Plant diversity effects on grassland productivity are robust to both nutrient enrichment and drought
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27114579
PubMed Central
PMC4843698
DOI
10.1098/rstb.2015.0277
PII: rstb.2015.0277
Knihovny.cz E-zdroje
- Klíčová slova
- drought, global change drivers, plant diversity, resource amendment, resource reduction, soil nutrients,
- MeSH
- biodiverzita * MeSH
- eutrofizace * MeSH
- fyziologie rostlin * MeSH
- období sucha * MeSH
- pastviny * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
- Severní Amerika MeSH
Global change drivers are rapidly altering resource availability and biodiversity. While there is consensus that greater biodiversity increases the functioning of ecosystems, the extent to which biodiversity buffers ecosystem productivity in response to changes in resource availability remains unclear. We use data from 16 grassland experiments across North America and Europe that manipulated plant species richness and one of two essential resources-soil nutrients or water-to assess the direction and strength of the interaction between plant diversity and resource alteration on above-ground productivity and net biodiversity, complementarity, and selection effects. Despite strong increases in productivity with nutrient addition and decreases in productivity with drought, we found that resource alterations did not alter biodiversity-ecosystem functioning relationships. Our results suggest that these relationships are largely determined by increases in complementarity effects along plant species richness gradients. Although nutrient addition reduced complementarity effects at high diversity, this appears to be due to high biomass in monocultures under nutrient enrichment. Our results indicate that diversity and the complementarity of species are important regulators of grassland ecosystem productivity, regardless of changes in other drivers of ecosystem function.
Department of Biogeography BayCEER University of Bayreuth 95440 Bayreuth Germany
Department of Biosciences College of Science Swansea University Swansea Wales UK
Department of Disturbance Ecology BayCEER University of Bayreuth 95440 Bayreuth Germany
Department of Ecology Evolution and Environmental Biology Columbia University New York NY 10027 USA
Department of Ecology Evolution and Organismal Biology Iowa State University Ames IA 50011 USA
Department of Plant Sciences University of Oxford Oxford OX1 3RB UK
Institute of Ecology Friedrich Schiller University Jena Dornburger Strasse 159 07743 Jena Germany
USDA ARS Grassland Soil and Water Research Laboratory Temple TX 76502 USA
Zobrazit více v PubMed
Barnosky AD, et al. 2012. Approaching a state shift in Earth's biosphere. Nature 486, 52–58. (10.1038/nature11018) PubMed DOI
Cardinale BJ, et al. 2012. Biodiversity loss and its impact on humanity. Nature 486, 59–67. (10.1038/nature11148) PubMed DOI
Brose U, Hillebrand H. 2016. Biodiversity and ecosystem functioning in dynamic landscapes. Phil. Trans. R. Soc. B 371, 20150267 (doi:10.1098.rstb.2015.0267) PubMed PMC
Hooper DU, et al. 2012. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486, 105–108. (10.1038/nature11118) PubMed DOI
Tilman D, Isbell F, Cowles JM. 2014. Biodiversity and ecosystem functioning. Annu. Rev. Ecol. Evol. Syst. 45, 471–493. (10.1146/annurev-ecolsys-120213-091917) DOI
Hector A, et al. 1999. Plant diversity and productivity experiments in european grasslands. Science 286, 1123–1127. (10.1126/science.286.5442.1123) PubMed DOI
Lee M, Manning P, Rist J, Power SA, Marsh C. 2010. A global comparison of grassland biomass responses to CO2 and nitrogen enrichment. Phil. Trans. R. Soc. B 365, 2047–2056. (10.1098/rstb.2010.0028) PubMed DOI PMC
Smith MD, Knapp AK, Collins SL. 2009. A framework for assessing ecosystem dynamics in response to chronic resource alterations induced by global change. Ecology 90, 3279–3289. (10.1890/08-1815.1) PubMed DOI
Reich PB, et al. 2001. Plant diversity enhances ecosystem responses to elevated CO2 and nitrogen deposition. Nature 410, 809–810. (10.1038/35071062) PubMed DOI
Pfisterer AB, Schmid B. 2002. Diversity-dependent production can decrease the stability of ecosystem functioning. Nature 416, 84–86. (10.1038/416084a) PubMed DOI
Isbell F, et al. 2015. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526, 574–577. (10.1038/nature15374) PubMed DOI
Thakur MP, et al. 2015. Plant diversity drives soil microbial biomass carbon in grasslands irrespective of global environmental change factors. Glob. Change Biol 21, 4076–4085. (10.1111/gcb.13011) PubMed DOI
Wright AJ, et al. 2015. Flooding disturbances increase resource availability and productivity but reduce stability in diverse plant communities. Nat. Commun. 6, 6092 (10.1038/ncomms7092) PubMed DOI
van Ruijven J, Berendse F. 2005. Diversity–productivity relationships: Initial effects, long-term patterns, and underlying mechanisms. Proc. Natl Acad. Sci. USA 102, 695–700. (10.1073/pnas.0407524102) PubMed DOI PMC
Suding KN, Collins SL, Gough L, Clark C, Cleland EE, Gross KL, Milchunas DG, Pennings S. 2005. Functional- and abundance-based mechanisms explain diversity loss due to N fertilization. Proc. Natl Acad. Sci. USA 102, 4387–4392. (10.1073/pnas.0408648102) PubMed DOI PMC
Hartwig UA. 1998. The regulation of symbiotic N2 fixation: a conceptual model of N feedback from the ecosystem to the gene expression level. Persp. Plant Ecol. Evol. Syst. 1, 92–120. (10.1078/1433-8319-00054) DOI
McKane RB, et al. 2002. Resource-based niches provide a basis for plant species diversity and dominance in arctic tundra. Nature 415, 68–71. (10.1038/415068a) PubMed DOI
Harpole WS, et al. 2011. Nutrient co-limitation of primary producer communities. Ecol. Lett. 14, 852–862. (10.1111/j.1461-0248.2011.01651.x) PubMed DOI
Hautier Y, Niklaus PA, Hector A. 2009. Competition for light causes plant biodiversity loss after eutrophication. Science 324, 636–638. (10.1126/science.1169640) PubMed DOI
Reich PB, Hobbie SE, Lee T, Ellsworth DS, West JB, Tilman D, Knops JMH, Naeem S, Trost J. 2006. Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature 440, 922–925. (10.1038/nature04486) PubMed DOI
Sterck F, Markesteijn L, Schieving F, Poorter L. 2011. Functional traits determine trade-offs and niches in a tropical forest community. Proc. Natl Acad. Sci. USA 108, 20627. (10.1073/pnas.1106950108) PubMed DOI PMC
Oelmann Y, et al. 2011. Plant diversity effects on aboveground and belowground N pools in temperate grassland ecosystems: development in the first 5 years after establishment. Glob. Biogeochem. Cycles 25, GB2014 (10.1029/2010GB003869) DOI
Reich PB, Tilman D, Isbell F, Mueller K, Hobbie SE, Flynn DFB, Eisenhauer N. 2012. Impacts of biodiversity loss escalate through time as redundancy fades. Science 336, 589–592. (10.1126/science.1217909) PubMed DOI
Cong W-F, van Ruijven J, Mommer L, De Deyn GB, Berendse F, Hoffland E. 2014. Plant species richness promotes soil carbon and nitrogen stocks in grasslands without legumes. J. Ecol. 102, 1163–1170. (10.1111/1365-2745.12280) DOI
Fornara DA, Tilman D. 2009. Ecological mechanisms associated with the positive diversity–productivity relationship in an N-limited grassland. Ecology 90, 408–418. (10.1890/08-0325.1) PubMed DOI
Hector A, et al. 2010. General stabilizing effects of plant diversity on grassland productivity through population asynchrony and overyielding. Ecology 91, 2213–2220. (10.1890/09-1162.1) PubMed DOI
Van Ruijven J, Berendse F. 2010. Diversity enhances community recovery, but not resistance, after drought. Journal of Ecology 98, 81–86. (10.1111/j.1365-2745.2009.01603.x) DOI
Mueller KE, Tilman D, Fornara DA, Hobbie SE. 2012. Root depth distribution and the diversity–productivity relationship in a long-term grassland experiment. Ecology 94, 787–793. (10.1890/12-1399.1) DOI
Dimitrakopoulos PG, Schmid B. 2004. Biodiversity effects increase linearly with biotope space. Ecol. Lett. 7, 574–583. (10.1111/j.1461-0248.2004.00607.x) DOI
Yachi S, Loreau M. 1999. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc. Natl Acad. Sci. USA 96, 1463–1468. (10.1073/pnas.96.4.1463) PubMed DOI PMC
Tilman D, Downing JA. 1994. Biodiversity and stability in grasslands. Nature 367, 363–365. (10.1038/367363a0) DOI
Vetter D, Rücker G, Storch I. 2013. Meta-analysis: a need for well-defined usage in ecology and conservation biology. Ecosphere 4, 1–24. (10.1890/ES13-00062.1) DOI
Koricheva J, Gurevitch J. 2014. Uses and misuses of meta-analysis in plant ecology. J. Ecol. 102, 828–844. (10.1111/1365-2745.12224) DOI
Loreau M, Hector A. 2001. Partitioning selection and complementarity in biodiversity experiments. Nature 412, 72–76. (10.1038/35083573) PubMed DOI
Cardinale BJ, Matulich KL, Hooper DU, Byrnes JE, Duffy E, Gamfeldt L, Balvanera P, Connor MIO, Gonzalez A. 2011. The functional role of producer diversity in ecosystems. Am. J. Bot. 98, 1–21. (10.3732/ajb.1000364) PubMed DOI
Cardinale BJ, Wright JP, Cadotte MW, Carroll IT, Hector A, Srivastava DS, Loreau M, Weis JJ. 2007. Impacts of plant diversity on biomass production increase through time because of species complementarity. Proc. Natl Acad. Sci. USA 104, 18 123–18 128. (10.1073/pnas.0709069104) PubMed DOI PMC
Fargione J, Tilman D, Dybzinski R, Lambers JHR, Clark C, Harpole WS, Knops JMH, Reich PB, Loreau M. 2007. From selection to complementarity: shifts in the causes of biodiversity–productivity relationships in a long-term biodiversity experiment. Phil. Trans. R. Soc. B 274, 871–876. (10.1098/rspb.2006.0351) PubMed DOI PMC
Vicente-Serrano SM, et al. 2013. Response of vegetation to drought time-scales across global land biomes. Proc. Natl Acad. Sci. USA 110, 52–57. (10.1073/pnas.1207068110) PubMed DOI PMC
Team RC. 2014. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; (http://cran.r-project.org)
Weigelt A, Weisser WW, Buchmann N, Scherer-Lorenzen M. 2009. Biodiversity for multifunctional grasslands: equal productivity in high-diversity low-input and low-diversity high-input systems. Biogeosciences 6, 1695–1706. (10.5194/bg-6-1695-2009) DOI
Nyfeler D, Huguenin-Elie O, Suter M, Frossard E, Connolly J, Lüscher A. 2009. Strong mixture effects among four species in fertilized agricultural grassland led to persistent and consistent transgressive overyielding. J. Appl. Ecol. 46, 683–691. (10.1111/j.1365-2664.2009.01653.x) DOI
Soliveres S, et al. 2016. Locally rare species influence grassland ecosystem multifunctionality. Phil. Trans. R. Soc. B 371, 20150269 (doi:10.1098.rstb.2015.0269) PubMed PMC
Isbell F, Reich PB, Tilman D, Hobbie SE, Polasky S, Binder S. 2013. Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem productivity. Proc. Natl Acad. Sci. USA 110, 11 911–11 916. (10.1073/pnas.1310880110) PubMed DOI PMC
Allan E, et al. 2015. Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecol. Lett. 18, 834–843. (10.1111/ele.12469) PubMed DOI PMC
Sala OE, et al. 2000. Global biodiversity scenarios for the year 2100. Science 287, 1770–1774. (10.1126/science.287.5459.1770) PubMed DOI
Strecker T, Barnard RL, Niklaus PA, Scherer-Lorenzen M, Weigelt A, Scheu S, Eisenhauer N. 2015. Effects of plant diversity, functional group composition, and fertilization on soil microbial properties in experimental grassland. PLoS ONE 10, e0125678 (10.1371/journal.pone.0125678) PubMed DOI PMC
Fargione J, Tilman D. 2005. Niche differences in phenology and rooting depth promote coexistence with a dominant C4 bunchgrass. Oecologia 143, 598–606. (10.1007/s00442-005-0010-y) PubMed DOI
Oelmann Y, Richter AK, Roscher C, Rosenkranz S, Temperton VM, Weisser WW, Wilcke W. 2011. Does plant diversity influence phosphorus cycling in experimental grasslands? Geoderma 167–168, 178–187. (10.1016/j.geoderma.2011.09.012) DOI
Hautier Y, Tilman D, Isbell F, Seabloom EW, Borer ET, Reich PB. 2015. Anthropogenic environmental changes affect ecosystem stability via biodiversity. Science 348, 336–340. (10.1126/science.aaa1788) PubMed DOI
La Pierre KJ, Blumenthal DM, Brown CS, Klein JA, Smith MD. 2016. Drivers of variation in aboveground net primary productivity and plant community composition differ across a broad precipitation gradient. Ecosystems 19, 1–13. (10.1007/s10021-015-9949-7) DOI
Tilman D, Lehman CL, Bristow CE. 1998. Diversity–stability relationships: statistical inevitability or ecological consequence? Am. Nat. 151, 277–282. (10.1086/286118) PubMed DOI
Verheyen K, Bulteel H, Palmborg C, Olivié B, Nijs I, Raes D, Muys B. 2008. Can complementarity in water use help to explain diversity–productivity relationships in experimental grassland plots? Oecologia 156, 351–361. (10.1007/s00442-008-0998-x) PubMed DOI
Reich PB. 2014. The world-wide ‘fast–slow’ plant economics spectrum: a traits manifesto. J. Ecol. 102, 275–301. (10.1111/1365-2745.12211) DOI
Craine JM, Ocheltree TW, Nippert JB, Towne EG, Skibbe AM, Kembel SW, Fargione JE. 2013. Global diversity of drought tolerance and grassland climate-change resilience. Nat. Clim. Change 3, 63–67. (10.1038/nclimate1634) DOI
Choat B, et al. 2012. Global convergence in the vulnerability of forests to drought. Nature 491, 752–755. (10.1038/nature11688) PubMed DOI
Wright SJ, et al. 2010. Functional traits and the growth-mortality trade-off in tropical trees. Ecology 91, 3664–3674. (10.1890/09-2335.1) PubMed DOI
Ziter C, Bennett EM, Gonzalez A. 2014. Temperate forest fragments maintain aboveground carbon stocks out to the forest edge despite changes in community composition. Oecologia 176, 893–902. (10.1007/s00442-014-3061-0) PubMed DOI
Fraser LH, et al. 2012. Coordinated distributed experiments: an emerging tool for testing global hypotheses in ecology and environmental science. Front. Ecol. Environ. 11, 147–155. (10.1890/110279) DOI
Grace JB, et al. 2016. Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature 529, 390–393. (10.1038/nature16524) PubMed DOI
Smith M, et al. 2015. Global environmental change and the nature of aboveground net primary productivity responses: insights from long-term experiments. Oecologia 177, 935–947. (10.1007/s00442-015-3230-9) PubMed DOI