Plant diversity effects on grassland productivity are robust to both nutrient enrichment and drought

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid27114579

Global change drivers are rapidly altering resource availability and biodiversity. While there is consensus that greater biodiversity increases the functioning of ecosystems, the extent to which biodiversity buffers ecosystem productivity in response to changes in resource availability remains unclear. We use data from 16 grassland experiments across North America and Europe that manipulated plant species richness and one of two essential resources-soil nutrients or water-to assess the direction and strength of the interaction between plant diversity and resource alteration on above-ground productivity and net biodiversity, complementarity, and selection effects. Despite strong increases in productivity with nutrient addition and decreases in productivity with drought, we found that resource alterations did not alter biodiversity-ecosystem functioning relationships. Our results suggest that these relationships are largely determined by increases in complementarity effects along plant species richness gradients. Although nutrient addition reduced complementarity effects at high diversity, this appears to be due to high biomass in monocultures under nutrient enrichment. Our results indicate that diversity and the complementarity of species are important regulators of grassland ecosystem productivity, regardless of changes in other drivers of ecosystem function.

Centre for Biodiversity Theory and Modelling Theoretical and Experimental Ecology Station Centre National de la Recherche Scientifique and Paul Sabatier University 09200 Moulis France

Department of Agricultural Research for Northern Sweden Swedish University of Agricultural Sciences 90183 Umea Sweden

Department of Biogeography BayCEER University of Bayreuth 95440 Bayreuth Germany

Department of Biosciences College of Science Swansea University Swansea Wales UK

Department of Botany Faculty of Sciences University of South Bohemia Branisovska 31 37005 Ceske Budejovice Czech Republic

Department of Community Ecology Helmholtz Centre for Environmental Research UFZ Theodor Lieser Strasse 4 06120 Halle Germany

Department of Disturbance Ecology BayCEER University of Bayreuth 95440 Bayreuth Germany

Department of Ecology and Ecosystem Management School of Life Sciences Weihenstephan Technische Universität München 85354 Freising Germany

Department of Ecology Evolution and Behavior University of Minnesota Twin Cities Saint Paul MN 55108 USA

Department of Ecology Evolution and Environmental Biology Columbia University New York NY 10027 USA

Department of Ecology Evolution and Organismal Biology Iowa State University Ames IA 50011 USA

Department of Forest Resources University of Minnesota 1530 North Cleveland Avenue St Paul MN 55108 USA Hawkesbury Institute for the Environment Western Sydney University Penrith New South Wales 2751 Australia

Department of Plant Sciences University of Oxford Oxford OX1 3RB UK

Ecological and Environmental Modelling Group School of Mathematics and Statistics University College Dublin Dublin 4 Republic of Ireland

Ecology and Biodiversity Group Department of Biology Utrecht University Padualaan 8 3584 Utrecht The Netherlands

German Centre for Integrative Biodiversity Research Halle Jena Leipzig Deutscher Platz 5e 04103 Leipzig Germany Department of Ecology and Ecosystem Management School of Life Sciences Weihenstephan Technische Universität München 85354 Freising Germany

German Centre for Integrative Biodiversity Research Halle Jena Leipzig Deutscher Platz 5e 04103 Leipzig Germany Department of Physiological Diversity Helmholtz Centre for Environmental Research Leipzig Germany

German Centre for Integrative Biodiversity Research Halle Jena Leipzig Deutscher Platz 5e 04103 Leipzig Germany Institute of Biology Geobotany and Botanical Garden Martin Luther University Halle Wittenberg Halle Germany

German Centre for Integrative Biodiversity Research Halle Jena Leipzig Deutscher Platz 5e 04103 Leipzig Germany Institute of Biology Leipzig University Johannisallee 21 04103 Leipzig Germany

Graduate School of Environment and Information Sciences Yokohama National University 79 7 Tokiwadai Hodogaya Yokohama Kanagawa 240 8501 Japan

Institute for Plant Sciences University of Bern 3013 Bern Switzerland Biodiversity and Climate Research Centre Senckenberg Senckenberganlage 25 Frankfurt am Main 60325 Germany

Institute of Botany and Landscape Ecology Ernst Moritz Arndt University Greifswald 17487 Greifswald Germany

Institute of Ecology Friedrich Schiller University Jena Dornburger Strasse 159 07743 Jena Germany

Institute of Evolutionary Biology and Environmental Studies University of Zurich 8057 Zurich Switzerland

Plant Ecology and Nature Conservation Group Wageningen University PO Box 47 6700 AA Wageningen The Netherlands

USDA ARS Grassland Soil and Water Research Laboratory Temple TX 76502 USA

Zobrazit více v PubMed

Barnosky AD, et al. 2012. Approaching a state shift in Earth's biosphere. Nature 486, 52–58. (10.1038/nature11018) PubMed DOI

Cardinale BJ, et al. 2012. Biodiversity loss and its impact on humanity. Nature 486, 59–67. (10.1038/nature11148) PubMed DOI

Brose U, Hillebrand H. 2016. Biodiversity and ecosystem functioning in dynamic landscapes. Phil. Trans. R. Soc. B 371, 20150267 (doi:10.1098.rstb.2015.0267) PubMed PMC

Hooper DU, et al. 2012. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486, 105–108. (10.1038/nature11118) PubMed DOI

Tilman D, Isbell F, Cowles JM. 2014. Biodiversity and ecosystem functioning. Annu. Rev. Ecol. Evol. Syst. 45, 471–493. (10.1146/annurev-ecolsys-120213-091917) DOI

Hector A, et al. 1999. Plant diversity and productivity experiments in european grasslands. Science 286, 1123–1127. (10.1126/science.286.5442.1123) PubMed DOI

Lee M, Manning P, Rist J, Power SA, Marsh C. 2010. A global comparison of grassland biomass responses to CO2 and nitrogen enrichment. Phil. Trans. R. Soc. B 365, 2047–2056. (10.1098/rstb.2010.0028) PubMed DOI PMC

Smith MD, Knapp AK, Collins SL. 2009. A framework for assessing ecosystem dynamics in response to chronic resource alterations induced by global change. Ecology 90, 3279–3289. (10.1890/08-1815.1) PubMed DOI

Reich PB, et al. 2001. Plant diversity enhances ecosystem responses to elevated CO2 and nitrogen deposition. Nature 410, 809–810. (10.1038/35071062) PubMed DOI

Pfisterer AB, Schmid B. 2002. Diversity-dependent production can decrease the stability of ecosystem functioning. Nature 416, 84–86. (10.1038/416084a) PubMed DOI

Isbell F, et al. 2015. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526, 574–577. (10.1038/nature15374) PubMed DOI

Thakur MP, et al. 2015. Plant diversity drives soil microbial biomass carbon in grasslands irrespective of global environmental change factors. Glob. Change Biol 21, 4076–4085. (10.1111/gcb.13011) PubMed DOI

Wright AJ, et al. 2015. Flooding disturbances increase resource availability and productivity but reduce stability in diverse plant communities. Nat. Commun. 6, 6092 (10.1038/ncomms7092) PubMed DOI

van Ruijven J, Berendse F. 2005. Diversity–productivity relationships: Initial effects, long-term patterns, and underlying mechanisms. Proc. Natl Acad. Sci. USA 102, 695–700. (10.1073/pnas.0407524102) PubMed DOI PMC

Suding KN, Collins SL, Gough L, Clark C, Cleland EE, Gross KL, Milchunas DG, Pennings S. 2005. Functional- and abundance-based mechanisms explain diversity loss due to N fertilization. Proc. Natl Acad. Sci. USA 102, 4387–4392. (10.1073/pnas.0408648102) PubMed DOI PMC

Hartwig UA. 1998. The regulation of symbiotic N2 fixation: a conceptual model of N feedback from the ecosystem to the gene expression level. Persp. Plant Ecol. Evol. Syst. 1, 92–120. (10.1078/1433-8319-00054) DOI

McKane RB, et al. 2002. Resource-based niches provide a basis for plant species diversity and dominance in arctic tundra. Nature 415, 68–71. (10.1038/415068a) PubMed DOI

Harpole WS, et al. 2011. Nutrient co-limitation of primary producer communities. Ecol. Lett. 14, 852–862. (10.1111/j.1461-0248.2011.01651.x) PubMed DOI

Hautier Y, Niklaus PA, Hector A. 2009. Competition for light causes plant biodiversity loss after eutrophication. Science 324, 636–638. (10.1126/science.1169640) PubMed DOI

Reich PB, Hobbie SE, Lee T, Ellsworth DS, West JB, Tilman D, Knops JMH, Naeem S, Trost J. 2006. Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature 440, 922–925. (10.1038/nature04486) PubMed DOI

Sterck F, Markesteijn L, Schieving F, Poorter L. 2011. Functional traits determine trade-offs and niches in a tropical forest community. Proc. Natl Acad. Sci. USA 108, 20627. (10.1073/pnas.1106950108) PubMed DOI PMC

Oelmann Y, et al. 2011. Plant diversity effects on aboveground and belowground N pools in temperate grassland ecosystems: development in the first 5 years after establishment. Glob. Biogeochem. Cycles 25, GB2014 (10.1029/2010GB003869) DOI

Reich PB, Tilman D, Isbell F, Mueller K, Hobbie SE, Flynn DFB, Eisenhauer N. 2012. Impacts of biodiversity loss escalate through time as redundancy fades. Science 336, 589–592. (10.1126/science.1217909) PubMed DOI

Cong W-F, van Ruijven J, Mommer L, De Deyn GB, Berendse F, Hoffland E. 2014. Plant species richness promotes soil carbon and nitrogen stocks in grasslands without legumes. J. Ecol. 102, 1163–1170. (10.1111/1365-2745.12280) DOI

Fornara DA, Tilman D. 2009. Ecological mechanisms associated with the positive diversity–productivity relationship in an N-limited grassland. Ecology 90, 408–418. (10.1890/08-0325.1) PubMed DOI

Hector A, et al. 2010. General stabilizing effects of plant diversity on grassland productivity through population asynchrony and overyielding. Ecology 91, 2213–2220. (10.1890/09-1162.1) PubMed DOI

Van Ruijven J, Berendse F. 2010. Diversity enhances community recovery, but not resistance, after drought. Journal of Ecology 98, 81–86. (10.1111/j.1365-2745.2009.01603.x) DOI

Mueller KE, Tilman D, Fornara DA, Hobbie SE. 2012. Root depth distribution and the diversity–productivity relationship in a long-term grassland experiment. Ecology 94, 787–793. (10.1890/12-1399.1) DOI

Dimitrakopoulos PG, Schmid B. 2004. Biodiversity effects increase linearly with biotope space. Ecol. Lett. 7, 574–583. (10.1111/j.1461-0248.2004.00607.x) DOI

Yachi S, Loreau M. 1999. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc. Natl Acad. Sci. USA 96, 1463–1468. (10.1073/pnas.96.4.1463) PubMed DOI PMC

Tilman D, Downing JA. 1994. Biodiversity and stability in grasslands. Nature 367, 363–365. (10.1038/367363a0) DOI

Vetter D, Rücker G, Storch I. 2013. Meta-analysis: a need for well-defined usage in ecology and conservation biology. Ecosphere 4, 1–24. (10.1890/ES13-00062.1) DOI

Koricheva J, Gurevitch J. 2014. Uses and misuses of meta-analysis in plant ecology. J. Ecol. 102, 828–844. (10.1111/1365-2745.12224) DOI

Loreau M, Hector A. 2001. Partitioning selection and complementarity in biodiversity experiments. Nature 412, 72–76. (10.1038/35083573) PubMed DOI

Cardinale BJ, Matulich KL, Hooper DU, Byrnes JE, Duffy E, Gamfeldt L, Balvanera P, Connor MIO, Gonzalez A. 2011. The functional role of producer diversity in ecosystems. Am. J. Bot. 98, 1–21. (10.3732/ajb.1000364) PubMed DOI

Cardinale BJ, Wright JP, Cadotte MW, Carroll IT, Hector A, Srivastava DS, Loreau M, Weis JJ. 2007. Impacts of plant diversity on biomass production increase through time because of species complementarity. Proc. Natl Acad. Sci. USA 104, 18 123–18 128. (10.1073/pnas.0709069104) PubMed DOI PMC

Fargione J, Tilman D, Dybzinski R, Lambers JHR, Clark C, Harpole WS, Knops JMH, Reich PB, Loreau M. 2007. From selection to complementarity: shifts in the causes of biodiversity–productivity relationships in a long-term biodiversity experiment. Phil. Trans. R. Soc. B 274, 871–876. (10.1098/rspb.2006.0351) PubMed DOI PMC

Vicente-Serrano SM, et al. 2013. Response of vegetation to drought time-scales across global land biomes. Proc. Natl Acad. Sci. USA 110, 52–57. (10.1073/pnas.1207068110) PubMed DOI PMC

Team RC. 2014. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; (http://cran.r-project.org)

Weigelt A, Weisser WW, Buchmann N, Scherer-Lorenzen M. 2009. Biodiversity for multifunctional grasslands: equal productivity in high-diversity low-input and low-diversity high-input systems. Biogeosciences 6, 1695–1706. (10.5194/bg-6-1695-2009) DOI

Nyfeler D, Huguenin-Elie O, Suter M, Frossard E, Connolly J, Lüscher A. 2009. Strong mixture effects among four species in fertilized agricultural grassland led to persistent and consistent transgressive overyielding. J. Appl. Ecol. 46, 683–691. (10.1111/j.1365-2664.2009.01653.x) DOI

Soliveres S, et al. 2016. Locally rare species influence grassland ecosystem multifunctionality. Phil. Trans. R. Soc. B 371, 20150269 (doi:10.1098.rstb.2015.0269) PubMed PMC

Isbell F, Reich PB, Tilman D, Hobbie SE, Polasky S, Binder S. 2013. Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem productivity. Proc. Natl Acad. Sci. USA 110, 11 911–11 916. (10.1073/pnas.1310880110) PubMed DOI PMC

Allan E, et al. 2015. Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecol. Lett. 18, 834–843. (10.1111/ele.12469) PubMed DOI PMC

Sala OE, et al. 2000. Global biodiversity scenarios for the year 2100. Science 287, 1770–1774. (10.1126/science.287.5459.1770) PubMed DOI

Strecker T, Barnard RL, Niklaus PA, Scherer-Lorenzen M, Weigelt A, Scheu S, Eisenhauer N. 2015. Effects of plant diversity, functional group composition, and fertilization on soil microbial properties in experimental grassland. PLoS ONE 10, e0125678 (10.1371/journal.pone.0125678) PubMed DOI PMC

Fargione J, Tilman D. 2005. Niche differences in phenology and rooting depth promote coexistence with a dominant C4 bunchgrass. Oecologia 143, 598–606. (10.1007/s00442-005-0010-y) PubMed DOI

Oelmann Y, Richter AK, Roscher C, Rosenkranz S, Temperton VM, Weisser WW, Wilcke W. 2011. Does plant diversity influence phosphorus cycling in experimental grasslands? Geoderma 167–168, 178–187. (10.1016/j.geoderma.2011.09.012) DOI

Hautier Y, Tilman D, Isbell F, Seabloom EW, Borer ET, Reich PB. 2015. Anthropogenic environmental changes affect ecosystem stability via biodiversity. Science 348, 336–340. (10.1126/science.aaa1788) PubMed DOI

La Pierre KJ, Blumenthal DM, Brown CS, Klein JA, Smith MD. 2016. Drivers of variation in aboveground net primary productivity and plant community composition differ across a broad precipitation gradient. Ecosystems 19, 1–13. (10.1007/s10021-015-9949-7) DOI

Tilman D, Lehman CL, Bristow CE. 1998. Diversity–stability relationships: statistical inevitability or ecological consequence? Am. Nat. 151, 277–282. (10.1086/286118) PubMed DOI

Verheyen K, Bulteel H, Palmborg C, Olivié B, Nijs I, Raes D, Muys B. 2008. Can complementarity in water use help to explain diversity–productivity relationships in experimental grassland plots? Oecologia 156, 351–361. (10.1007/s00442-008-0998-x) PubMed DOI

Reich PB. 2014. The world-wide ‘fast–slow’ plant economics spectrum: a traits manifesto. J. Ecol. 102, 275–301. (10.1111/1365-2745.12211) DOI

Craine JM, Ocheltree TW, Nippert JB, Towne EG, Skibbe AM, Kembel SW, Fargione JE. 2013. Global diversity of drought tolerance and grassland climate-change resilience. Nat. Clim. Change 3, 63–67. (10.1038/nclimate1634) DOI

Choat B, et al. 2012. Global convergence in the vulnerability of forests to drought. Nature 491, 752–755. (10.1038/nature11688) PubMed DOI

Wright SJ, et al. 2010. Functional traits and the growth-mortality trade-off in tropical trees. Ecology 91, 3664–3674. (10.1890/09-2335.1) PubMed DOI

Ziter C, Bennett EM, Gonzalez A. 2014. Temperate forest fragments maintain aboveground carbon stocks out to the forest edge despite changes in community composition. Oecologia 176, 893–902. (10.1007/s00442-014-3061-0) PubMed DOI

Fraser LH, et al. 2012. Coordinated distributed experiments: an emerging tool for testing global hypotheses in ecology and environmental science. Front. Ecol. Environ. 11, 147–155. (10.1890/110279) DOI

Grace JB, et al. 2016. Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature 529, 390–393. (10.1038/nature16524) PubMed DOI

Smith M, et al. 2015. Global environmental change and the nature of aboveground net primary productivity responses: insights from long-term experiments. Oecologia 177, 935–947. (10.1007/s00442-015-3230-9) PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Cumulative nitrogen enrichment alters the drivers of grassland overyielding

. 2024 Mar 11 ; 7 (1) : 309. [epub] 20240311

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...