VOCs Dotaz Zobrazit nápovědu
Currently, widely available three-dimensional (3D) printers are very popular with the public. Previous research has shown that these printers can emit ultrafine particles (UFPs) and volatile organic compounds (VOCs). Several studies have examined the emissivity of filaments from 3D printing, except glycol modified polyethylene terephthalate (PETG) and styrene free co-polyester (NGEN) filaments. The aim of this study was to evaluate UFP and VOC emissions when printing using a commonly available 3D printer (ORIGINAL PRUSA i3 MK2 printer) using PETG and NGEN. The concentrations of UFPs were determined via measurements of particle number concentration and size distribution. A thermal analysis was carried out to ascertain whether signs of fiber decomposition would occur at printing temperatures. The total amount of VOCs was determined using a photoionization detector, and qualitatively analyzed via gas chromatography-mass spectrometry. The total particle concentrations were 3.88 × 1010 particles for PETG and 6.01 × 109 particles for NGEN. VOCs at very low concentrations were detected in both filaments, namely ethylbenzene, toluene, and xylene. In addition, styrene was identified in PETG. On the basis of our results, we recommend conducting additional measurements, to more accurately quantify personal exposure to both UFPs and VOCs, focusing on longer exposure as it can be a source of potential cancer risk.
People living on both sides of the German-Czech border are subject to episodes of odor air pollution. A joint German-Czech air sampling and risk assessment project was established to identify the substances responsible and their sources. Twenty-four volunteer study participants, 14 from the NW Czech Republic and 10 from Germany (Saxony) reported odors and collected canister samples during sampling periods in winter 2017 and 2018 and autumn 2018. Canister samples and passive samplers were analyzed for volatile organic compounds (VOCs) and passive samplers were analyzed for VOCs and carbonyls. OAVs (Odor Activity Values) and back trajectories were calculated with the aim of identifying the odor sources. Calculated OAVs were in excellent agreement with perceived smells close to an oil processing plant. Odorants identified in fifty canister samples during odor episodes and carbonyl measurements close to the edible oil processing plant were used for health evaluation. Odors reported by participants in Saxony frequently differed from those reported by participants in the Czech Republic. This suggests that certain sources of odor lying on either side of the border only affect that side and not the other with similar considerations regarding health effects. VOCs, including carbonyls, were also sampled at two relatively remote locations during winters of 2017 and 2018; two main sources of odorous compounds were identified at these sites. Analysis of samples taken at sampling sites shows that VOC air pollution and, to a lesser extent carbonyl pollution, originate from both industrial and local sources. Even though levels of sampled substances were not associated with acute effects at any site, long-term exposures to selected compounds could be cause for concern for carcinogenicity at some sites. Odors in Seiffen were associated with carcinogenic compounds in can samples. Although not necessarily representative of long-term exposures to the compounds studied, results such as these suggest that further study is needed to better quantify long-term exposure to potentially harmful compounds, and to either confirm or deny the existence of substantive health risk.
- MeSH
- hodnocení rizik MeSH
- látky znečišťující vzduch * analýza MeSH
- lidé MeSH
- monitorování životního prostředí metody MeSH
- odoranty analýza MeSH
- těkavé organické sloučeniny * analýza MeSH
- zapojení do společnosti MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
Magnetron sputtering was employed for the deposition of cobalt oxide thin films on stainless steel meshes. Catalysts prepared by sputtering in inert and oxidation atmosphere were compared with those obtained by electrochemical deposition and hydrothermal synthesis. Systematic characterization using X-ray diffraction, scanning electron microscopy, N2 physisorption, infrared spectroscopy, Raman spectroscopy, and temperature-programmed reduction by hydrogen allowed detailed monitoring of their physicochemical properties. Ethanol gas-phase oxidation was employed as a model reaction to reveal the catalytic performance of the catalysts. It was shown that the catalyst prepared by magnetron sputtering in oxidation atmosphere exhibited the best mechanical stability among all studied catalysts. Moreover, its catalytic activity was 18 times higher than that of pelletized commercial cobalt oxide.
- MeSH
- katalýza MeSH
- kobalt * MeSH
- oxidy * MeSH
- těkavé organické sloučeniny * MeSH
- Publikační typ
- časopisecké články MeSH
The analysis of volatile organic compounds (VOCs) can provide important clinical information (entirely non-invasively); however, the exact extent to which VOCs from human skin can be signatures of health and disease is unknown. This systematic review summarises the published literature concerning the methodology, application, and volatile profiles of skin VOC studies. An online literature search was conducted in accordance with the preferred reporting items for systematic reviews and meta-analysis, to identify human skin VOC studies using untargeted mass spectrometry (MS) methods. The principal outcome was chemically verified VOCs detected from the skin. Each VOC was cross-referenced using the CAS number against the Human Metabolome and KEGG databases to evaluate biological origins. A total of 29 studies identified 822 skin VOCs from 935 participants. Skin VOCs were commonly sampled from the hand (n = 9) or forearm (n = 7) using an absorbent patch (n = 15) with analysis by gas chromatography MS (n = 23). Twenty-two studies profiled the skin VOCs of healthy subjects, demonstrating a volatolome consisting of aldehydes (18%), carboxylic acids (12%), alkanes (12%), fatty alcohols (9%), ketones (7%), benzenes and derivatives (6%), alkenes (2%), and menthane monoterpenoids (2%). Of the VOCs identified, 13% had putative endogenous origins, 46% had tentative exogenous origins, and 40% were metabolites from mixed metabolic pathways. This review has comprehensively profiled the human skin volatolome, demonstrating the presence of a distinct VOC signature of healthy skin, which can be used as a reference for future researchers seeking to unlock the clinical potential of skin volatolomics. As significant proportions of identified VOCs have putative exogenous origins, strategies to minimise their presence through methodological refinements and identifying confounding compounds are discussed.
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
sloučeniny v životním prostředí 140 -- 6.2 Těkavé organické látky, úvod a definice 141 -- 6.2.1 Zdroje VOCs 142 -- 6.2.2 Základní chemické a fyzikální vlastnosti a reaktivita VOCs 143 -- 6.2.3 Procesy odbourávání Monokarboxylové kyseliny 147 -- 6.2.3.7 Halogenované uhlovodíky 148 -- 6.2.4 Toxické a karcinogenní účinky VOCs 148 -- 6.2.5 Negativní účinky VOCs v atmosféře 148 -- 6.3 Semivolatilní, persistentní organické polutanty
1. elektronické vydání 1 online zdroj (352 stran)
Publikace, na níž se podílel tým předních českých odborníků na životní prostředí, se věnuje problematice atmosféry, klimatu a kvality ovzduší v širokých souvislostech, jež přesahují pouhý přírodovědný pohled. K chemickým, fyzikálním charakteristikám ovzduší a k jejich dynamice promlouvají v dobách proměn globálního klimatu a emisí toxických látek do ovzduší měst a průmyslových aglomerací nejen přírodovědci, ale i ekonomové, politici a laická veřejnost. V obsáhlé učebnici o aktuálním stavu klimatu se proto setkávají specializované kapitoly od autorů s různým odborným zázemím. Cílem editorů bylo umožnit čtenářům zaměřit se na jednotlivé části podle jejich zájmu a potřeby, ohled je přitom brán zejména na studenty a odbornou veřejnost bez hlubších znalostí v oborech fyziky, chemie či matematiky. Kniha probírá důležité aspekty znečištění ovzduší a pomáhá pochopit principy jevů a dějů v zemské atmosféře, klimatické změny a problematiku ochrany atmosféry v globálním kontextu, včetně ekologické politiky v praxi.
RATIONALE: The major objective of this exploratory study was to implement selected ion flow tube mass spectrometry, SIFT-MS, as a method for the on-line quantification of the volatile organic compounds, VOCs, in the headspace of the ground roasted coffee. METHODS: The optimal precursor ions and characteristic analyte ions were selected for real-time SIFT-MS quantification of those VOCs that are the most abundant in the headspace or known to contribute to aroma. NO+ reagent ion reactions were exploited for most of the VOC analyses. VOC identifications were confirmed using gas chromatography/mass spectrometry, GC/MS, coupled with solid-phase microextraction, SPME. RESULTS: Thirty-one VOCs were quantified, including several alcohols, aldehydes, ketones, carboxylic acids, esters and some heterocyclic compounds. Variations in the concentrations of each VOC in the seven regional coffees were typically less than a factor of 2, yet concentrations patterns characteristic of the different regional coffees were revealed by heat map and principal component analyses. The coefficient of variation in the concentrations across the seven coffees was typically below 24% except for furfural, furan, methylfuran and guaiacol. CONCLUSIONS: The SIFT-MS analytical method can be used to quantify in real time the most important odoriferous VOCs in ground coffee headspace to sufficient precision to reveal some differences in concentration patterns for coffee produced in different countries.
- MeSH
- aldehydy analýza MeSH
- alkoholy analýza MeSH
- analýza hlavních komponent MeSH
- analýza potravin metody MeSH
- Coffea chemie MeSH
- hmotnostní spektrometrie metody MeSH
- káva chemie MeSH
- ketony analýza MeSH
- manipulace s potravinami MeSH
- mikroextrakce na pevné fázi metody MeSH
- plynová chromatografie s hmotnostně spektrometrickou detekcí metody MeSH
- těkavé organické sloučeniny analýza chemie MeSH
- Publikační typ
- časopisecké články MeSH
Blood is a complex biological matrix providing valuable information on nutritional, metabolic, and immune status. The detection of blood biomarkers requires sensitive analytical methods because analytes are at very low concentrations. Peripheral blood monocytes play a crucial role in inflammatory processes, and the metabolites released by monocytes during these processes might serve as important signalling molecules and biomarkers of particular physiological states. Headspace solid-phase microextraction (HS-SPME) combined with two different mass spectrometric platforms, two-dimensional (2D) gas chromatography coupled to time-of-flight mass spectrometry (2D-GC/TOF-MS) and one-dimensional gas chromatography coupled to Orbitrap mass spectrometry (GC/Orbitrap-MS), were applied for the investigation of volatile organic compounds (VOCs) produced by human peripheral blood monocytes. An optimized method was subsequently applied for the characterization of changes in VOCs induced by lipopolysaccharides (LPS) and zymosan (ZYM) stimulation. Overall, the 2D-GC/TOF-MS and the 1D-GC/Orbitrap-MS analyses each yielded about 4000 and 400 peaks per sample, respectively. In total, 91 VOCs belonging to eight different chemical classes were identified. The samples were collected in two fractions, conditioned media for monitoring extracellularly secreted molecules and cell pellet samples to determine the intracellular composition of VOCs. Alcohols, ketones, and hydrocarbons were the main chemical classes of the metabolic profile identified in cell fractions. Aldehydes, acids and cyclic compounds were characteristic of the conditioned media fraction. Here we demonstrate that HS-SPME-2D-GC/TOF-MS is more suitable for the identification of specific VOC profiles produced by human monocytes than 1D-GC/Orbitrap-MS. We define the signature of VOCs occurring early after monocyte activation and characterise the signalling compounds released by immune cells into media.
- MeSH
- lidé MeSH
- mikroextrakce na pevné fázi MeSH
- monocyty metabolismus MeSH
- plynová chromatografie s hmotnostně spektrometrickou detekcí metody MeSH
- reprodukovatelnost výsledků MeSH
- těkavé organické sloučeniny * analýza izolace a purifikace metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
In this paper volatile organic compounds (VOCs) from durum wheat cultivars and landraces were analyzed using PTR-TOF-MS. The aim was to characterize the VOC's profile of the wholemeal flour and of the kernel to find out if any VOCs were specific to varieties and sample matrices. The VOC data is accompanied by SDS-PAGE analyses of the storage proteins (gliadins and glutenins). Statistical analyses was carried out both on the signals obtained by MS and on the protein profiles. The difference between the VOC profile of two cultivars or two preparations of the same sample - matrices, in this case kernel vs wholemeal flour - can be very subtle; the high resolution of PTR-TOF-MS - down to levels as low as pptv - made it possible to recognize these differences. The effects of grinding on the VOC profiles were analyzed using SIMPER and Tanglegram statistical methods. Our results show that it is possible describe samples using VOC profiles and protein data.
- MeSH
- analýza hlavních komponent MeSH
- biologická evoluce MeSH
- gliadin izolace a purifikace MeSH
- gluteny izolace a purifikace MeSH
- mouka analýza MeSH
- pšenice chemie klasifikace genetika metabolismus MeSH
- semena rostlinná chemie metabolismus MeSH
- šlechtění rostlin MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice MeSH
- těkavé organické sloučeniny izolace a purifikace metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Itálie MeSH
RATIONALE: Peroxidation of lipids in cellular membranes results in the release of volatile organic compounds (VOCs), including saturated aldehydes. The real-time quantification of trace VOCs produced by cancer cells during peroxidative stress presents a new challenge to non-invasive clinical diagnostics, which as described here, we have met with some success. METHODS: A combination of selected ion flow tube mass spectrometry (SIFT-MS), a technique that allows rapid, reliable quantification of VOCs in humid air and liquid headspace, and electrochemistry to generate reactive oxygen species (ROS) in vitro has been used. Thus, VOCs present in the headspace of CALU-1 cancer cell line cultures exposed to ROS have been monitored and quantified in real time using SIFT-MS. RESULTS: The CALU-1 lung cancer cells were cultured in 3D collagen to mimic in vivo tissue. Real-time SIFT-MS analyses focused on the volatile aldehydes: propanal, butanal, pentanal, hexanal, heptanal and malondialdehyde (propanedial), that are expected to be products of cellular membrane peroxidation. All six aldehydes were identified in the culture headspace, each reaching peak concentrations during the time of exposure to ROS and eventually reducing as the reactants were depleted in the culture. Pentanal and hexanal were the most abundant, reaching concentrations of a few hundred parts-per-billion by volume, ppbv, in the culture headspace. CONCLUSIONS: The results of these experiments demonstrate that peroxidation of cancer cells in vitro can be monitored and evaluated by direct real-time analysis of the volatile aldehydes produced. The combination of adopted methodology potentially has value for the study of other types of VOCs that may be produced by cellular damage.
- MeSH
- aldehydy analýza metabolismus MeSH
- buněčné kultury metody MeSH
- elektrochemické techniky MeSH
- hmotnostní spektrometrie metody MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- nádory metabolismus MeSH
- oxidace-redukce MeSH
- oxidační stres fyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH