Cumulative nitrogen enrichment alters the drivers of grassland overyielding

. 2024 Mar 11 ; 7 (1) : 309. [epub] 20240311

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid38467761

Grantová podpora
31003A_160212 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
31003A_160212 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
DEB-1831944 National Science Foundation (NSF)
ENV-CT95-0008 European Commission (EC)
JCK 99-09 Kempestiftelserna (Kempe Foundations)

Odkazy

PubMed 38467761
PubMed Central PMC10928195
DOI 10.1038/s42003-024-05999-9
PII: 10.1038/s42003-024-05999-9
Knihovny.cz E-zdroje

Effects of plant diversity on grassland productivity, or overyielding, are found to be robust to nutrient enrichment. However, the impact of cumulative nitrogen (N) addition (total N added over time) on overyielding and its drivers are underexplored. Synthesizing data from 15 multi-year grassland biodiversity experiments with N addition, we found that N addition decreases complementarity effects and increases selection effects proportionately, resulting in no overall change in overyielding regardless of N addition rate. However, we observed a convex relationship between overyielding and cumulative N addition, driven by a shift from complementarity to selection effects. This shift suggests diminishing positive interactions and an increasing contribution of a few dominant species with increasing N accumulation. Recognizing the importance of cumulative N addition is vital for understanding its impacts on grassland overyielding, contributing essential insights for biodiversity conservation and ecosystem resilience in the face of increasing N deposition.

Cedar Creek Ecosystem Science Reserve University of Minnesota 2660 Fawn Lake Dr NE East Bethel MN 55005 USA

Centre for Development and Environment CDE University of Bern Mittelstrasse 43 3012 Bern Switzerland

Data Observatory Foundation ANID Technology Center No DO210001 Eliodoro Yáñez 2990 7510277 Providencia Santiago Chile

Department of Botany Faculty of Science University of South Bohemia Na Zlaté stoce 1 370 05 České Budějovice Czech Republic

Department of Crop production Ecology Swedish University of Agricultural Sciences 901 83 Umeå Sweden

Department of Ecology Evolution and Behavior University of Minnesota 1479 Gortner Ave St Paul MN 55108 USA

Department of Forest Resources University of Minnesota 1479 Gortner Ave St Paul MN 55108 USA

Department of Functional Ecology Institute of Botany of the Czech Academy of Sciences Zámek 1 252 43 Průhonice Czech Republic

Ecology and Biodiversity group Department of Biology Utrecht University Padualaan 8 3584 CH Utrecht The Netherlands

GEMA Center for Genomics Ecology and Environment Universidad Mayor Camino La Pirámide 5750 Huechuraba Santiago Chile

German Centre for Integrative Biodiversity Research Puschstrasse 4 04103 Leipzig Germany

Institute for Global Change Biology and School for the Environment and Sustainability University of Michigan 440 Church Street Ann Arbor MI 48109 USA

Institute of Plant Sciences University of Bern Altenbergrain 21 3013 Bern Switzerland

Landcare Research Private Bag 3127 Hamilton 3240 New Zealand

Rural Development Institute of Paraná IAPAR EMATER Av Euzébio de Queirós s n° CP 129 CEP 84001 970 Ponta Grossa PR Brazil

Swiss Federal Research Institute WSL Zürcherstrasse 111 CH 8903 Birmensdorf Switzerland

UFZ Helmholtz Centre for Environmental Research Physiological Diversity Permoserstrasse 15 04318 Leipzig Germany

Zobrazit více v PubMed

Food and Agriculture Organization, FAO statistical databases, Rome, available at http://faostat.fao.org/default.aspx.(2006).

Stevens CJ, Dise NB, Mountford JO, Gowing DJ. Impact of Nitrogen Deposition on the Species Richness of Grasslands. Science. 2004;303:1876–1879. doi: 10.1126/science.1094678. PubMed DOI

Hautier Y, et al. Eutrophication weakens stabilizing effects of diversity in natural grasslands. Nature. 2014;508:521–525. doi: 10.1038/nature13014. PubMed DOI

Storkey J, et al. Grassland biodiversity bounces back from long-term nitrogen addition. Nature. 2015;528:401–404. doi: 10.1038/nature16444. PubMed DOI

Suding KN, et al. Functional- and abundance-based mechanisms explain diversity loss due to N fertilization. Proc. Natl Acad. Sci. USA. 2005;102:4387–4392. doi: 10.1073/pnas.0408648102. PubMed DOI PMC

Fang Y, Xun F, Bai W, Zhang W, Li L. Long-Term Nitrogen Addition Leads to Loss of Species Richness Due to Litter Accumulation and Soil Acidification in a Temperate Steppe. PLOS One. 2012;7:e47369. doi: 10.1371/journal.pone.0047369. PubMed DOI PMC

Fay PA, et al. Grassland productivity limited by multiple nutrients. Nat. Plants. 2015;1:15080. doi: 10.1038/nplants.2015.80. PubMed DOI

Duran BEL, Duncan DS, Oates LG, Kucharik CJ, Jackson RD. Nitrogen fertilization effects on productivity and nitrogen loss in three grass-based perennial bioenergy cropping systems. PLoS One. 2016;11:e0151919. doi: 10.1371/journal.pone.0151919. PubMed DOI PMC

Clark CM, Tilman D. Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature. 2008;451:712–715. doi: 10.1038/nature06503. PubMed DOI

Seabloom EW, et al. Increasing effects of chronic nutrient enrichment on plant diversity loss and ecosystem productivity over time. Ecology. 2021;102:e03218. doi: 10.1002/ecy.3218. PubMed DOI

Hautier Y, Niklaus PA, Hector A. Competition for light causes plant biodiversity loss after eutrophication. Science. 2009;324:636–638. doi: 10.1126/science.1169640. PubMed DOI

DeMalach N, Zaady E, Kadmon R. Light asymmetry explains the effect of nutrient enrichment on grassland diversity. Ecol. Lett. 2017;20:60–69. doi: 10.1111/ele.12706. PubMed DOI

Eskelinen A, Harpole WS, Jessen M-T, Virtanen R, Hautier Y. Light competition drives herbivore and nutrient effects on plant diversity. Nature. 2022;611:301–305. doi: 10.1038/s41586-022-05383-9. PubMed DOI PMC

Crawley MJ, et al. Determinants of Species Richness in the Park Grass Experiment. Am. Nat. 2005;165:179–192. doi: 10.1086/427270. PubMed DOI

Silvertown J, et al. The Park Grass Experiment 1856–2006: its contribution to ecology. J. Ecol. 2006;94:801–814. doi: 10.1111/j.1365-2745.2006.01145.x. DOI

Kimmel K, et al. Diversity-dependent soil acidification under nitrogen enrichment constrains biomass productivity. Glob. Change Biol. 2020;26:6594–6603. doi: 10.1111/gcb.15329. PubMed DOI

Harpole WS, et al. Nutrient co‐limitation of primary producer communities. Wiley Online Libr. 2011;14:852–862. PubMed

Band N, Kadmon R, Mandel M, DeMalach N. Assessing the roles of nitrogen, biomass, and niche dimensionality as drivers of species loss in grassland communities. Proc. Natl Acad. Sci. 2022;119:e2112010119. doi: 10.1073/pnas.2112010119. PubMed DOI PMC

Yang Z, Hautier Y, Borer ET, Zhang C, Du G. Abundance- and functional-based mechanisms of plant diversity loss with fertilization in the presence and absence of herbivores. Oecologia. 2015;179:261–270. doi: 10.1007/s00442-015-3313-7. PubMed DOI

Isbell F, et al. Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem productivity. Proc. Natl Acad. Sci. USA. 2013;110:11911–11916. doi: 10.1073/pnas.1310880110. PubMed DOI PMC

Craven D, et al. Plant diversity effects on grassland productivity are robust to both nutrient enrichment and drought. Philos. Trans. R. Soc. B Biol. Sci. 2016;371:20150277. doi: 10.1098/rstb.2015.0277. PubMed DOI PMC

Prager CM, et al. A gradient of nutrient enrichment reveals nonlinear impacts of fertilization on Arctic plant diversity and ecosystem function. Ecol. Evol. 2017;7:2449–2460. doi: 10.1002/ece3.2863. PubMed DOI PMC

Atwater DZ, Callaway RM. Testing the mechanisms of diversity-dependent overyielding in a grass species. Ecology. 2015;96:3332–3342. doi: 10.1890/15-0889.1. PubMed DOI

Eskelinen A, et al. Resource-enhancing global changes drive a whole-ecosystem shift to faster cycling but decrease diversity. Ecology. 2020;101:1–12. doi: 10.1002/ecy.3178. PubMed DOI

Chen X, Chen HYH. Plant mixture balances terrestrial ecosystem C:N:P stoichiometry. Nat. Commun. 2021;12:1–9. PubMed PMC

He K, et al. Response of aboveground biomass and diversity to nitrogen addition – a five-year experiment in semi-arid grassland of Inner Mongolia, China. Sci. Rep. 2016;6:31919. doi: 10.1038/srep31919. PubMed DOI PMC

Loreau M, Hector A. Partitioning selection and complementarity in biodiversity experiments. Nature. 2001;412:72–76. doi: 10.1038/35083573. PubMed DOI

Hector A, et al. Plant diversity and productivity experiments in European grasslands. Science. 1999;286:1123–1127. doi: 10.1126/science.286.5442.1123. PubMed DOI

Barry KE, et al. The Future of Complementarity: Disentangling Causes from Consequences. Trends Ecol. Evol. 2019;34:167–180. doi: 10.1016/j.tree.2018.10.013. PubMed DOI

Tilman D, Lehman CL, Thomson KT. Plant diversity and ecosystem productivity: Theoretical considerations. Proc. Natl Acad. Sci. 1997;94:1857–1861. doi: 10.1073/pnas.94.5.1857. PubMed DOI PMC

Kahmen A, Renker C, Unsicker SB, Buchmann N. Niche complementarity for nitrogen: an explanation for the biodiversity and ecosystem functioning relationship? Ecology. 2006;87:1244–1255. doi: 10.1890/0012-9658(2006)87[1244:NCFNAE]2.0.CO;2. PubMed DOI

Mason NWH, et al. Resource-use efficiency drives overyielding via enhanced complementarity. Oecologia. 2020;193:995–1010. doi: 10.1007/s00442-020-04732-7. PubMed DOI

Finn JA, et al. Ecosystem function enhanced by combining four functional types of plant species in intensively managed grassland mixtures: A 3-year continental-scale field experiment. J. Appl. Ecol. 2013;50:365–375. doi: 10.1111/1365-2664.12041. DOI

Grange G, Finn JA, Brophy C. Plant diversity enhanced yield and mitigated drought impacts in intensively managed grassland communities. J. Appl. Ecol. 2021;58:1864–1875. doi: 10.1111/1365-2664.13894. DOI

Li L, Tilman D, Lambers H, Zhang FS. Plant diversity and overyielding: Insights from belowground facilitation of intercropping in agriculture. N. Phytol. 2014;203:63–69. doi: 10.1111/nph.12778. PubMed DOI

Nyfeler D, Huguenin-Elie O, Suter M, Frossard E, Lüscher A. Grass-legume mixtures can yield more nitrogen than legume pure stands due to mutual stimulation of nitrogen uptake from symbiotic and non-symbiotic sources. Agric. Ecosyst. Environ. 2011;140:155–163. doi: 10.1016/j.agee.2010.11.022. DOI

Wright AJ, Wardle DA, Callaway R, Gaxiola A. The Overlooked Role of Facilitation in Biodiversity Experiments. Trends Ecol. Evol. 2017;32:383–390. doi: 10.1016/j.tree.2017.02.011. PubMed DOI

Cappelli SL, Pichon NA, Mannall T, Allan E. Partitioning the effects of plant diversity on ecosystem functions at different trophic levels. Ecol. Monogr. 2022;92:e1521. doi: 10.1002/ecm.1521. DOI

Granjel RR, Allan E, Godoy O. Nitrogen enrichment and foliar fungal pathogens affect the mechanisms of multispecies plant coexistence. N. Phytol. 2023;237:2332–2346. doi: 10.1111/nph.18689. PubMed DOI

Harpole WS, et al. Addition of multiple limiting resources reduces grassland diversity. Nature. 2016;537:93–96. doi: 10.1038/nature19324. PubMed DOI

Hoekstra NJ, Suter M, Finn JA, Husse S, Lüscher A. Do belowground vertical niche differences between deep- and shallow-rooted species enhance resource uptake and drought resistance in grassland mixtures? Plant Soil. 2015;394:21–34. doi: 10.1007/s11104-014-2352-x. DOI

Kirwan L, et al. Evenness drives consistent diversity effects in intensive grassland systems across 28 European sites. Wiley Online Libr. 2007;95:530–539.

Siebenkäs A, Roscher C. Functional composition rather than species richness determines root characteristics of experimental grasslands grown at different light and nutrient availability. Plant Soil. 2016;404:399–412. doi: 10.1007/s11104-016-2853-x. DOI

Song L, et al. Nitrogen enrichment enhances the dominance of grasses over forbs in a temperate steppe ecosystem. Biogeosciences. 2011;8:2341–2350. doi: 10.5194/bg-8-2341-2011. DOI

Fargione J, et al. From selection to complementarity: Shifts in the causes of biodiversity-productivity relationships in a long-term biodiversity experiment. Proc. R. Soc. B Biol. Sci. 2007;274:871–876. doi: 10.1098/rspb.2006.0351. PubMed DOI PMC

Reich PB, et al. Impacts of biodiversity loss escalate through time as redundancy fades. Science. 2012;336:589–592. doi: 10.1126/science.1217909. PubMed DOI

Wagg C, et al. Biodiversity–stability relationships strengthen over time in a long-term grassland experiment. Nat. Commun. 2022;13:7752. doi: 10.1038/s41467-022-35189-2. PubMed DOI PMC

Tilman D, Isbell F. Recovery as nitrogen declines. Nature. 2015;528:336–337. doi: 10.1038/nature16320. PubMed DOI

Isbell F, Tilman D, Polasky S, Binder S, Hawthorne P. Low biodiversity state persists two decades after cessation of nutrient enrichment. Ecol. Lett. 2013;16:454–460. doi: 10.1111/ele.12066. PubMed DOI

Silva LCR, Lambers H. Soil-plant-atmosphere interactions: structure, function, and predictive scaling for climate change mitigation. Plant Soil. 2020;461:5–27. doi: 10.1007/s11104-020-04427-1. DOI

DeLuca TH, Zackrisson O, Gundale MJ, Nilsson MC. Ecosystem feedbacks and nitrogen fixation in boreal forests. Science. 2008;320:1181. doi: 10.1126/science.1154836. PubMed DOI

Spehn EM, et al. The role of legumes as a component of biodiversity in a cross-European study of grassland biomass nitrogen. Oikos. 2002;98:205–218. doi: 10.1034/j.1600-0706.2002.980203.x. DOI

Vázquez E, et al. Nitrogen but not phosphorus addition affects symbiotic N2 fixation by legumes in natural and semi-natural grasslands located on four continents. Plant Soil. 2022 doi: 10.1007/s11104-022-05498-y. DOI

Pichon NA, et al. Decomposition disentangled: A test of the multiple mechanisms by which nitrogen enrichment alters litter decomposition. Funct. Ecol. 2020;34:1485–1496. doi: 10.1111/1365-2435.13560. DOI

Lambers H, et al. How belowground interactions contribute to the coexistence of mycorrhizal and non-mycorrhizal species in severely phosphorus-impoverished hyperdiverse ecosystems. Plant Soil. 2018;424:11–33. doi: 10.1007/s11104-017-3427-2. DOI

Mommer L, et al. Lost in diversity: the interactions between soil-borne fungi, biodiversity and plant productivity. N. Phytol. 2018;218:542–553. doi: 10.1111/nph.15036. PubMed DOI PMC

Wagg C, Bender SF, Widmer F, Van Der Heijden MGA. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc. Natl Acad. Sci. USA. 2014;111:5266–5270. doi: 10.1073/pnas.1320054111. PubMed DOI PMC

Ren Z, et al. Effects of resource additions on species richness and ANPP in an alpine meadow community. J. Plant Ecol. 2010;3:25–31. doi: 10.1093/jpe/rtp034. DOI

Wright A, Schnitzer SA, Reich PB. Daily environmental conditions determine the competition-facilitation balance for plant water status. J. Ecol. 2015;103:648–656. doi: 10.1111/1365-2745.12397. DOI

Roscher C, Schmid B, Kolle O, Schulze ED. Complementarity among four highly productive grassland species depends on resource availability. Oecologia. 2016;181:571–582. doi: 10.1007/s00442-016-3587-4. PubMed DOI

Kirwan L. The Agrodiversity Experiment three years of data from a multisite study in intensively managed grasslands. Ecology. 2014;95:2680. doi: 10.1890/14-0170.1. DOI

Hautier Y, Vojtech E, Hector A. The importance of competition for light depends on productivity and disturbance. Ecol. Evol. 2018;8:10655–10661. doi: 10.1002/ece3.4403. PubMed DOI PMC

Siebenkäs A, Schumacher J, Roscher C. Resource availability alters biodiversity effects in experimental grass-forb mixtures. PLoS ONE. 2016;11:e0158110. doi: 10.1371/journal.pone.0158110. PubMed DOI PMC

Wilson SD, Tilman D. Component of Plant Competition Along an Experimental Gradient of Nitrogen Availability. Ecology. 1991;72:1050–1065. doi: 10.2307/1940605. DOI

Wilson SD, Tilman D. Plant Competition and Resource Availability in Response to Disturbance and Fertilization. Ecology. 1993;74:599–611. doi: 10.2307/1939319. DOI

Hu Y, et al. Multi-trait functional diversity predicts ecosystem multifunctionality under nitrogen addition in a desert steppe. Plant Soil. 2022 doi: 10.1007/s11104-022-05731-8. DOI

Lange M, Eisenhauer N, Chen H. & Gerd Gleixner. Increased soil carbon storage through plant diversity strengthens with time and extends into the subsoil. Glob. Change Biol. 2023;29:2627–2639. doi: 10.1111/gcb.16641. PubMed DOI

Reich PB. Elevated CO2 reduces losses of plant diversity caused by nitrogen deposition. Science. 2009;326:1399–1402. doi: 10.1126/science.1178820. PubMed DOI

Reich PB, et al. Plant diversity enhances ecosystem responses to elevated CO2 and nitrogen deposition. Nature. 2001;410:809–812. doi: 10.1038/35071062. PubMed DOI

Pontes L, et al. Impacts of species interactions on grass community productivity under contrasting management regimes. Oecologia. 2012;168:761–771. doi: 10.1007/s00442-011-2129-3. PubMed DOI

Connolly J, Wayne P. Asymmetric competition between plant species. Oecologia. 1996;108:311–320. doi: 10.1007/BF00334656. PubMed DOI

Slate ML, Matallana-Mejia N, Aromin A, Callaway RM. Nitrogen addition, but not pulse frequency, shifts competitive interactions in favor of exotic invasive plant species. Biol. Invasions. 2022 doi: 10.1007/s10530-022-02833-3. DOI

DeMalach N, Zaady E, Weiner J, Kadmon R. Size asymmetry of resource competition and the structure of plant communities. J. Ecol. 2016;104:899–910. doi: 10.1111/1365-2745.12557. DOI

De Boeck HJ, et al. Patterns and drivers of biodiversity–stability relationships under climate extremes. J. Ecol. 2018;106:890–902. doi: 10.1111/1365-2745.12897. DOI

Marquard E, et al. Plant species richness and functional composition drive overyielding in a six-year grassland experiment. Ecology. 2009;90:3290–3302. doi: 10.1890/09-0069.1. PubMed DOI

van Paassen JG, et al. Legacy effects of nitrogen and phosphorus additions on vegetation and carbon stocks of upland heaths. N. Phytol. 2020;228:226–237. doi: 10.1111/nph.16671. PubMed DOI

Clark CM, Hobbie SE, Venterea R, Tilman D. Long-lasting effects on nitrogen cycling 12 years after treatments cease despite minimal long-term nitrogen retention. Glob. Change Biol. 2009;15:1755–1766. doi: 10.1111/j.1365-2486.2008.01811.x. DOI

Guiz J, et al. Long-term effects of plant diversity and composition on plant stoichiometry. Oikos. 2016;125:613–621. doi: 10.1111/oik.02504. DOI

Chen X, Chen HYH, Searle EB, Chen C, Reich PB. Negative to positive shifts in diversity effects on soil nitrogen over time. Nat. Sustain. 2021;4:225–232. doi: 10.1038/s41893-020-00641-y. DOI

Civitello DJ, et al. Biodiversity inhibits parasites: Broad evidence for the dilution effect. Proc. Natl Acad. Sci. 2015;112:8667–8671. doi: 10.1073/pnas.1506279112. PubMed DOI PMC

Mitchell CE, Tilman D, Groth JV. Effects of Grassland Plant Species Diversity, Abundance, and Composition on Foliar Fungal Disease. Ecology. 2002;83:1713–1726. doi: 10.1890/0012-9658(2002)083[1713:EOGPSD]2.0.CO;2. DOI

Rottstock T, Joshi J, Kummer V, Fischer M. Higher plant diversity promotes higher diversity of fungal pathogens, while it decreases pathogen infection per plant. Ecology. 2014;95:1907–1917. doi: 10.1890/13-2317.1. PubMed DOI

Isbell F, et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature. 2015;526:574–577. doi: 10.1038/nature15374. PubMed DOI

Van Sundert K, et al. Fertilized graminoids intensify negative drought effects on grassland productivity. Glob. Change Biol. 2021;27:2441–2457. doi: 10.1111/gcb.15583. PubMed DOI

Harper, J. L. Population biology of plants (The Blackburn Press, 1977).

Clark AT, et al. How to estimate complementarity and selection effects from an incomplete sample of species. Methods Ecol. Evol. 2019;10:2141–2152. doi: 10.1111/2041-210X.13285. PubMed DOI PMC

Lenth, R. V. et al. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.7.4-1, https://CRAN.R-project.org/package=emmeans (2022)

Simpson D, et al. The EMEP MSC-W chemical transport model – technical description. Atmos. Chem. Phys. 2012;12:7825–7865. doi: 10.5194/acp-12-7825-2012. DOI

Parfitt RL, Baisden WT, Schipper LA, Mackay AD. Nitrogen inputs and outputs for New Zealand at national and regional scales: Past, present and future scenarios. J. R. Soc. N. Z. 2008;38:71–87. doi: 10.1080/03014220809510547. DOI

R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. (2021).

RStudio Team. RStudio: Integrated Development for R. RStudio, PBC, Boston, MA URL http://www.rstudio.com/. (2020).

Mazerolle, M. J. AICcmodavg: Model selection and multimodel inference based on (Q)AIC(c). R package version 2.3-1. https://cran.r-project.org/package=AICcmodavg. (2020).

Wickham, H., François, R., Henry, L., Müller, K. dplyr: A Grammar of Data Manipulation. https://dplyr.tidyverse.org, https://github.com/tidyverse/dplyr. (2022).

van Rij, J., Wieling, M., Baayen, R. H. & van Rijn, H. itsadug: Interpreting Time Series and Autocorrelated Data Using GAMMs. R package version 2.4.1 (2022)

Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting Linear Mixed-Effects Models using lme4. J. Stat. Softw. 67, 1–48 (2014).

Kuznetsova A, Brockhoff PB, Christensen RH. B. lmerTest Package: Tests in Linear Mixed Effects Models. J. Stat. Softw. 2017;82:1–26. doi: 10.18637/jss.v082.i13. DOI

Bache, S. M., & Wickham, H. magrittr: a forward-pipe operator for R. R package version 2.0.3. https://CRAN.R-project.org/package=magrittr. (2014).

Bartoń, K. MuMIn: Multi-Model Inference. R package version 1.46.0. https://CRAN.R-project.org/package=MuMIn. (2022).

Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., & Team, R. C. Linear and nonlinear mixed effects models. R package version. https://CRAN.R-project.org/package=nlme. (2007).

Nash, J. C. On Best Practice Optimization Methods in R. J. Stat. Softw. 60, 1–14 10.18637/jss.v060.i02. (2014)

Nash JC, Varadhan R. Unifying Optimization Algorithms to Aid Software System Users: optimx for R. J. Stat. Softw. 2011;43:1–14. doi: 10.18637/jss.v043.i09. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...