Cumulative nitrogen enrichment alters the drivers of grassland overyielding
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
31003A_160212
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
31003A_160212
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
DEB-1831944
National Science Foundation (NSF)
ENV-CT95-0008
European Commission (EC)
JCK 99-09
Kempestiftelserna (Kempe Foundations)
PubMed
38467761
PubMed Central
PMC10928195
DOI
10.1038/s42003-024-05999-9
PII: 10.1038/s42003-024-05999-9
Knihovny.cz E-zdroje
- MeSH
- biodiverzita MeSH
- dusík MeSH
- ekosystém * MeSH
- pastviny * MeSH
- rostliny MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- dusík MeSH
Effects of plant diversity on grassland productivity, or overyielding, are found to be robust to nutrient enrichment. However, the impact of cumulative nitrogen (N) addition (total N added over time) on overyielding and its drivers are underexplored. Synthesizing data from 15 multi-year grassland biodiversity experiments with N addition, we found that N addition decreases complementarity effects and increases selection effects proportionately, resulting in no overall change in overyielding regardless of N addition rate. However, we observed a convex relationship between overyielding and cumulative N addition, driven by a shift from complementarity to selection effects. This shift suggests diminishing positive interactions and an increasing contribution of a few dominant species with increasing N accumulation. Recognizing the importance of cumulative N addition is vital for understanding its impacts on grassland overyielding, contributing essential insights for biodiversity conservation and ecosystem resilience in the face of increasing N deposition.
Centre for Development and Environment CDE University of Bern Mittelstrasse 43 3012 Bern Switzerland
Department of Crop production Ecology Swedish University of Agricultural Sciences 901 83 Umeå Sweden
Department of Forest Resources University of Minnesota 1479 Gortner Ave St Paul MN 55108 USA
German Centre for Integrative Biodiversity Research Puschstrasse 4 04103 Leipzig Germany
Institute of Plant Sciences University of Bern Altenbergrain 21 3013 Bern Switzerland
Landcare Research Private Bag 3127 Hamilton 3240 New Zealand
Swiss Federal Research Institute WSL Zürcherstrasse 111 CH 8903 Birmensdorf Switzerland
Zobrazit více v PubMed
Food and Agriculture Organization, FAO statistical databases, Rome, available at http://faostat.fao.org/default.aspx.(2006).
Stevens CJ, Dise NB, Mountford JO, Gowing DJ. Impact of Nitrogen Deposition on the Species Richness of Grasslands. Science. 2004;303:1876–1879. doi: 10.1126/science.1094678. PubMed DOI
Hautier Y, et al. Eutrophication weakens stabilizing effects of diversity in natural grasslands. Nature. 2014;508:521–525. doi: 10.1038/nature13014. PubMed DOI
Storkey J, et al. Grassland biodiversity bounces back from long-term nitrogen addition. Nature. 2015;528:401–404. doi: 10.1038/nature16444. PubMed DOI
Suding KN, et al. Functional- and abundance-based mechanisms explain diversity loss due to N fertilization. Proc. Natl Acad. Sci. USA. 2005;102:4387–4392. doi: 10.1073/pnas.0408648102. PubMed DOI PMC
Fang Y, Xun F, Bai W, Zhang W, Li L. Long-Term Nitrogen Addition Leads to Loss of Species Richness Due to Litter Accumulation and Soil Acidification in a Temperate Steppe. PLOS One. 2012;7:e47369. doi: 10.1371/journal.pone.0047369. PubMed DOI PMC
Fay PA, et al. Grassland productivity limited by multiple nutrients. Nat. Plants. 2015;1:15080. doi: 10.1038/nplants.2015.80. PubMed DOI
Duran BEL, Duncan DS, Oates LG, Kucharik CJ, Jackson RD. Nitrogen fertilization effects on productivity and nitrogen loss in three grass-based perennial bioenergy cropping systems. PLoS One. 2016;11:e0151919. doi: 10.1371/journal.pone.0151919. PubMed DOI PMC
Clark CM, Tilman D. Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature. 2008;451:712–715. doi: 10.1038/nature06503. PubMed DOI
Seabloom EW, et al. Increasing effects of chronic nutrient enrichment on plant diversity loss and ecosystem productivity over time. Ecology. 2021;102:e03218. doi: 10.1002/ecy.3218. PubMed DOI
Hautier Y, Niklaus PA, Hector A. Competition for light causes plant biodiversity loss after eutrophication. Science. 2009;324:636–638. doi: 10.1126/science.1169640. PubMed DOI
DeMalach N, Zaady E, Kadmon R. Light asymmetry explains the effect of nutrient enrichment on grassland diversity. Ecol. Lett. 2017;20:60–69. doi: 10.1111/ele.12706. PubMed DOI
Eskelinen A, Harpole WS, Jessen M-T, Virtanen R, Hautier Y. Light competition drives herbivore and nutrient effects on plant diversity. Nature. 2022;611:301–305. doi: 10.1038/s41586-022-05383-9. PubMed DOI PMC
Crawley MJ, et al. Determinants of Species Richness in the Park Grass Experiment. Am. Nat. 2005;165:179–192. doi: 10.1086/427270. PubMed DOI
Silvertown J, et al. The Park Grass Experiment 1856–2006: its contribution to ecology. J. Ecol. 2006;94:801–814. doi: 10.1111/j.1365-2745.2006.01145.x. DOI
Kimmel K, et al. Diversity-dependent soil acidification under nitrogen enrichment constrains biomass productivity. Glob. Change Biol. 2020;26:6594–6603. doi: 10.1111/gcb.15329. PubMed DOI
Harpole WS, et al. Nutrient co‐limitation of primary producer communities. Wiley Online Libr. 2011;14:852–862. PubMed
Band N, Kadmon R, Mandel M, DeMalach N. Assessing the roles of nitrogen, biomass, and niche dimensionality as drivers of species loss in grassland communities. Proc. Natl Acad. Sci. 2022;119:e2112010119. doi: 10.1073/pnas.2112010119. PubMed DOI PMC
Yang Z, Hautier Y, Borer ET, Zhang C, Du G. Abundance- and functional-based mechanisms of plant diversity loss with fertilization in the presence and absence of herbivores. Oecologia. 2015;179:261–270. doi: 10.1007/s00442-015-3313-7. PubMed DOI
Isbell F, et al. Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem productivity. Proc. Natl Acad. Sci. USA. 2013;110:11911–11916. doi: 10.1073/pnas.1310880110. PubMed DOI PMC
Craven D, et al. Plant diversity effects on grassland productivity are robust to both nutrient enrichment and drought. Philos. Trans. R. Soc. B Biol. Sci. 2016;371:20150277. doi: 10.1098/rstb.2015.0277. PubMed DOI PMC
Prager CM, et al. A gradient of nutrient enrichment reveals nonlinear impacts of fertilization on Arctic plant diversity and ecosystem function. Ecol. Evol. 2017;7:2449–2460. doi: 10.1002/ece3.2863. PubMed DOI PMC
Atwater DZ, Callaway RM. Testing the mechanisms of diversity-dependent overyielding in a grass species. Ecology. 2015;96:3332–3342. doi: 10.1890/15-0889.1. PubMed DOI
Eskelinen A, et al. Resource-enhancing global changes drive a whole-ecosystem shift to faster cycling but decrease diversity. Ecology. 2020;101:1–12. doi: 10.1002/ecy.3178. PubMed DOI
Chen X, Chen HYH. Plant mixture balances terrestrial ecosystem C:N:P stoichiometry. Nat. Commun. 2021;12:1–9. PubMed PMC
He K, et al. Response of aboveground biomass and diversity to nitrogen addition – a five-year experiment in semi-arid grassland of Inner Mongolia, China. Sci. Rep. 2016;6:31919. doi: 10.1038/srep31919. PubMed DOI PMC
Loreau M, Hector A. Partitioning selection and complementarity in biodiversity experiments. Nature. 2001;412:72–76. doi: 10.1038/35083573. PubMed DOI
Hector A, et al. Plant diversity and productivity experiments in European grasslands. Science. 1999;286:1123–1127. doi: 10.1126/science.286.5442.1123. PubMed DOI
Barry KE, et al. The Future of Complementarity: Disentangling Causes from Consequences. Trends Ecol. Evol. 2019;34:167–180. doi: 10.1016/j.tree.2018.10.013. PubMed DOI
Tilman D, Lehman CL, Thomson KT. Plant diversity and ecosystem productivity: Theoretical considerations. Proc. Natl Acad. Sci. 1997;94:1857–1861. doi: 10.1073/pnas.94.5.1857. PubMed DOI PMC
Kahmen A, Renker C, Unsicker SB, Buchmann N. Niche complementarity for nitrogen: an explanation for the biodiversity and ecosystem functioning relationship? Ecology. 2006;87:1244–1255. doi: 10.1890/0012-9658(2006)87[1244:NCFNAE]2.0.CO;2. PubMed DOI
Mason NWH, et al. Resource-use efficiency drives overyielding via enhanced complementarity. Oecologia. 2020;193:995–1010. doi: 10.1007/s00442-020-04732-7. PubMed DOI
Finn JA, et al. Ecosystem function enhanced by combining four functional types of plant species in intensively managed grassland mixtures: A 3-year continental-scale field experiment. J. Appl. Ecol. 2013;50:365–375. doi: 10.1111/1365-2664.12041. DOI
Grange G, Finn JA, Brophy C. Plant diversity enhanced yield and mitigated drought impacts in intensively managed grassland communities. J. Appl. Ecol. 2021;58:1864–1875. doi: 10.1111/1365-2664.13894. DOI
Li L, Tilman D, Lambers H, Zhang FS. Plant diversity and overyielding: Insights from belowground facilitation of intercropping in agriculture. N. Phytol. 2014;203:63–69. doi: 10.1111/nph.12778. PubMed DOI
Nyfeler D, Huguenin-Elie O, Suter M, Frossard E, Lüscher A. Grass-legume mixtures can yield more nitrogen than legume pure stands due to mutual stimulation of nitrogen uptake from symbiotic and non-symbiotic sources. Agric. Ecosyst. Environ. 2011;140:155–163. doi: 10.1016/j.agee.2010.11.022. DOI
Wright AJ, Wardle DA, Callaway R, Gaxiola A. The Overlooked Role of Facilitation in Biodiversity Experiments. Trends Ecol. Evol. 2017;32:383–390. doi: 10.1016/j.tree.2017.02.011. PubMed DOI
Cappelli SL, Pichon NA, Mannall T, Allan E. Partitioning the effects of plant diversity on ecosystem functions at different trophic levels. Ecol. Monogr. 2022;92:e1521. doi: 10.1002/ecm.1521. DOI
Granjel RR, Allan E, Godoy O. Nitrogen enrichment and foliar fungal pathogens affect the mechanisms of multispecies plant coexistence. N. Phytol. 2023;237:2332–2346. doi: 10.1111/nph.18689. PubMed DOI
Harpole WS, et al. Addition of multiple limiting resources reduces grassland diversity. Nature. 2016;537:93–96. doi: 10.1038/nature19324. PubMed DOI
Hoekstra NJ, Suter M, Finn JA, Husse S, Lüscher A. Do belowground vertical niche differences between deep- and shallow-rooted species enhance resource uptake and drought resistance in grassland mixtures? Plant Soil. 2015;394:21–34. doi: 10.1007/s11104-014-2352-x. DOI
Kirwan L, et al. Evenness drives consistent diversity effects in intensive grassland systems across 28 European sites. Wiley Online Libr. 2007;95:530–539.
Siebenkäs A, Roscher C. Functional composition rather than species richness determines root characteristics of experimental grasslands grown at different light and nutrient availability. Plant Soil. 2016;404:399–412. doi: 10.1007/s11104-016-2853-x. DOI
Song L, et al. Nitrogen enrichment enhances the dominance of grasses over forbs in a temperate steppe ecosystem. Biogeosciences. 2011;8:2341–2350. doi: 10.5194/bg-8-2341-2011. DOI
Fargione J, et al. From selection to complementarity: Shifts in the causes of biodiversity-productivity relationships in a long-term biodiversity experiment. Proc. R. Soc. B Biol. Sci. 2007;274:871–876. doi: 10.1098/rspb.2006.0351. PubMed DOI PMC
Reich PB, et al. Impacts of biodiversity loss escalate through time as redundancy fades. Science. 2012;336:589–592. doi: 10.1126/science.1217909. PubMed DOI
Wagg C, et al. Biodiversity–stability relationships strengthen over time in a long-term grassland experiment. Nat. Commun. 2022;13:7752. doi: 10.1038/s41467-022-35189-2. PubMed DOI PMC
Tilman D, Isbell F. Recovery as nitrogen declines. Nature. 2015;528:336–337. doi: 10.1038/nature16320. PubMed DOI
Isbell F, Tilman D, Polasky S, Binder S, Hawthorne P. Low biodiversity state persists two decades after cessation of nutrient enrichment. Ecol. Lett. 2013;16:454–460. doi: 10.1111/ele.12066. PubMed DOI
Silva LCR, Lambers H. Soil-plant-atmosphere interactions: structure, function, and predictive scaling for climate change mitigation. Plant Soil. 2020;461:5–27. doi: 10.1007/s11104-020-04427-1. DOI
DeLuca TH, Zackrisson O, Gundale MJ, Nilsson MC. Ecosystem feedbacks and nitrogen fixation in boreal forests. Science. 2008;320:1181. doi: 10.1126/science.1154836. PubMed DOI
Spehn EM, et al. The role of legumes as a component of biodiversity in a cross-European study of grassland biomass nitrogen. Oikos. 2002;98:205–218. doi: 10.1034/j.1600-0706.2002.980203.x. DOI
Vázquez E, et al. Nitrogen but not phosphorus addition affects symbiotic N2 fixation by legumes in natural and semi-natural grasslands located on four continents. Plant Soil. 2022 doi: 10.1007/s11104-022-05498-y. DOI
Pichon NA, et al. Decomposition disentangled: A test of the multiple mechanisms by which nitrogen enrichment alters litter decomposition. Funct. Ecol. 2020;34:1485–1496. doi: 10.1111/1365-2435.13560. DOI
Lambers H, et al. How belowground interactions contribute to the coexistence of mycorrhizal and non-mycorrhizal species in severely phosphorus-impoverished hyperdiverse ecosystems. Plant Soil. 2018;424:11–33. doi: 10.1007/s11104-017-3427-2. DOI
Mommer L, et al. Lost in diversity: the interactions between soil-borne fungi, biodiversity and plant productivity. N. Phytol. 2018;218:542–553. doi: 10.1111/nph.15036. PubMed DOI PMC
Wagg C, Bender SF, Widmer F, Van Der Heijden MGA. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc. Natl Acad. Sci. USA. 2014;111:5266–5270. doi: 10.1073/pnas.1320054111. PubMed DOI PMC
Ren Z, et al. Effects of resource additions on species richness and ANPP in an alpine meadow community. J. Plant Ecol. 2010;3:25–31. doi: 10.1093/jpe/rtp034. DOI
Wright A, Schnitzer SA, Reich PB. Daily environmental conditions determine the competition-facilitation balance for plant water status. J. Ecol. 2015;103:648–656. doi: 10.1111/1365-2745.12397. DOI
Roscher C, Schmid B, Kolle O, Schulze ED. Complementarity among four highly productive grassland species depends on resource availability. Oecologia. 2016;181:571–582. doi: 10.1007/s00442-016-3587-4. PubMed DOI
Kirwan L. The Agrodiversity Experiment three years of data from a multisite study in intensively managed grasslands. Ecology. 2014;95:2680. doi: 10.1890/14-0170.1. DOI
Hautier Y, Vojtech E, Hector A. The importance of competition for light depends on productivity and disturbance. Ecol. Evol. 2018;8:10655–10661. doi: 10.1002/ece3.4403. PubMed DOI PMC
Siebenkäs A, Schumacher J, Roscher C. Resource availability alters biodiversity effects in experimental grass-forb mixtures. PLoS ONE. 2016;11:e0158110. doi: 10.1371/journal.pone.0158110. PubMed DOI PMC
Wilson SD, Tilman D. Component of Plant Competition Along an Experimental Gradient of Nitrogen Availability. Ecology. 1991;72:1050–1065. doi: 10.2307/1940605. DOI
Wilson SD, Tilman D. Plant Competition and Resource Availability in Response to Disturbance and Fertilization. Ecology. 1993;74:599–611. doi: 10.2307/1939319. DOI
Hu Y, et al. Multi-trait functional diversity predicts ecosystem multifunctionality under nitrogen addition in a desert steppe. Plant Soil. 2022 doi: 10.1007/s11104-022-05731-8. DOI
Lange M, Eisenhauer N, Chen H. & Gerd Gleixner. Increased soil carbon storage through plant diversity strengthens with time and extends into the subsoil. Glob. Change Biol. 2023;29:2627–2639. doi: 10.1111/gcb.16641. PubMed DOI
Reich PB. Elevated CO2 reduces losses of plant diversity caused by nitrogen deposition. Science. 2009;326:1399–1402. doi: 10.1126/science.1178820. PubMed DOI
Reich PB, et al. Plant diversity enhances ecosystem responses to elevated CO2 and nitrogen deposition. Nature. 2001;410:809–812. doi: 10.1038/35071062. PubMed DOI
Pontes L, et al. Impacts of species interactions on grass community productivity under contrasting management regimes. Oecologia. 2012;168:761–771. doi: 10.1007/s00442-011-2129-3. PubMed DOI
Connolly J, Wayne P. Asymmetric competition between plant species. Oecologia. 1996;108:311–320. doi: 10.1007/BF00334656. PubMed DOI
Slate ML, Matallana-Mejia N, Aromin A, Callaway RM. Nitrogen addition, but not pulse frequency, shifts competitive interactions in favor of exotic invasive plant species. Biol. Invasions. 2022 doi: 10.1007/s10530-022-02833-3. DOI
DeMalach N, Zaady E, Weiner J, Kadmon R. Size asymmetry of resource competition and the structure of plant communities. J. Ecol. 2016;104:899–910. doi: 10.1111/1365-2745.12557. DOI
De Boeck HJ, et al. Patterns and drivers of biodiversity–stability relationships under climate extremes. J. Ecol. 2018;106:890–902. doi: 10.1111/1365-2745.12897. DOI
Marquard E, et al. Plant species richness and functional composition drive overyielding in a six-year grassland experiment. Ecology. 2009;90:3290–3302. doi: 10.1890/09-0069.1. PubMed DOI
van Paassen JG, et al. Legacy effects of nitrogen and phosphorus additions on vegetation and carbon stocks of upland heaths. N. Phytol. 2020;228:226–237. doi: 10.1111/nph.16671. PubMed DOI
Clark CM, Hobbie SE, Venterea R, Tilman D. Long-lasting effects on nitrogen cycling 12 years after treatments cease despite minimal long-term nitrogen retention. Glob. Change Biol. 2009;15:1755–1766. doi: 10.1111/j.1365-2486.2008.01811.x. DOI
Guiz J, et al. Long-term effects of plant diversity and composition on plant stoichiometry. Oikos. 2016;125:613–621. doi: 10.1111/oik.02504. DOI
Chen X, Chen HYH, Searle EB, Chen C, Reich PB. Negative to positive shifts in diversity effects on soil nitrogen over time. Nat. Sustain. 2021;4:225–232. doi: 10.1038/s41893-020-00641-y. DOI
Civitello DJ, et al. Biodiversity inhibits parasites: Broad evidence for the dilution effect. Proc. Natl Acad. Sci. 2015;112:8667–8671. doi: 10.1073/pnas.1506279112. PubMed DOI PMC
Mitchell CE, Tilman D, Groth JV. Effects of Grassland Plant Species Diversity, Abundance, and Composition on Foliar Fungal Disease. Ecology. 2002;83:1713–1726. doi: 10.1890/0012-9658(2002)083[1713:EOGPSD]2.0.CO;2. DOI
Rottstock T, Joshi J, Kummer V, Fischer M. Higher plant diversity promotes higher diversity of fungal pathogens, while it decreases pathogen infection per plant. Ecology. 2014;95:1907–1917. doi: 10.1890/13-2317.1. PubMed DOI
Isbell F, et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature. 2015;526:574–577. doi: 10.1038/nature15374. PubMed DOI
Van Sundert K, et al. Fertilized graminoids intensify negative drought effects on grassland productivity. Glob. Change Biol. 2021;27:2441–2457. doi: 10.1111/gcb.15583. PubMed DOI
Harper, J. L. Population biology of plants (The Blackburn Press, 1977).
Clark AT, et al. How to estimate complementarity and selection effects from an incomplete sample of species. Methods Ecol. Evol. 2019;10:2141–2152. doi: 10.1111/2041-210X.13285. PubMed DOI PMC
Lenth, R. V. et al. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.7.4-1, https://CRAN.R-project.org/package=emmeans (2022)
Simpson D, et al. The EMEP MSC-W chemical transport model – technical description. Atmos. Chem. Phys. 2012;12:7825–7865. doi: 10.5194/acp-12-7825-2012. DOI
Parfitt RL, Baisden WT, Schipper LA, Mackay AD. Nitrogen inputs and outputs for New Zealand at national and regional scales: Past, present and future scenarios. J. R. Soc. N. Z. 2008;38:71–87. doi: 10.1080/03014220809510547. DOI
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. (2021).
RStudio Team. RStudio: Integrated Development for R. RStudio, PBC, Boston, MA URL http://www.rstudio.com/. (2020).
Mazerolle, M. J. AICcmodavg: Model selection and multimodel inference based on (Q)AIC(c). R package version 2.3-1. https://cran.r-project.org/package=AICcmodavg. (2020).
Wickham, H., François, R., Henry, L., Müller, K. dplyr: A Grammar of Data Manipulation. https://dplyr.tidyverse.org, https://github.com/tidyverse/dplyr. (2022).
van Rij, J., Wieling, M., Baayen, R. H. & van Rijn, H. itsadug: Interpreting Time Series and Autocorrelated Data Using GAMMs. R package version 2.4.1 (2022)
Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting Linear Mixed-Effects Models using lme4. J. Stat. Softw. 67, 1–48 (2014).
Kuznetsova A, Brockhoff PB, Christensen RH. B. lmerTest Package: Tests in Linear Mixed Effects Models. J. Stat. Softw. 2017;82:1–26. doi: 10.18637/jss.v082.i13. DOI
Bache, S. M., & Wickham, H. magrittr: a forward-pipe operator for R. R package version 2.0.3. https://CRAN.R-project.org/package=magrittr. (2014).
Bartoń, K. MuMIn: Multi-Model Inference. R package version 1.46.0. https://CRAN.R-project.org/package=MuMIn. (2022).
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., & Team, R. C. Linear and nonlinear mixed effects models. R package version. https://CRAN.R-project.org/package=nlme. (2007).
Nash, J. C. On Best Practice Optimization Methods in R. J. Stat. Softw. 60, 1–14 10.18637/jss.v060.i02. (2014)
Nash JC, Varadhan R. Unifying Optimization Algorithms to Aid Software System Users: optimx for R. J. Stat. Softw. 2011;43:1–14. doi: 10.18637/jss.v043.i09. DOI