ, Surratt JD, Liu D, Shi ZB, Harrison R, Sun YL, Xu WQ, Lewis AC, Lee JD, Rickard AR, Hamilton JF. Strong anthropogenic control of secondary organic aerosol formation from isoprene in Beijing. Atmos. Chem. Phys. 2020;20:7531‐7552. 10.5194/acp-20-7531-2020 DOI
Carroll W, Lenney W, Wang TS, Španěl P, Alcock A, Smith D. Detection of volatile compounds emitted by Pseudomonas aeruginosa using selected ion flow tube mass spectrometry. Pediatr. Pulmonol. 2005;39:452‐456. 10.1002/ppul.20170 PubMed DOI
Castada HZ, Barringer SA. Online, real‐time, and direct use of SIFT‐MS to measure garlic breath deodorization: a review. Flavour Fragr. J. 2019;34:299‐306. 10.1002/ffj.3503 DOI
Castada HZ, Sun ZY, Barringer SA, Huang XS. Thermal degradation of p‐hydroxybenzoic acid in macadamia nut oil, olive oil, and corn oil. J. Am. Oil Chem. Soc. 2020;97:289‐300. 10.1002/aocs.12331 DOI
Castelvetro V, Corti A, Biale G, Ceccarini A, Degano I, La Nasa J, Lomonaco T, Manariti A, Manco E, Modugno F, Vinciguerra V. New methodologies for the detection, identification, and quantification of microplastics and their environmental degradation by‐products. Environ. Sci. Pollut. Res. 2021;28:46764‐46780. 10.1007/s11356-021-12466-z PubMed DOI PMC
Chippendale TWE, Gilchrist FJ, Španěl P, Alcock A, Lenney W, Smith D. Quantification by SIFT‐MS of volatile compounds emitted by Aspergillus fumigatus cultures and in co‐culture with Pseudomonas aeruginosa, Staphylococcus aureus and Streptococcus pneumoniae. Anal. Methods 2014a;6:8154‐8164. 10.1039/C4ay01217h DOI
Chippendale TWE, Gilchrist FJ, Španěl P, Alcock A, Lenney W, Smith D. Quantification by SIFT‐MS of volatile compounds emitted by in vitro cultures of S. aureus, S. pneumoniae, and H. influenzae isolated from patients with respiratory diseases. Anal. Methods 2014b;6:2460‐2472. 10.1039/C4ay00209a DOI
Chippendale TWE, Španěl P, Smith D. Time‐resolved selected ion flow tube mass spectrometric quantification of the volatile compounds generated by E. coli JM109 cultured in two different media. Rapid Commun. Mass Spectrom. 2011;25:2163‐2172. 10.1002/rcm.5099 PubMed DOI
Civiš M, Civiš S, Sovová K, Dryahina K, Španěl P, Kyncl M. Laser ablation of FOX‐7: proposed mechanism of decomposition. Anal. Chem. 2011;83:1069‐1077. 10.1021/ac1028769 PubMed DOI
Civis S, Civis M, Sovova K, Dryahina K, Kubista J, Skrehot P, Španěl P, Kyncl M. Selected ion flow tube mass spectrometry analyses of laser decomposition products of a range of explosives and ballistic propellants. Anal. Methods 2016;8:1145‐1150. 10.1039/c5ay03039k DOI
Crilley LR, Kramer LJ, Ouyang B, Duan J, Zhang WQ, Tong SR, Ge MF, Tang K, Qin M, Xe PH, Shaw M, Lewis AC, Mehra A, Bannan TJ, Worrall SD, Priestley M, Bacak A, Coe H, Allan J, Percival CJ, Popoola OAM, Jones RL, Bloss WJ. Intercomparison of nitrous acid (HONO) measurement techniques in a megacity (Beijing). Atmos. Meas. Tech. 2019;12:6449‐6463. 10.5194/amt-12-6449-2019 DOI
Custer TG, Kato S, Fall R, Bierbaum VM. Negative‐ion CIMS: analysis of volatile leaf wound compounds including HCN. Int. J. Mass Spectrom. 2003;223‐224:427‐446. 10.1016/S1387-3806(02)00930-2 DOI
Dalsvåg H, Cropotova J, Jambrak AR, Janči T, Španěl P, Dryahina K, Smith D, Rustad T. Mass spectrometric quantification of volatile compounds released by fresh Atlantic salmon stored at 4°C under modified atmosphere packaging and vacuum packaging for up to 16 days. ACS Food Sci. Technol. 2022;2:400‐414. 10.1021/acsfoodscitech.1c00259 DOI
Davies SJ, Španěl P, Smith D. Breath analysis of ammonia, volatile organic compounds and deuterated water vapor in chronic kidney disease and during dialysis. Bioanalysis 2014;6:843‐857. PubMed
Den W, Hu SC, Garza CM, Zargar OA. Review‐airborne molecular contamination: recent developments in the understanding and minimization for advanced semiconductor device manufacturing. Ecs J. Solid State Sci. Technol. 2020;9:064003. 10.1149/2162-8777/aba080 DOI
DePuy C, Bierbaum V, Flippin L, Grabowski J, King G, Schmitt R, Sullivan S. Gas‐phase reactions of anions with substituted silanes. J. Am. Chem. Soc. 1980;102:5012‐5015.
DePuy CH, Bierbaum VM. 1987. Proton Transfer Reactions of Anions. In: Ausloos P, Lias SG, Editors. Structure/Reactivity and Thermochemistry of Ions. Dordrecht: Springer Netherlands. p 293‐303. 10.1007/978-94-009-3787-1_15 DOI
DePuy CH, Grabowski JJ, Bierbaum VM. Chemical reactions of anions in the gas‐phase. Science 1982;218:955‐960. 10.1126/science.218.4576.955 PubMed DOI
Doepke A, Streicher RP. Source apportionment and quantification of liquid and headspace leaks from closed system drug‐transfer devices via selected ion flow tube mass spectrometry (SIFT‐MS). Plos One 2021;16:e0258425. 10.1371/journal.pone.0258425 PubMed DOI PMC
Dryahina K, Pospisilova V, Sovova K, Shestivska V, Kubista J, Spesyvyi A, Pehal F, Turzikova J, Votruba J, Španěl P. Exhaled breath concentrations of acetic acid vapour in gastro‐esophageal reflux disease. J. Breath Res. 2014;8:037109. 10.1088/1752-7155/8/3/037109 PubMed DOI
Dryahina K, Smith D, Bortlik M, Machkova N, Lukas M, Španěl P. Pentane and other volatile organic compounds, including carboxylic acids, in the exhaled breath of patients with Crohn's disease and ulcerative colitis. J. Breath Res. 2018;12:016002. 10.1088/1752-7163/aa8468 PubMed DOI
Dryahina K, Smith D, Španěl P. Quantification of methane in humid air and exhaled breath using selected ion flow tube mass spectrometry. Rapid Commun. Mass Spectrom. 2010;24:1296‐1304. 10.1002/rcm.4513 PubMed DOI
Dryahina K, Smith D, Španěl P. Quantification of volatile compounds released by roasted coffee by selected ion flow tube mass spectrometry. Rapid Commun. Mass Spectrom. 2018;32:739‐750. 10.1002/rcm.8095 PubMed DOI
Dryahina K, Som S, Smith D, Španěl P. Characterization of spoilage‐related volatile organic compounds in packaged leaf salads. Flavour Fragr. J. 2020;35:24‐33. 10.1002/ffj.3535 DOI
Dryahina K, Španěl P, Pospisilova V, Sovova K, Hrdlicka L, Machkova N, Lukas M, Smith D. Quantification of pentane in exhaled breath, a potential biomarker of bowel disease, using selected ion flow tube mass spectrometry. Rapid Commun. Mass Spectrom. 2013;27:1983‐1992. 10.1002/rcm.6660 PubMed DOI
Dummer J, Storer M, Sturney S, Scott‐Thomas A, Chambers S, Swanney M, Epton M. Quantification of hydrogen cyanide (HCN) in breath using selected ion flow tube mass spectrometry‐HCN is not a biomarker of Pseudomonas in chronic suppurative lung disease. J. Breath Res. 2013;7:017105. 10.1088/1752-7155/7/1/017105 PubMed DOI
EPA . 1999. Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. United States Environmental Protection Agency Ohio.
Francis GJ, Milligan DB, McEwan MJ. Detection and quantification of chemical warfare agent precursors and surrogates by selected ion flow tube mass spectrometry. Anal. Chem. 2009;81:8892‐8899. 10.1021/ac901486c PubMed DOI
Geeraerts W, Borremans W, De Vuyst L, Leroy F, Van Kerrebroeck S. The application of selected ion flow tube‐mass spectrometry to follow volatile formation in modified‐atmosphere‐packaged cooked ham. Food Res. Int. 2019;123:601‐611. 10.1016/j.foodres.2019.05.035 PubMed DOI
Ghislain M, Costarramone N, Sotiropoulos JM, Pigot T, Van Den Berg R, Lacombe S, Le Bechec M. Direct analysis of aldehydes and carboxylic acids in the gas phase by negative ionization selected ion flow tube mass spectrometry: quantification and modelling of ion‐molecule reactions. Rapid Commun. Mass Spectrom. 2019;33:1623‐1634. 10.1002/rcm.8504 PubMed DOI
Ghislain M, Reyrolle M, Sotiropoulos JM, Pigot T, Plaisance H, Le Bechec M. Study of the chemical ionization of organophosphate esters in air using selected ion flow tube‐mass spectrometry for direct analysis. J. Am. Soc. Mass Spectrom. 2022;33:865‐874. 10.1021/jasms.2c00060 PubMed DOI
Gilchrist FJ, Alcock A, Belcher J, Brady M, Jones A, Smith D, Španěl P, Webb K, Lenney W. Variation in hydrogen cyanide production between different strains of Pseudomonas aeruginosa. Eur. Respir. J. 2011;38:409‐414. 10.1183/09031936.00166510 PubMed DOI
Gilchrist FJ, Belcher J, Jones AM, Smith D, Smyth AR, Southern KW, Španěl P, Webb AK, Lenney W. Exhaled breath hydrogen cyanide as a marker of early Pseudomonas aeruginosa infection in children with cystic fibrosis. ERJ Open Res. 2015;1:00044‐02015. 10.1183/23120541.00044-2015 PubMed DOI PMC
Gilchrist FJ, Bright‐Thomas RJ, Jones AM, Smith D, Španěl P, Webb AK, Lenney W. Hydrogen cyanide concentrations in the breath of adult cystic fibrosis patients with and without Pseudomonas aeruginosa infection. J. Breath Res. 2013;7:026010. 10.1088/1752-7155/7/2/026010 PubMed DOI
Gilchrist FJ, Sims H, Alcock A, Belcher J, Jones AM, Smith D, Španěl P, Webb AK, Lenney W. Quantification of hydrogen cyanide and 2‐aminoacetophenone in the headspace of Pseudomonas aeruginosa cultured under biofilm and planktonic conditions. Anal. Methods 2012;4:3661‐3665. 10.1039/c2ay25652e DOI
Gilchrist FJ, Španěl P, Smith D, Lenney W. The in vitro identification and quantification of volatile biomarkers released by cystic fibrosis pathogens. Anal. Methods 2015;7:818‐824. 10.1039/c4ay02981j DOI
Haick H, Broza YY, Mochalski P, Ruzsanyi V, Amann A. Assessment, origin, and implementation of breath volatile cancer markers. Chem. Soc. Rev. 2014;43:1423‐1449. 10.1039/c3cs60329f PubMed DOI PMC
Hastie C, Thompson A, Perkins M, Langford VS, Eddleston M, Homer NZM. Selected ion flow tube‐mass spectrometry (SIFT‐MS) as an alternative to gas chromatography/mass spectrometry (GC/MS) for the analysis of cyclohexanone and cyclohexanol in plasma. Acs Omega 2021;6:32818‐32822. 10.1021/acsomega.1c03827 PubMed DOI PMC
Hegen O, Gomez JIS, Schlogl R, Ruland H. The potential of NO+ and O2 +• in switchable reagent ion proton transfer reaction time‐of‐flight mass spectrometry. Mass Spectrom. Rev. 2022:e21770. 10.1002/mas.21770 PubMed DOI
Hera D, Langford VS, McEwan MJ, McKellar TI, Milligan DB. Negative reagent ions for real time detection using SIFT‐MS. Environments 2017;4:16. 10.3390/environments4010016 DOI
Hermabessiere L, Himber C, Boricaud B, Kazour M, Amara R, Cassone A‐L, Laurentie M, Paul‐Pont I, Soudant P, Dehaut A, Duflos G. Optimization, performance, and application of a pyrolysis‐GC/MS method for the identification of microplastics. Anal. Bioanal. Chem. 2018;410:6663‐6676. 10.1007/s00216-018-1279-0 PubMed DOI
Heynderickx PM, Španěl P, Van Langenhove H. Quantification of octanol‐water partition coefficients of several aldehydes in a bubble column using selected ion flow tube mass spectrometry. Fluid Phase Equilibria 2014;367:22‐28. 10.1016/j.fluid.2014.01.017 DOI
Heynderickx PM, Van Huffel K, Dewulf J, Van Langenhove H. 2012. SIFT‐MS for livestock emission characterization: application of similarity coefficients. In: DelRosso R, Pierucci S, Klemes JJ, Editors. Nose 2012: 3rd International Conference on Environmental Odour Monitoring and Control. p 157‐162. 10.3303/cet1230027 DOI
Heynderickx PM, Van Huffel K, Dewulf J, Van Langenhove H. Application of similarity coefficients to SIFT‐MS data for livestock emission characterization. Biosyst. Eng. 2013;114:44‐54. 10.1016/j.biosystemseng.2012.10.004 DOI
Hien TT, Huy DH, Dominutti PA, Chi NDT, Hopkins JR, Shaw M, Forster G, Mills G, Le HA, Oram D. Comprehensive volatile organic compound measurements and their implications for ground‐level ozone formation in the two main urban areas of Vietnam. Atmos. Environ. 2022;269:118872. 10.1016/j.atmosenv.2021.118872 DOI
Hinz R, 't Mannetje A, Glass B, McLean D, Douwes J. Airborne fumigants and residual chemicals in shipping containers arriving in New Zealand. Ann. Work Expo. Health 2022;66:481‐494. 10.1093/annweh/wxab090 PubMed DOI PMC
Hinz R, 't Mannetje A, Glass B, McLean D, Pearce N, Douwes J. Exposures to fumigants and residual chemicals in workers handling Cargo from shipping containers and export logs in New Zealand. Ann. Work Expo. Health 2020;64:826‐837. 10.1093/annweh/wxaa052 PubMed DOI
Hryniuk A, Ross BM. Detection of acetone and isoprene in human breath using a combination of thermal desorption and selected ion flow tube mass spectrometry. Int. J. Mass Spectrom. 2009;285:26‐30. 10.1016/j.ijms.2009.02.027 DOI
Hwang K, An JG, Lee S, Choi W, Yim UH. A study on the ozone formation potential of volatile organic compounds in Busan using SIFT‐MS. J. Korean Soc. Atmos. Environ. 2020;36:645‐668. 10.5572/Kosae.2020.36.5.645 DOI
ICH . 2005. International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use guideline: Validation of analytical procedures: text and methodology Q2 (R1).
Kaus C, Thomas B, Breuer D. Application of SIFT‐MS for selective real‐time online monitoring of dynamic test gas atmospheres and measurement of canister‐collected whole air samples. Gefahrst Reinhalt L. 2022;82:67‐73. 10.1002/rcm.4574 DOI
Keer S, Taptiklis P, Glass B, McLean D, McGlothlin JD, Douwes J. Determinants of airborne solvent exposure in the collision repair industry. Ann. Work Expos. Health 2018;62:871‐883. 10.1093/annweh/wxy047 PubMed DOI
Kharbach M, Kamal R, Mansouri MA, Marmouzi I, Viaene J, Cherrah Y, Alaoui K, Vercammen J, Bouklouze A, Vander Heyden Y. Selected‐ion flow‐tube mass‐spectrometry (SIFT‐MS) fingerprinting versus chemical profiling for geographic traceability of Moroccan Argan oils. Food Chem. 2018;263:8‐17. 10.1016/j.foodchem.2018.04.059 PubMed DOI
Kharbach M, Yu HW, Kamal R, Marmouzi I, Alaoui K, Vercammen J, Bouklouze A, Vander Heyden Y. Authentication of extra virgin Argan oil by selected‐ion flow‐tube mass‐spectrometry fingerprinting and chemometrics. Food Chem. 2022;383:132565. 10.1016/j.foodchem.2022.132565 PubMed DOI
Kim KJ, Kim HJ, Son D, Jeong NR, Yun HG, Han SW, You S, Kim C‐J, Lee SH. Identification of plant response to the human behavior of crushing plants. J. People Plants Environ. 2019;22:593‐600.
Knizek A, Dryahina K, Španěl P, Kubelik P, Kavan L, Zukalova M, Ferus M, Civis S. Comparative SIFT‐MS, GC‐MS and FTIR analysis of methane fuel produced in biogas stations and in artificial photosynthesis over acidic anatase TiO2 and montmorillonite. J. Mol. Spectr. 2018;348:152‐160. 10.1016/j.jms.2017.10.002 DOI
Kolb B, Ettre LS. 2006. Static Headspace‐Gas Chromatography: Theory and Practice. New York: John Wiley & Sons.
Kumar S, Huang JZ, Abbassi‐Ghadi N, Španěl P, Smith D, Hanna GB. Selected ion flow tube mass spectrometry analysis of exhaled breath for volatile organic compound profiling of esophago‐gastric cancer. Anal. Chem. 2013;85:6121‐6128. 10.1021/ac4010309 PubMed DOI
Kuuliala L, Jain N, De Baets B, Devlieghere F. Identifying Potential Volatile Spoilage Indicators in Shredded Carrot Using SIFT‐MS. In: Beauchamp JD, ed. Dynamic Flavor: Capturing Aroma Using Real‐Time Mass Spectrometry. American Chemical Society; 2021:107‐122. 10.1021/bk-2021-1402.ch009 DOI
Kuuliala L, Sader M, Solimeo A, Perez‐Fernandez R, Vanderroost M, De Baets B, De Meulenaer B, Ragaert P, Devlieghere F. Spoilage evaluation of raw Atlantic salmon (Salmo salar) stored under modified atmospheres by multivariate statistics and augmented ordinal regression. Int. J. Food Microbiol. 2019;303:46‐57. 10.1016/j.ijfoodmicro.2019.04.011 PubMed DOI
La Nasa J, Degano I, Modugno F, Guerrini C, Facchetti F, Turina V, Carretta A, Greco C, Ferraris E, Colombini MP, Ribechini E. Archaeology of the invisible: the scent of Kha and Merit. J. Archaeol. Sci. 2022;141:105577. 10.1016/j.jas.2022.105577 DOI
La Nasa J, Lomonaco T, Manco E, Ceccarini A, Fuoco R, Corti A, Modugno F, Castelvetro V, Degano I. Plastic breeze: volatile organic compounds (VOCs) emitted by degrading macro‐ and microplastics analyzed by selected ion flow‐tube mass spectrometry. Chemosphere 2021;270:128612. 10.1016/j.chemosphere.2020.128612 PubMed DOI
La Nasa J, Mattonai M, Modugno F, Degano I, Ribechini E. Comics' VOC‐abulary: study of the ageing of comic books in archival bags through VOCs profiling. Polym. Degrad. Stab. 2019;161:39‐49. 10.1016/j.polymdegradstab.2019.01.001 DOI
La Nasa J, Modugno F, Colombini MP, Degano I. Validation study of selected ion flow tube‐mass spectrometry (SIFT‐MS) in heritage science: characterization of natural and synthetic paint varnishes by portable mass spectrometry. J. Am. Soc. Mass Spectrom. 2019;30:2250‐2258. 10.1007/s13361-019-02305-4 PubMed DOI
La Nasa J, Nardella F, Modugno F, Colombini MP, Ribechini E, Degano I. SIFT‐ing archaeological artifacts: selected ion flow tube‐mass spectrometry as a new tool in archaeometry. Talanta 2020;207:8. 10.1016/j.talanta.2019.120323 PubMed DOI
Lacko M, Wang NJ, Sovova K, Pasztor P, Španěl P. Addition of fast gas chromatography to selected ion flow tube mass spectrometry for analysis of individual monoterpenes in mixtures. Atmos. Meas. Tech. 2019;12:4965‐4982. 10.5194/amt-12-4965-2019 DOI
Langford VS, Billiau C, McEwan MJ. Evaluation of the efficacy of SIFT‐MS for speciation of wastewater treatment plant odors in parallel with human sensory analysis. Environments 2020;7:90. 10.3390/environments7100090 DOI
Langford VS, Du Bruyn C, Padayachee D. An evaluation of selected ion flow tube mass spectrometry for rapid instrumental determination of paper type, origin and sensory attributes. Packag. Technol. Sci. 2021;34:245‐260. 10.1002/pts.2555 DOI
Langford VS, Graves I, McEwan MJ. Rapid monitoring of volatile organic compounds: a comparison between gas chromatography/mass spectrometry and selected ion flow tube mass spectrometry. Rapid Commun. Mass Spectrom. 2014;28:10‐18. 10.1002/rcm.6747 PubMed DOI
Langford VS, Gray JDC, Maclagan RGAR, Milligan DB, McEwan MJ. Real‐time measurements of nitrosamines in air. Int. J. Mass Spectrom. 2015;377:490‐495. 10.1016/j.ijms.2014.04.001 DOI
Langford VS, Gray JDC, McEwan MJ. Selected ion flow tube studies of several siloxanes. Rapid Commun. Mass Spectrom. 2013;27:700‐706. 10.1002/rcm.6496 PubMed DOI
Langford VS, McEwan MJ, Askey M, Barnes HA, Olerenshaw JG. Comprehensive instrumental odor analysis using SIFT‐MS: a case study. Environments 2018;5:43. 10.3390/environments5040043 DOI
Langford VS, Padayachee D, Bell KJ, Ma J. High‐throughput thermal desorption analysis of volatile compounds using selected ion flow tube mass spectrometry. Chromatog. Today 2021;14:30‐34.
Langford VS, Padayachee D, McEwan MJ, Barringer SA. Comprehensive odorant analysis for on‐line applications using selected ion flow tube mass spectrometry (SIFT‐MS). Flavour Fragr. J. 2019;34:393‐410. 10.1002/ffj.3516 DOI
Langford VS, Perkins MJ. Untargeted selected ion flow tube mass spectrometry headspace analysis: high‐throughput differentiation of virgin and recycled polyethylene pellets. Rapid Commun. Mass Spectrom. 2022;36:e9230. 10.1002/rcm.9230 PubMed DOI
Lee SH, Shin EJ, Zoh KD, Kang YS, Choi JW. Direct mass spectrometry with online headspace sample pretreatment for continuous water quality monitoring. Water 2020;12:1843. 10.3390/w12071843 DOI
Lee SL, O'Connor TF, Yang XC, Cruz CN, Chatterjee S, Madurawe RD, Moore CMV, Yu LX, Woodcock J. Modernizing pharmaceutical manufacturing: from batch to continuous production. J. Pharm. Innov. 2015;10:191‐199. 10.1007/s12247-015-9215-8 DOI
Lehnert AS, Behrendt T, Ruecker A, Pohnert G, Trumbore SE. SIFT‐MS optimization for atmospheric trace gas measurements at varying humidity. Atmos. Meas. Tech. 2020;13:3507‐3520. 10.5194/amt-13-3507-2020 DOI
Lehnert AS, Perreca E, Gershenzon J, Pohnert G, Trumbore SE. Simultaneous real‐time measurement of isoprene and 2‐methyl‐3‐buten‐2‐ol emissions from trees using SIFT‐MS. Front. Plant Sci. 2020;11:578204. 10.3389/fpls.2020.578204 PubMed DOI PMC
Lewis AC, Hopkins JR, Carslaw DC, Hamilton JF, Nelson BS, Stewart G, Dernie J, Passant N, Murrells T. An increasing role for solvent emissions and implications for future measurements of volatile organic compounds. Philosophical Trans. Royal Soc. A—Math. Phys. Eng. Sci. 2020;378:20190328. 10.1098/rsta.2019.0328 PubMed DOI PMC
Li KW, Chen LH, White SJ, Yu H, Wu XC, Gao X, Azzi M, Cen KF. Smog chamber study of the role of NH3 in new particle formation from photo‐oxidation of aromatic hydrocarbons. Sci. Total Environ. 2018;619:927‐937. 10.1016/j.scitotenv.2017.11.180 PubMed DOI
Li LJ, Cocker DR. Molecular structure impacts on secondary organic aerosol formation from glycol ethers. Atmos. Environ. 2018;180:206‐215. 10.1016/j.atmosenv.2017.12.025 DOI
Li LJ, Qi L, Cocker DR. Contribution of methyl group to secondary organic aerosol formation from aromatic hydrocarbon photooxidation. Atmos. Environ. 2017;151:133‐139. 10.1016/j.atmosenv.2016.11.064 DOI
Li WH, Li LJ, Chen CL, Kacarab M, Peng WH, Price D, Xu J, Cocker DR. Potential of select intermediate‐volatility organic compounds and consumer products for secondary organic aerosol and ozone formation under relevant urban conditions. Atmos. Environ. 2018;178:109‐117. 10.1016/j.atmosenv.2017.12.019 DOI
Lobaccaro P, Mandal L, Motapothula MR, Sherburne M, Martin J, Venkatesan T, Ager JW. Initial application of selected‐ion flow‐tube mass spectrometry to real‐time product detection in electrochemical CO2 reduction. Energy Technol. 2018;6:110‐121. 10.1002/ente.201700628 DOI
Lubes G, Goodarzi M. GC‐MS based metabolomics used for the identification of cancer volatile organic compounds as biomarkers. J. Pharm. Biomed. Anal. 2018;147:313‐322. 10.1016/j.jpba.2017.07.013 PubMed DOI
Mandal L, Yang KR, Motapothula MR, Ren D, Lobaccaro P, Patra A, Sherburne M, Batista VS, Yeo BS, Ager JW, Martin J, Venkatesan T. Investigating the role of copper oxide in electrochemical CO2 reduction in real time. ACS Appl. Mater. Interfaces 2018;10:8574‐8584. 10.1021/acsami.7b15418 PubMed DOI
Mansa R, Zou S. Thermogravimetric analysis of microplastics: a mini review. Environ. Adv. 2021;5:100117. 10.1016/j.envadv.2021.100117 DOI
Markar SR, Wiggins T, Antonowicz S, Chin ST, Romano A, Nikolic K, Evans B, Cunningham D, Mughal M, Lagergren J, Hanna GB. Assessment of a noninvasive exhaled breath test for the diagnosis of oesophagogastric cancer. Jama Oncol. 2018;4:970‐976. 10.1001/jamaoncol.2018.0991 PubMed DOI PMC
Michalcikova RB, Dryahina K, Španěl P. SIFT‐MS quantification of several breath biomarkers of inflammatory bowel disease, IBD: a detailed study of the ion chemistry. Int. J. Mass Spectrom. 2016;396:35‐41. 10.1016/j.ijms.2015.12.007 DOI
Michalcikova RB, Dryahina K, Španěl P. A detailed study of the ion chemistry of alkenes focusing on heptenes aimed at their SIFT‐MS quantification. Int. J. Mass Spectrom. 2018;425:16‐21. 10.1016/j.ijms.2017.12.004 DOI
Michalčíková RB, Španěl P. A selected ion flow tube study of the ion molecule association reactions of protonated (MH+), nitrosonated (MNO+) and dehydroxidated (M‐OH)(+) carboxylic acids (M) with H2O. Int. J. Mass Spectrom. 2014;368:15‐22. 10.1016/j.ijms.2014.04.010 DOI
Milligan DB, Francis GJ, Prince BJ, McEwan MJ. Demonstration of selected ion flow tube MS detection in the parts per trillion range. Anal. Chem. 2007;79:2537‐2540. 10.1021/ac0622678 PubMed DOI
Müller M, Piel F, Gutmann R, Sulzer P, Hartungen E, Wisthaler A. A novel method for producing NH4 + reagent ions in the hollow cathode glow discharge ion source of PTR‐MS instruments. Int. J. Mass Spectrom. 2020;447:116254. 10.1016/j.ijms.2019.116254 DOI
Neisser M. International roadmap for devices and systems lithography roadmap. J. Micro/Nanopatterning, Mater. Metrol. 2021;20:044601.
Olivares A, Dryahina K, Španěl P, Flores M. Rapid detection of lipid oxidation in beef muscle packed under modified atmosphere by measuring volatile organic compounds using SIFT‐MS. Food Chem. 2012;135:1801‐1808. 10.1016/j.foodchem.2012.06.075 PubMed DOI
Ozcan‐Sinir G. Detection of adulteration in extra virgin olive oil by selected ion flow tube mass spectrometry (SIFT‐MS) and chemometrics. Food Control 2020;118:107433. 10.1016/j.foodcont.2020.107433 DOI
Ozcan‐Sinir G, Barringer SA. Variety differences in garlic volatile sulfur compounds, by application of selected ion flow tube mass spectrometry (SIFT‐MS) with chemometrics. Turk. J. Agric. Forestry 2020;44:408‐416. 10.3906/tar-1910-26 DOI
Padayachee D, Langford VS. SIFTing through flavor—exploring real‐time, real‐life processes using SIFT‐MS. In: Beauchamp JD, ed. Dynamic Flavor: Capturing Aroma Release using Real-Time Mass Spectrometry. Washington: American Chemical Society; 2021. 10.1021/bk-2021-1402.ch004 DOI
Peñalver R, Arroyo‐Manzanares N, López‐García I, Hernández‐Córdoba M. An overview of microplastics characterization by thermal analysis. Chemosphere 2020;242:125170. 10.1016/j.chemosphere.2019.125170 PubMed DOI
Perkins MJ, Langford VS. Application of routine analysis procedures to a direct mass spectrometry technique: selected ion flow tube mass spectrometry (SIFT‐MS). Rev. Sep. Sci. 2021a;3:e21003.
Perkins MJ, Langford VS. Standard validation protocol for selected ion flow tube mass spectrometry methods applied to direct headspace analysis of aqueous volatile organic compounds. Anal. Chem. 2021b;93:8386‐8392. 10.1021/acs.analchem.1c01310 PubMed DOI
Perkins MJ, Langford VS. Multiple headspace extraction‐selected ion flow tube mass spectrometry (MHE‐SIFT‐MS). Part 1: a protocol for method development and transfer to routine analysis. Rev. Sep. Sci. 2022;4:e22001. 10.17145/rss.22.001 DOI
Perkins MJ, Langford VS, McEwan MJ. High‐throughput analysis of volatile compounds in air, water and soil using SIFT‐MS. Curr. Trends Mass Spectrom. 2018;16:24‐29.
Prince BJ, Milligan DB, McEwan MJ. Application of selected ion flow tube mass spectrometry to real‐time atmospheric monitoring. Rapid Commun. Mass Spectrom. 2010;24:1763‐1769. 10.1002/rcm.4574 PubMed DOI
Reyrolle M, Ghislain M, Bru N, Vallverdu G, Pigot T, Desauziers V, Le Bechec M. Volatile fingerprint of food products with untargeted SIFT‐MS data coupled with mixOmics methods for profile discrimination: application case on cheese. Food Chem. 2022;369:130801. 10.1016/j.foodchem.2021.130801 PubMed DOI
Romanias MN, Zeineddine MN, Gaudion V, Lun XX, Thevenet F, Riffault V. Heterogeneous interaction of isopropanol with natural gobi dust. Environ. Sci. Technol. 2016;50:11714‐11722. 10.1021/acs.est.6b03708 PubMed DOI
Ross BM, Puukila S, Malik I, Babay S, Lecours M, Agostino A, Wondimu T, Khaper N. The Use of SIFT‐MS to investigate headspace aldehydes as markers of lipid peroxidation. Curr. Anal. Chem. 2013;9:600‐613. 10.2174/15734110113099990025 DOI
Sharma NK, Choct M, Dunlop MW, Wu SB, Castada HZ, Swick RA. Characterisation and quantification of changes in odorants from litter headspace of meat chickens fed diets varying in protein levels and additives. Poult. Sci. 2017;96:851‐860. 10.3382/ps/pew309 PubMed DOI
Sharma NK, Keerqin C, Wu SB, Choct M, Swick RA. Emissions of volatile odorous metabolites by Clostridium perfringens—in vitro study using two broth cultures. Poult. Sci. 2017;96:3291‐3297. 10.3382/ps/pex129 PubMed DOI
Shestivska V, Antonowicz SS, Dryahina K, Kubišta J, Smith D, Španěl P. Direct detection and quantification of malondialdehyde vapour in humid air using selected ion flow tube mass spectrometry supported by gas chromatography/mass spectrometry. Rapid Commun. Mass Spectrom. 2015;29:1069‐1079. 10.1002/rcm.7198 PubMed DOI
Shestivska V, Dryahina K, Nunvar J, Sovova K, Elhottova D, Nemec A, Smith D, Španěl P. Quantitative analysis of volatile metabolites released in vitro by bacteria of the genus Stenotrophomonas for identification of breath biomarkers of respiratory infection in cystic fibrosis. J. Breath Res. 2015;9:027104. 10.1088/1752-7155/9/2/027104 PubMed DOI
Shestivska V, Kolivoska V, Kubista J, Smith D, Španěl P. Selected ion flow tube mass spectrometry analyses of isobaric compounds methanol and hydrazine in humid air. Rapid Commun. Mass Spectrom. 2020;34:e8744. 10.1002/rcm.8744 PubMed DOI
Shi Z, Vu T, Kotthaus S, Harrison RM, Grimmond S, Yue S, Zhu T, Lee J, Han Y, Demuzere M, Dunmore RE, Ren L, Liu D, Wang Y, Wild O, Allan J, Acton WJ, Barlow J, Barratt B, Beddows D, Bloss WJ, Calzolai G, Carruthers D, Carslaw DC, Chan Q, Chatzidiakou L, Chen Y, Crilley L, Coe H, Dai T, Doherty R, Duan F, Fu P, Ge B, Ge M, Guan D, Hamilton JF, He K, Heal M, Heard D, Hewitt CN, Hollaway M, Hu M, Ji D, Jiang X, Jones R, Kalberer M, Kelly FJ, Kramer L, Langford B, Lin C, Lewis AC, Li J, Li W, Liu H, Liu J, Loh M, Lu K, Lucarelli F, Mann G, McFiggans G, Miller MR, Mills G, Monk P, Nemitz E, O'Connor F, Ouyang B, Palmer PI, Percival C, Popoola O, Reeves C, Rickard AR, Shao L, Shi G, Spracklen D, Stevenson D, Sun Y, Sun Z, Tao S, Tong S, Wang Q, Wang W, Wang X, Wang X, Wang Z, Wei L, Whalley L, Wu X, Wu Z, Xie P, Yang F, Zhang Q, Zhang Y, Zhang Y, Zheng M. Introduction to the special issue “In‐depth study of air pollution sources and processes within Beijing and its surrounding region (APHH‐Beijing)”. Atmos. Chem. Phys. 2019;19:7519‐7546. 10.5194/acp-19-7519-2019 DOI
Smith D, Adams NG, Miller TM. Laboratory study of reactions of N+, N2 +, N3 +, N4 +, O+, O2 +, and NO+ ions with several molecules at 300K. J. Chem. Phys. 1978;69:308‐318.
Smith D, Bloor R, George C, Pysanenko A, Španěl P. Release of toxic ammonia and volatile organic compounds by heated cannabis and their relation to tetrahydrocannabinol content. Anal. Methods 2015;7:4104‐4110. 10.1039/C5AY00593K DOI
Smith D, Chippendale TWE, Dryahina K, Španěl P. SIFT‐MS analysis of nose‐exhaled breath; mouth contamination and the influence of exercise. Curr. Anal. Chem. 2013;9:565‐575.
Smith D, Chippendale TWE, Španěl P. Selected ion flow tube, SIFT, studies of the reactions of H3O+, NO+ and O2 + with some biologically active isobaric compounds in preparation for SIFT‐MS analyses. Int. J. Mass Spectrom. 2011;303:81‐89. 10.1016/j.ijms.2011.01.005 DOI
Smith D, Chippendale TWE, Španěl P. Minimising the effects of isobaric product ions in SIFT‐MS quantification of acetaldehyde, dimethyl sulphide and carbon dioxide. Curr. Anal. Chem. 2013;9:550‐557.
Smith D, Chippendale TWE, Španěl P. Reactions of the selected ion flow tube mass spectrometry reagent ions H3O+ and NO+ with a series of volatile aldehydes of biogenic significance. Rapid Commun. Mass Spectrom. 2014;28:1917‐1928. 10.1002/Rcm.6977 PubMed DOI
Smith D, Diskin AM, Ji YF, Španěl P. Concurrent use of H3O+, NO+, and O2 + precursor ions for the detection and quantification of diverse trace gases in the presence of air and breath by selected ion‐flow tube mass spectrometry. Int. J. Mass Spectrom. 2001;209:81‐97.
Smith D, McEwan MJ, Španěl P. Understanding gas phase ion chemistry is the key to reliable selected ion flow tube‐mass spectrometry analyses. Anal. Chem. 2020;92:12750‐12762. 10.1021/acs.analchem.0c03050 PubMed DOI
Smith D, Pysanenko A, Španěl P. Ionic diffusion and mass discrimination effects in the new generation of short flow tube SIFT‐MS instruments. Int. J. Mass Spectrom. 2009;281:15‐23. 10.1016/j.ijms.2008.11.007 DOI
Smith D, Sovova K, Dryahina K, Dousova T, Drevinek P, Španěl P. Breath concentration of acetic acid vapour is elevated in patients with cystic fibrosis. J. Breath Res. 2016a;10:6. 10.1088/1752-7155/10/2/021002 PubMed DOI
Smith D, Sovová K, Dryahina K, Doušová T, Dřevínek P, Španěl P. Breath concentration of acetic acid vapour is elevated in patients with cystic fibrosis. J. Breath Res. 2016b;10:021002. PubMed
Smith D, Sovová K, Španěl P. A selected ion flow tube study of the reactions of H3O+, NO+ and O2 + with seven isomers of hexanol in support of SIFT‐MS. Int. J. Mass Spectrom. 2012;319:25‐30. 10.1016/j.ijms.2012.03.009 DOI
Smith D, Španěl P. Ions in the terrestrial atmosphere and in interstellar clouds. Mass Spectrom. Rev. 1995;14:255‐278.
Smith D, Španěl P. Application of ion chemistry and the SIFT technique to the quantitative analysis of trace gases in air and on breath. Int. Rev. Phys. Chem. 1996a;15:231‐271.
Smith D, Španěl P. The novel selected‐ion flow tube approach to trace gas analysis of air and breath. Rapid Commun. Mass Spectrom. 1996b;10:1183‐1198. PubMed
Smith D, Španěl P. Selected ion flow tube mass spectrometry (SIFT‐MS) for on‐line trace gas analysis. Mass Spectrom. Rev. 2005;24:661‐700. 10.1002/mas.20033 PubMed DOI
Smith D, Španěl P. Ambient analysis of trace compounds in gaseous media by SIFT‐MS. Analyst 2011;136:2009‐2032. 10.1039/c1an15082k PubMed DOI
Smith D, Španěl P. Ternary association reactions of H3O+, NO+ and O2 +• with N2, O2, CO2 and H2O; implications for selected ion flow tube mass spectrometry analyses of air and breath. Rapid Commun. Mass Spectrom. 2022;36:e9241. 10.1002/rcm.9241 PubMed DOI
Smith D, Španěl P, Davies S. Trace gases in breath of healthy volunteers when fasting and after a protein‐calorie meal: a preliminary study. J. Appl. Physiol. 1999;87:1584‐1588. PubMed
Smith D, Španěl P, Dryahina K. H3O+, NO+ and O2 + reactions with saturated and unsaturated monoketones and diones; focus on hydration of product ions. Int. J. Mass Spectrom. 2019;435:173‐180. 10.1016/j.ijms.2018.10.027 DOI
Smith D, Španěl P, Enderby B, Lenney W, Turner C, Davies SJ. Isoprene levels in the exhaled breath of 200 healthy pupils within the age range 7‐18 years studied using SIFT‐MS. J. Breath Res. 2010;4:017101. 10.1088/1752-7155/4/1/017101 PubMed DOI
Smith D, Španěl P, Fryer AA, Hanna F, Ferns GAA. Can volatile compounds in exhaled breath be used to monitor control in diabetes mellitus? J. Breath Res. 2011;5:022001. 10.1088/1752-7155/5/2/022001 PubMed DOI
Smith D, Španěl P, Gilchrist FJ, Lenney W. Hydrogen cyanide, a volatile biomarker of Pseudomonas aeruginosa infection. J. Breath Res. 2013;7:044001. 10.1088/1752-7155/7/4/044001 PubMed DOI
Smith D, Španěl P, Herbig J, Beauchamp J. Mass spectrometry for real‐time quantitative breath analysis. J. Breath Res. 2014;8:027101. 10.1088/1752-7155/8/2/027101 PubMed DOI
Smith D, Španěl P, Holland TA, Al Singari W, Elder JB. Selected ion flow tube mass spectrometry of urine headspace. Rapid Commun. Mass Spectrom. 1999;13:724‐729. PubMed
Smith D, Turner C, Španěl P. Volatile metabolites in the exhaled breath of healthy volunteers: their levels and distributions. J. Breath Res. 2007;1:014004. 10.1088/1752-7155/1/1/014004 PubMed DOI
Smith D, Wang TS, Pysanenko A, Španěl P. A selected ion flow tube mass spectrometry study of ammonia in mouth‐ and nose‐exhaled breath and in the oral cavity. Rapid Commun. Mass Spectrom. 2008;22:783‐789. 10.1002/rcm.3434 PubMed DOI
Smith D, Wang TS, Španěl P. A SIFT study of the reactions of H2ONO+ ions with several types of organic molecules. Int. J. Mass Spectrom. 2003;230:1‐9. 10.1016/s1387-3806(03)00341-5 DOI
Son HD, An JG, Ha SY, Kim GB, Yim UH. Development of real‐time and simultaneous quantification of volatile organic compounds in ambient with SIFT‐MS (selected ion flow tube‐mass spectrometry). J. Korean Soc. Atmos. Environ. 2018;34:393‐405. 10.5572/Kosae.2018.34.3.393 DOI
Sovová K, Dryahina K, Španěl P. Selected ion flow tube (SIFT) studies of the reactions of H3O+, NO+ and O2 +• with six volatile phytogenic esters. Int. J. Mass Spectrom. 2011;300:31‐38. 10.1016/j.ijms.2010.11.021 DOI
Sovová K, Dryahina K, Španěl P, Kyncl M, Civiš S. A study of the composition of the products of laser‐induced breakdown of hexogen, octogen, pentrite and trinitrotoluene using selected ion flow tube mass spectrometry and UV‐Vis spectrometry. Analyst 2010;135:1106‐1114. 10.1039/b926425f PubMed DOI
Sovova K, Spesyvyi A, Bursova M, Pasztor P, Kubista J, Shestivska V, Španěl P. Time‐integrated thermal desorption for quantitative SIFT‐MS analyses of atmospheric monoterpenes. Anal. Bioanal. Chem. 2019;411:2997‐3007. 10.1007/s00216-019-01782-6 PubMed DOI
Španěl P, Dryahina K, Rejskova A, Chippendale TWE, Smith D. Breath acetone concentration; biological variability and the influence of diet. Physiol. Meas. 2011;32:N23‐N31. 10.1088/0967-3334/32/8/n01 PubMed DOI
Španěl P, Dryahina K, Smith D. A general method for the calculation of absolute trace gas concentrations in air and breath from selected ion flow tube mass spectrometry data. Int. J. Mass Spectrom. 2006;249:230‐239. 10.1016/j.ijms.2005.12.024 DOI
Španěl P, Dryahina K, Smith D. Acetone, ammonia and hydrogen cyanide in exhaled breath of several volunteers aged 4‐83 years. J. Breath Res. 2007;1:011001. 10.1088/1752-7155/1/1/011001 PubMed DOI
Španěl P, Dryahina K, Smith D. A quantitative study of the influence of inhaled compounds on their concentrations in exhaled breath. J. Breath Res. 2013;7:017106. 10.1088/1752-7155/7/1/017106 PubMed DOI
Španěl P, Dryahina K, Vicherková P, Smith D. Increase of methanol in exhaled breath quantified by SIFT‐MS following aspartame ingestion. J. Breath Res. 2015;9:047104. 10.1088/1752-7155/9/4/047104 PubMed DOI
Španěl P, Smith D. Selected ion flow tube: a technique for quantitative trace gas analysis of air and breath. Med. Biol. Eng. Comput. 1996;34:409‐419. PubMed
Španěl P, Smith D. SIFT studies of the reactions of H3O+, NO+ and O2 + with a series of alcohols. Int. J. Mass Spectrom. 1997;167:375‐388.
Španěl P, Smith D. Selected ion flow tube—mass spectrometry: detection and real‐time monitoring of flavours released by food products. Rapid Commun. Mass Spectrom. 1999;13:585‐596.
Španěl P, Smith D. On‐line measurement of the absolute humidity of air, breath and liquid headspace samples by selected ion flow tube mass spectrometry. Rapid Commun. Mass Spectrom. 2001;15:563‐569. PubMed
Španěl P, Smith D. Influence of weakly bound adduct ions on breath trace gas analysis by selected ion flow tube mass spectrometry (SIFT‐MS). Int. J. Mass Spectrom. 2009;280:128‐135. 10.1016/j.ijms.2008.07.021 DOI
Španěl P, Smith D. Progress in SIFT‐MS: breath analysis and other applications. Mass Spectrom. Rev. 2011;30:236‐267. 10.1002/mas.20303 PubMed DOI
Španěl P, Smith D. Advances in on‐line absolute trace gas analysis by SIFT‐MS. Curr. Anal. Chem. 2013;9:525‐539.
Španěl P, Smith D. What is the real utility of breath ammonia concentration measurements in medicine and physiology? J. Breath Res. 2018;12:027102. 10.1088/1752-7163/aa907f PubMed DOI
Španěl P, Smith D. Dissociation of H3O+, NO+ and O2 +• reagent ions injected into nitrogen carrier gas in SIFT‐MS and reactivity of the ion fragments. Int. J. Mass Spectrom. 2020a;458:116438. 10.1016/j.ijms.2020.116438 DOI
Španěl P, Smith D. Quantification of volatile metabolites in exhaled breath by selected ion flow tube mass spectrometry, SIFT‐MS. Clin. Mass Spectrom. 2020b;16:18‐24. 10.1016/j.clinms.2020.02.001 PubMed DOI PMC
Španěl P, Sovová K, Dryahina K, Doušová T, Dřevínek P, Smith D. Acetic acid is elevated in the exhaled breath of cystic fibrosis patients. J. Cystic Fibrosis 2017;16:e17‐e18. 10.1016/j.jcf.2017.02.001 PubMed DOI
Španěl P, Spesyvyi A, Smith D. Electrostatic switching and selection of H3O+, NO+, and O2 +• reagent ions for selected ion flow‐drift tube mass spectrometric analyses of air and breath. Anal. Chem. 2019;91:5380‐5388. 10.1021/acs.analchem.9b00530 PubMed DOI
Španěl P, Swift SJ, Dryahina K, Smith D. Relative influence of helium and nitrogen carrier gases on analyte ion branching ratios in SIFT‐MS. Int. J. Mass Spectrom. 2022;476:116835. 10.1016/j.ijms.2022.116835 DOI
Španěl P, Turner C, Wang TS, Bloor R, Smith D. Generation of volatile compounds on mouth exposure to urea and sucrose: implications for exhaled breath analysis. Physiol. Meas. 2006;27:N7‐N17. 10.1088/0967-3334/27/2/n01 PubMed DOI
Španěl P, Wang TS, Smith D. Quantification of hydrogen cyanide in humid air by selected ion flow tube mass spectrometry. Rapid Commun. Mass Spectrom. 2004;18:1869‐1873. 10.1002/rcm.1566 PubMed DOI
Španěl P, Zabka J, Zymak I, Smith D. Selected ion flow tube study of the reactions of H3O+ and NO+ with a series of primary alcohols in the presence of water vapour in support of selected ion flow tube mass spectrometry. Rapid Commun. Mass Spectrom. 2017;31:437‐446. 10.1002/rcm.7811 PubMed DOI
Spesyvyi A, Smith D, Španěl P. Selected ion flow‐drift tube mass spectrometry: quantification of volatile compounds in air and breath. Anal. Chem. 2015;87:12151‐12160. 10.1021/acs.analchem.5b02994 PubMed DOI
Spesyvyi A, Smith D, Španěl P. Ion chemistry at elevated ion‐molecule interaction energies in a selected ion flow‐drift tube: reactions of H3O+, NO+ and O2 + with saturated aliphatic ketones. Phys. Chem. Chem. Phys. 2017;19:31714‐31723. 10.1039/c7cp05795d PubMed DOI
Spesyvyi A, Sovova K, Španěl P. In‐tube collision‐induced dissociation for selected ion flow‐drift tube mass spectrometry, SIFDT‐MS: a case study of NO+ reactions with isomeric monoterpenes. Rapid Commun. Mass Spectrom. 2016;30:2009‐2016. 10.1002/rcm.7679 PubMed DOI
Spesyvyi A, Španěl P, Sovova K. Styrene radical cations for chemical ionization mass spectrometry analyses of monoterpene hydrocarbons. Rapid Commun. Mass Spectrom. 2019;33:1870‐1876. 10.1002/rcm.8556 PubMed DOI
Stefanuto PH, Zanella D, Vercammen J, Henket M, Schleich F, Louis R, Focant JF. Multimodal combination of GC x GC‐HRTOFMS and SIFT‐MS for asthma phenotyping using exhaled breath. Sci. Rep. 2020;10:16159. 10.1038/s41598-020-73408-2 PubMed DOI PMC
Su T, Chesnavich WJ. Parametrization of the ion–polar molecule collision rate constant by trajectory calculations. J. Chem. Phys. 1982;76:5183‐5185. 10.1063/1.442828 DOI
Sumonsiri N, A Barringer S. Application of SIFT‐MS in monitoring volatile compounds in fruits and vegetables. Curr. Anal. Chem. 2013;9:631‐641.
Swift SJ, Smith D, Dryahina K, Omezzine Gnioua M, Španěl P. Kinetics of reactions of NH4 + with some biogenic organic molecules and monoterpenes in He and N2 carrier gases: a potential SIFT‐MS reagent ion. Rapid Commun. Mass Spectrom. 2022;36:e9328. 10.1002/rcm.9328 PubMed DOI
Teranish R, Robinson AB, Cary P, Mon TR, Pauling L. Gas‐chromatography of volatiles from breath and urine. Anal. Chem. 1972;44:18‐20. 10.1021/ac60309a012 PubMed DOI
Turner C, Španěl P, Smith D. A longitudinal study of breath isoprene in healthy volunteers using selected ion flow tube mass spectrometry (SIFT‐MS). Physiol. Meas. 2006;27:13‐22. 10.1088/0967-3334/27/1/002 PubMed DOI
Turner C, Walton C, Hoashi S, Evans M. Breath acetone concentration decreases with blood glucose concentration in type I diabetes mellitus patients during hypoglycaemic clamps. J. Breath Res. 2009;3:046004. 10.1088/1752-7155/3/4/046004 PubMed DOI
USP . 2019a. 〈467〉 Residual Solvents. United States Pharmacopedia, the United States Pharmacopedial Convention.
USP . 2019b. 〈1467〉 Residual Solvents Verification of Compendial Procedures and Validation of Alternative Procedures. United States Pharmacopedia, the United States Pharmacopedial Convention.
Van Huffel K, Heynderickx PM, Dewulf J, Van Langenhove H. 2012. Measurement of Odorants in Livestock Buildings: SIFT‐MS and TD‐GC‐MS. In: DelRosso R, Pierucci S, Klemes JJ, Editors. Nose 2012: 3rd International Conference on Environmental Odour Monitoring and Control. p 67‐72. 10.3303/cet1230012 DOI
Vendel I, Hertog M, Nicolai B. Fast analysis of strawberry aroma using SIFT‐MS: a new technique in postharvest research. Postharvest Biol. Technol. 2019;152:127‐138. 10.1016/j.postharvbio.2019.03.007 DOI
Viggiano AA, Paulson JF. Temperature‐dependence of associative detachment reactions. J. Chem. Phys. 1983;79:2241‐2245. 10.1063/1.446073 DOI
Volckaert D, Ebude DEL, Van Langenhove H. SIFT‐MS analysis of the removal of dimethyl sulphide, n‐hexane and toluene from waste air by a two phase partitioning bioreactor. Chem. Eng. J. 2016;290:346‐352. 10.1016/j.cej.2016.01.057 DOI
Wagner RL, Farren NJ, Davison J, Young S, Hopkins JR, Lewis AC, Carslaw DC, Shaw MD. Application of a mobile laboratory using a selected‐ion flow‐tube mass spectrometer (SIFT‐MS) for characterisation of volatile organic compounds and atmospheric trace gases. Atmos. Meas. Tech. 2021;14:6083‐6100. 10.5194/amt-14-6083-2021 DOI
Walgraeve C, Bruneel J, Van Huffel K, Demeestere K, Vincze L, De Meulenaer B, Van Langenhove H. Sorption behaviour of targeted volatile organic compounds on airborne particulate matter using selected ion flow tube mass spectrometry. Biosyst. Eng. 2015;131:84‐94. 10.1016/j.biosystemseng.2015.01.007 DOI
Wang TS, Pysanenko A, Dryahina K, Španěl P, Smith D. Analysis of breath, exhaled via the mouth and nose, and the air in the oral cavity. J. Breath Res. 2008;2:037013. 10.1088/1752-7155/2/3/037013 PubMed DOI
Wang XJ, Romanias MN, Pei ZH, Rousseau A, Thevenet F. Uptake mechanism of acetic acid onto natural gobi dust. Acs Earth. Space Chem. 2020;4:1650‐1662. 10.1021/acsearthspacechem.0c00168 DOI
Wood JE, Gill BD, Longstaff WM, Crawford RA, Indyk HE, Kissling RC, Lin YH, Bergonia CA, Davis LM, Matuszek A. Dairy product quality using screening of aroma compounds by selected ion flow tube‐mass spectrometry: a chemometric approach. Int. Dairy J. 2021;121:105107. 10.1016/j.idairyj.2021.105107 DOI
Yeoman AM, Heeley‐Hill AC, Shaw M, Andrews SJ, Lewis AC. Inhalation of VOCs from facial moisturizers and the influence of dose proximity. Indoor Air 2022;32:12948. 10.1111/ina.12948 PubMed DOI
Yeoman AM, Shaw M, Carslaw N, Murrells T, Passant N, Lewis AC. Simplified speciation and atmospheric volatile organic compound emission rates from non‐aerosol personal care products. Indoor Air 2020;30:459‐472. 10.1111/ina.12652 PubMed DOI PMC
Yu JX, Castada HZ, Huang XS, Barringer SA. Comparison of encapsulation of garlic oil with ‐, ‐, and ‐cyclodextrin using selected ion flow tube‐mass spectrometry (SIFT‐MS). J. Food Processing. Preserv. 2019;43:e13865. 10.1111/jfpp.13865 DOI
Zeineddine MN, Romanias MN, Gaudion V, Riffault V, Thevenet F. Heterogeneous interaction of isoprene with natural gobi dust. Acs Earth Space Chem. 2017;1:236‐243. 10.1021/acsearthspacechem.7b00050 DOI
Zeineddine MN, Romanias MN, Riffault V, Thevenet F. Heterogeneous interaction of various natural dust samples with isopropyl alcohol as a probe VOC. J. Phys. Chem. A 2018;122:4911‐4919. 10.1021/acs.jpca.8b02034 PubMed DOI
Zhu JH, Nones C, Li Y, Milligan D, Prince B, Polster M, Dearth M. Ultra‐trace real time VOC measurements by SIFT‐MS for VIAQ. SAE Int. J. Engines 2017;10:1815‐1819. 10.4271/2017-01-0989 DOI
Zymak I, Zabka J, Polasek M, Španěl P, Smith D. A pilot study of ion‐molecule reactions at temperatures relevant to the atmosphere of titan. Orig. Life Evol. Biosph. 2016;46:533‐538. 10.1007/s11084-016-9499-9 PubMed DOI
Zymak I, Žabka J, Polášek M, Španěl P, Smith D. Experimental study of the reaction of NO2 − ions with CO2 molecules at temperatures and energies relevant to the Martian atmosphere. Icarus 2020;335:113416. 10.1016/j.icarus.2019.113416 DOI