Kinetics of reactions of NH4 + with some biogenic organic molecules and monoterpenes in helium and nitrogen carrier gases: A potential reagent ion for selected ion flow tube mass spectrometry
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
Grantová podpora
21-25486S
Grantová Agentura České Republiky
PubMed
35603529
DOI
10.1002/rcm.9328
Knihovny.cz E-zdroje
- MeSH
- dusík chemie MeSH
- helium * MeSH
- hmotnostní spektrometrie metody MeSH
- indikátory a reagencie MeSH
- ionty chemie MeSH
- kinetika MeSH
- monoterpeny * MeSH
- protony MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- dusík MeSH
- helium * MeSH
- indikátory a reagencie MeSH
- ionty MeSH
- monoterpeny * MeSH
- protony MeSH
RATIONALE: To assess the suitability of NH4 + as a reagent ion for trace gas analysis by selected ion flow tube mass spectrometry, SIFT-MS, its ion chemistry must be understood. Thus, rate coefficients and product ions for its reactions with typical biogenic molecules and monoterpenes need to be experimentally determined in both helium, He, and nitrogen, N2 , carrier gases. METHODS: NH4 + and H3 O+ were generated in a microwave gas discharge through an NH3 and H2 O vapour mixture and, after m/z selection, injected into He and N2 carrier gas. Using the conventional SIFT method, NH4 + reactions were then studied with M, the biogenic molecules acetone, 1-propanol, 2-butenal, trans-2-heptenal, heptanal, 2-heptanone, 2,3-heptanedione and 15 monoterpene isomers to obtain rate coefficients, k, and product ion branching ratios. Polarisabilities and dipole moments of the reactant molecules and the enthalpy changes in proton transfer reactions were calculated using density functional theory. RESULTS: The k values for the reactions of the biogenic molecules were invariably faster in N2 than in He but similar in both bath gases for the monoterpenes. Adducts NH4 + M were the dominant product ions in He and N2 for the biogenic molecules, whereas both MH+ and NH4 + M product ions were observed in the monoterpene reactions; the monoterpene ratio correlating (R2 = 0.7) with the proton affinity, PA, of the monoterpene molecule as calculated. The data indicate that this adduct ion formation is the result of bimolecular rather than termolecular association. CONCLUSIONS: NH4 + can be a useful reagent ion for SIFT-MS analyses of molecules with PA(M) < PA(NH3 ) when the dominant single product ion is the adduct NH4 + M. For molecules with PA(M) > PA(NH3 ), such as monoterpenes, both MH+ and NH4 + M ions are likely products, which must be determined along with k by experiment.
Zobrazit více v PubMed
Španěl P, Smith D. Quantification of volatile metabolites in exhaled breath by selected ion flow tube mass spectrometry, SIFT-MS. Clin Mass Spectrom. 2020;16:18-24. doi:10.1016/j.clinms.2020.02.001
Smith D, Španěl P. Ambient analysis of trace compounds in gaseous media by SIFT-MS. Analyst. 2011;136(10):2009-2032. doi:10.1039/c1an15082k
Španěl P, Smith D. Progress in SIFT-MS: Breath analysis and other applications. Mass Spectrom Rev. 2011;30(2):236-267. doi:10.1002/mas.20303
Španěl P, Swift SJ, Dryahina K, Smith D. Relative influence of helium and nitrogen carrier gases on analyte ion branching ratios in SIFT-MS. Int J Mass Spectrom. 2022;476:116835. doi:10.1016/j.ijms.2022.116835
Španěl P, Smith D. Dissociation of H3O+, NO+ and O2+• reagent ions injected into nitrogen carrier gas in SIFT-MS and reactivity of the ion fragments. Int J Mass Spectrom. 2020;458:116438. doi:10.1016/j.ijms.2020.116438
Smith D, McEwan MJ, Španěl P. Understanding gas phase ion chemistry is the key to reliable selected ion flow tube-mass spectrometry analyses. Anal Chem. 2020;92(19):12750-12762. doi:10.1021/acs.analchem.0c03050
Lias SG, Levin RD, Kafafi SA, Ion Energetics Data In: NIST Chemistry WebBook, NIST Standard Reference Database Number 69. Gaithersburg: National Institute of Standards and Technology; 2016.
Hunter E, Lias S. Evaluated gas phase basicities and proton affinities of molecules: An update. J Phys Chem Ref Data Monogr. 1998;27:413-656. doi:10.1063/1.556018
Maquestiau A, Flammang R, Nielsen L. A study of some cations formed in the ammonia chemical ionization of ketones using mass analysed ion kinetic energy spectrometry. Org Mass Spectrom. 1980;15(7):376-379. doi:10.1002/oms.1210150712
Keough T, Destefano AJ. Factors affecting reactivity in ammonia chemical ionization mass spectrometry. Org Mass Spectrom. 1981;16(12):527-533. doi:10.1002/oms.1210161205
Blake RS, Wyche KP, Ellis AM, Monks PS. Chemical ionization reaction time-of-flight mass spectrometry: Multi-reagent analysis for determination of trace gas composition. Int J Mass Spectrom. 2006;254(1):85-93. doi:10.1016/j.ijms.2006.05.021
Hansel A, Scholz W, Mentler B, Fischer L, Berndt T. Detection of RO2 radicals and other products from cyclohexene ozonolysis with NH4+ and acetate chemical ionization mass spectrometry. Atmos Environ. 2018;186:248-255. doi:10.1016/j.atmosenv.2018.04.023
Zaytsev A, Breitenlechner M, Koss AR, et al. Using collision-induced dissociation to constrain sensitivity of ammonia chemical ionization mass spectrometry (NH4+ CIMS) to oxygenated volatile organic compounds. Atmos Meas Tech. 2019;12(3):1861-1870. doi:10.5194/amt-12-1861-2019
Berndt T, Scholz W, Mentler B, et al. Accretion product formation from self- and cross-reactions of RO2 radicals in the atmosphere. Angew Chem Int Ed. 2018;57(14):3820-3824. doi:10.1002/anie.201710989
Zhou S, Rivera-Rios JC, Keutsch FN, Abbatt JPD. Identification of organic hydroperoxides and peroxy acids using atmospheric pressure chemical ionization-tandem mass spectrometry (APCI-MS/MS): Application to secondary organic aerosol. Atmos Meas Tech. 2018;11(5):3081-3089. doi:10.5194/amt-11-3081-2018
Westmore JB, Alauddin MM. Ammonia chemical ionization mass spectrometry. Mass Spectrom Rev. 1986;5(4):381-465. doi:10.1002/mas.1280050403
Shen C, Li J, Han H, Wang H, Jiang H, Chu Y. Triacetone triperoxide detection using low reduced-field proton transfer reaction mass spectrometer. Int J Mass Spectrom. 2009;285(1):100-103. doi:10.1016/j.ijms.2009.04.007
Zhang Q, Zou X, Liang Q, et al. Ammonia-assisted proton transfer reaction mass spectrometry for detecting triacetone triperoxide (TATP) explosive. J Am Soc Mass Spectrom. 2019;30(3):501-508. doi:10.1007/s13361-018-2108-6
Canaval E, Hyttinen N, Schmidbauer B, Fischer L, Hansel A. NH4+ association and proton transfer reactions with a series of organic molecules. Front Chem. 2019;7:191. doi:10.3389/fchem.2019.00191
Müller M, Piel F, Gutmann R, Sulzer P, Hartungen E, Wisthaler A. A novel method for producing NH4+ reagent ions in the hollow cathode glow discharge ion source of PTR-MS instruments. Int J Mass Spectrom. 2020;447:116254. doi:10.1016/j.ijms.2019.116254
Zhu L, Mikoviny T, Kolstad Morken A, Tan W, Wisthaler A. A compact and easy-to-use mass spectrometer for online monitoring of amines in the flue gas of a post-combustion carbon capture plant. Int J Greenh Gas con. 2018;78:349-353. doi:10.1016/j.ijggc.2018.09.003
Yuan B, Koss AR, Warneke C, Coggon M, Sekimoto K, de Gouw JA. Proton-transfer-reaction mass spectrometry: Applications in atmospheric sciences. Chem Rev. 2017;117(21):13187-13229. doi:10.1021/acs.chemrev.7b00325
Breitenlechner M, Fischer L, Hainer M, Heinritzi M, Curtius J, Hansel A. PTR3: An instrument for studying the lifecycle of reactive organic carbon in the atmosphere. Anal Chem. 2017;89(11):5824-5831. doi:10.1021/acs.analchem.6b05110
Abedi A, Sattar L, Gharibi M, Viehland LA. Investigation of temperature, electric field and drift-gas composition effects on the mobility of NH4+ ions in He, Ar, N2, and CO2. Int J Mass Spectrom. 2014;370:101-106. doi:10.1016/j.ijms.2014.06.014
Allers M, Kirk AT, Schaefer C, et al. Field-dependent reduced ion mobilities of positive and negative ions in air and nitrogen in high kinetic energy ion mobility spectrometry (HiKE-IMS). J Am Soc Mass Spectrom. 2020;31(10):2191-2201. doi:10.1021/jasms.0c00280
Adams NG, Smith D, Paulson JF. An experimental survey of the reactions of NHn+ ions (n = 0 to 4) with several diatomic and polyatomic molecules at 300 K. J Chem Phys. 1980;72(1):288-297. doi:10.1063/1.438893
Adams NG, Babcock LM, Mostefaoui TM, Kerns MS. Selected ion flow tube study of NH4+ association and of product switching reactions with a series of organic molecules. Int J Mass Spectrom. 2003;223-224:459-471. doi:10.1016/S1387-3806(02)00932-6
Dryahina K, Som S, Smith D, Španěl P. Reagent and analyte ion hydrates in secondary electrospray ionization mass spectrometry (SESI-MS), their equilibrium distributions and dehydration in an ion transfer capillary: Modelling and experiments. Rapid Commun Mass Spectrom. 2021;35(7):e9047. doi:10.1002/rcm.9047
Payzant JD, Cunningham AJ, Kebarle P. Gas phase solvation of the ammonium ion by NH3 and H2O and stabilities of mixed clusters NH4+(NH3)n(H2O)w. Can J Chem. 1973;51(19):3242-3249. doi:10.1139/v73-485
Dryahina K, Polášek M, Smith D, Španěl P. Sensitivity of secondary electrospray ionization mass spectrometry to a range of volatile organic compounds: Ligand switching ion chemistry and the influence of Zspray™ guiding electric fields. Rapid Commun Mass Spectrom. 2021;35(22):e9187. doi:10.1002/rcm.9187
Smith D, Španěl P. SIFT-MS and FA-MS methods for ambient gas phase analysis: Developments and applications in the UK. Analyst. 2015;140(8):2573-2591. doi:10.1039/C4AN02049A
Smith D, Španěl P. Direct, rapid quantitative analyses of BVOCs using SIFT-MS and PTR-MS obviating sample collection. TrAC Trends Anal Chem. 2011;30(7):945-959. doi:10.1016/j.trac.2011.05.001
Španěl P, Dryahina K, Smith D. Microwave plasma ion sources for selected ion flow tube mass spectrometry: Optimizing their performance and detection limits for trace gas analysis. Int J Mass Spectrom. 2007;267(1):117-124. doi:10.1016/j.ijms.2007.02.023
Guo Y, Riplinger C, Becker U, et al. Communication: An improved linear scaling perturbative triples correction for the domain based local pair-natural orbital based singles and doubles coupled cluster method [DLPNO-CCSD(T)]. J Chem Phys. 2018;148(1):011101. doi:10.1063/1.5011798
Grimme S, Ehrlich S, Goerigk L. Effect of the damping function in dispersion corrected density functional theory. J Comput Chem. 2011;32(7):1456-1465. doi:10.1002/jcc.21759
Kendall RA, Dunning TH Jr, Harrison RJ. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J Chem Phys. 1992;96(9):6796-6806. doi:10.1063/1.462569
Váňa J, Roithova J, Kotora M, Beran P, Rulíšek L, Kočovský P. Proton affinities of organocatalysts derived from pyridine N-oxide. Croat Chem Acta. 2014;87(4):349-356. doi:10.5562/cca2447
Gaumann T, Houriet R, Stahl D, Tabet JC, Heinrich N, Schwarz H. Further examples of skeletal rearrangements of the Wagner-Meerwein type in chemical ionization mass-spectrometry - the case of C6H9+ ions. Org Mass Spectrom. 1983;18(5):215-218. doi:10.1002/oms.1210180508
Shobe DS. A piece of the C6H9+ potential energy surface: Rearrangement of spiropentylmethyl cation and an elegant nonclassical spiro[2.3]hex-5-yl cation. J Phys Org Chem. 2020;33(8). doi:10.1002/poc.4064
Friedman B, Farmer DK. SOA and gas phase organic acid yields from the sequential photooxidation of seven monoterpenes. Atmos Environ. 2018;187:335-345. doi:10.1016/j.atmosenv.2018.06.003
OHara ME, Fernández del Río R, Holt A, et al. Limonene in exhaled breath is elevated in hepatic encephalopathy. J Breath Res. 2016;10(4):046010. doi:10.1088/1752-7155/10/4/046010
Wang TS, Španěl P, Smith D. Selected ion flow tube, SIFT, studies of the reactions of H3O+, NO+ and O2+ with eleven C10H16 monoterpenes. Int J Mass Spectrom. 2003;228(1):117-126. doi:10.1016/S1387-3806(03)00271-9
Smith D, Španěl P, DK. H3O+, NO+ and O2+ reactions with saturated and unsaturated monoketones and diones; focus on hydration of product ions. Int J Mass Spectrom. 2019;435:173-180. doi:10.1016/j.ijms.2018.10.027
Su T, Chesnavich WJ. Parametrization of the ion-polar molecule collision rate constant by trajectory calculations. J Chem Phys. 1982;76(10):5183-5185. doi:10.1063/1.442828
Haynes WM (Ed). CRC Handbook of Chemistry and Physics. Internet Version 2014 ed. 94th ed. Boca Raton, Florida: CRC Press; 2013. doi:10.1201/b17118
Španěl P, Van Doren JM, Smith D. A selected ion flow tube study of the reactions of H3O+, NO+, and O2+ with saturated and unsaturated aldehydes and subsequent hydration of the product ions. Int J Mass Spectrom. 2002;213(2-3):163-176. doi:10.1016/S1387-3806(01)00531-0
Cleaves HJ. Rice-Ramsperger-Kassel-Marcus. In: Gargaud M et al., eds. Encyclopedia of Astrobiology. Berlin Heidelberg: Springer; 2011:1459-1459. doi:10.1007/978-3-642-11274-4_1393.
Smith D, Chippendale TWE, Španěl P. Reactions of the selected ion flow tube mass spectrometry reagent ions H3O+ and NO+ with a series of volatile aldehydes of biogenic significance. Rapid Commun Mass Spectrom. 2014;28(17):1917-1928. doi:10.1002/rcm.6977
Hastie C, Thompson A, Perkins M, Langford VS, Eddleston M, Homer NZM. Selected ion flow tube-mass spectrometry (SIFT-MS) as an alternative to gas chromatography/mass spectrometry (GC/MS) for the analysis of cyclohexanone and cyclohexanol in plasma. ACS Omega. 2021;6(48):32818-32822. doi:10.1021/acsomega.1c03827
Perkins MJ, Langford VS, McEwan MJ. High-throughput VOC and inorganic gas analysis: Automated SIFT-MS. Am Lab. 2017;49(1):17-19.
Recent developments and applications of selected ion flow tube mass spectrometry (SIFT-MS)