Styrene radical cations for chemical ionization mass spectrometry analyses of monoterpene hydrocarbons
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články
Grantová podpora
17-13157Y
Grantová Agentura České Republiky
PubMed
31418494
DOI
10.1002/rcm.8556
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
RATIONALE: Monoterpene hydrocarbons play an important role in the formation of secondary aerosol particles and in atmospheric chemistry. Thus, there is a demand to measure their individual concentrations in situ in real time. Currently, only the total concentration of monoterpenes C10 H16 can be determined by chemical ionization mass spectrometry techniques using reagent ions H3 O+ , NO+ and (C6 H6 )n +• without gas chromatographic separation. METHODS: The styrene cation C8 H8 +• was investigated as a reagent for chemical ionization of monoterpenes. The modified selected ion flow drift tube, SIFDT, technique was used to characterize the differences in product ion distributions between α-phellandrene, α-pinene, γ-terpinene, β-pinene, ocimene, sabinene, 3-carene, (R)-limonene, camphene and myrcene. RESULTS: The monoterpene molecular cation C10 H16 +• is the main product (about 90%) for all isomers except (R)-limonene and camphene with an efficient channel of C8 H8 +• C10 H16 adduct formation and γ-terpinene with unexpectedly significant product ions at m/z 134 and 135 corresponding to losses of H2 and H. CONCLUSIONS: Utilization of the styrene cation for the ionization of monoterpenes is beneficial due to the very low fragmentation of the product ions. Specific association product ions for camphene and (R)-limonene and fragment product ions for γ-terpinene allow them to be distinguished from other isomers that produce mostly the molecular cation.
Zobrazit více v PubMed
Knudsen JT, Tollsten L, Bergstrom LG. Floral scents - a checklist of volatile compounds isolated by headspace techniques. Phytochemistry. 1993;33(2):253-280.
Kesselmeier J, Staudt M. Biogenic volatile organic compounds (VOC): An overview on emission, physiology and ecology. J Atmos Chem. 1999;33(1):23-88.
Andreae MO, Crutzen PJ. Atmospheric aerosols: Biogeochemical sources and role in atmospheric chemistry. Science. 1997;276(5315):1052-1058.
Xu L, Guo HY, Boyd CM, et al. Effects of anthropogenic emissions on aerosol formation from isoprene and monoterpenes in the southeastern United States. Proc Natl Acad Sci U S A. 2015;112(1):37-42.
Shrivastava M, Cappa CD, Fan JW, et al. Recent advances in understanding secondary organic aerosol: Implications for global climate forcing. Rev Geophys. 2017;55(2):509-559.
Harrison RM, Yin JX. Particulate matter in the atmosphere: Which particle properties are important for its effects on health? Sci Total Environ. 2000;249(1-3):85-101.
Tani A, Hayward S, Hewitta CN. Measurement of monoterpenes and related compounds by proton transfer reaction-mass spectrometry (PTR-MS). Int J Mass Spectrom. 2003;223(1-3):561-578.
Schallhart S, Rantala P, Kajos MK, et al. Temporal variation of VOC fluxes measured with PTR-TOF above a boreal forest. Atmos Chem Phys. 2018;18(2):815-832.
Materic D, Lanza M, Sulzer P, et al. Selective reagent ion-time of flight-mass spectrometry study of six common monoterpenes. Int J Mass Spectrom. 2017;421:40-50.
Wang TS, Španěl P, Smith D. Selected ion flow tube, SIFT, studies of the reactions of H3O+, NO+ and O2+ with eleven C10H16 monoterpenes. Int J Mass Spectrom. 2003;228(1):117-126.
Schoon N, Amelynck C, Vereecken L, Arijs E. A selected ion flow tube study of the reactions of H3O+, NO+ and O2+ with a series of monoterpenes. Int J Mass Spectrom. 2003;229(3):231-240.
Canaval E, Hyttinen N, Schmidbauer B, Fischer L, Hansel A. NH4+ association and proton transfer reactions with a series of organic molecules. Front Chem. 2019;7:191.
Kim MJ, Zoerb MC, Campbell NR, et al. Revisiting benzene cluster cations for the chemical ionization of dimethyl sulfide and select volatile organic compounds. Atmos Meas Tech. 2016;9(4):1473-1484.
Lavi A, Vermeuel MP, Novak GA, Bertram TH. The sensitivity of benzene cluster cation chemical ionization mass spectrometry to select biogenic terpenes. Atmos Meas Tech. 2018;11(6):3251-3262.
Grover JR, Walters EA, Hui ET. Dissociation-energies of the benzene dimer and dimer cation. J Phys Chem. 1987;91(12):3233-3237.
Fernandez MT, Williams C, Mason RS, Cabral BJC. Experimental and theoretical proton affinity of limonene. J Chem Soc Faraday Trans. 1998;94(10):1427-1430.
Bouvier-Brown NC, Goldstein AH, Gilman JB, Kuster WC, de Gouw JA. In-situ ambient quantification of monoterpenes, sesquiterpenes, and related oxygenated compounds during BEARPEX 2007: Implications for gas- and particle-phase chemistry. Atmos Chem Phys. 2009;9(15):5505-5518.
Materic D, Lanza M, Sulzer P, et al. Monoterpene separation by coupling proton transfer reaction time-of-flight mass spectrometry with fastGC. Anal Bioanal Chem. 2015;407(25):7757-7763.
Lacko M, Wang N, Sovová K, Pásztor P, Španěl P. Addition of a fast GC to SIFT-MS for analyses of individual monoterpenes in mixtures. Atmos Meas Tech Discuss. 2019;2019:1-23.
Smith D, Spanel P. SIFT-MS and FA-MS methods for ambient gas phase analysis: Developments and applications in the UK. Analyst. 2015;140(8):2573-2591.
Spesyvyi A, Smith D, Spanel P. Ion chemistry at elevated ion-molecule interaction energies in a selected ion flow-drift tube: Reactions of H3O+, NO+ and O2+• with saturated aliphatic ketones. Phys Chem Chem Phys. 2017;19(47):31714-31723.
Spesyvyi A, Smith D, Spanel P. Selected ion flow-drift tube mass spectrometry: Quantification of volatile compounds in air and breath. Anal Chem. 2015;87(24):12151-12160.
Spesyvyi A, Spanel P. Determination of residence times of ions in a resistive glass selected ion flow-drift tube using the Hadamard transformation. Rapid Commun Mass Sp. 2015;29(17):1563-1570.
Spesyvyi A, Sovova K, Spanel P. In-tube collision-induced dissociation for selected ion flow-drift tube mass spectrometry, SIFDT-MS: A case study of NO+ reactions with isomeric monoterpenes. Rapid Commun Mass Spectrom. 2016;30(18):2009-2016.
Spesyvyi A, Sovova K, Smith D, Spanel P. Increase of the charge transfer rate coefficients for NO+ and O2+• reactions with isoprene molecules at elevated interaction energies. J Phys Chem A. 2018;122(51):9733-9737.
Španěl P, Spesyvyi A, Smith D. Electrostatic switching and selection of H3O+, NO+, and O2+• reagent ions for selected ion flow-drift tube mass spectrometric analyses of air and breath. Anal Chem. 2019;91(8):5380-5388.
Smith D, Španěl P. Selected ion flow tube mass spectrometry (SIFT-MS) for on-line trace gas analysis. Mass Spectrom Rev. 2005;24(5):661-700.
Su T. Parametrization of kinetic-energy dependences of ion polar molecule collision rate constants by trajectory calculations. J Chem Phys. 1994;100(6):4703-4703.
Mejean M, Giuliani A, Brunelle A, Touboul D. Determination of ionization energies of a monoterpene series by atmospheric pressure photoionization using tunable vacuum ultraviolet synchrotron radiation. Eur J Mass Spectrom. 2014;20(5):403-407.
Nauduri D, Greenberg A. Calculated ionization energies for a series of sesquiterpenes: Comparisons with experimental vertical ionization energies and comments on related structure-activity relationships (SARs). Struct Chem. 2009;20(3):417-421.
Neese F. Software update: The ORCA program system, version 4.0. Wires Comput Mol Sci. 2018;8(1):e1327.
Weigend F. Accurate coulomb-fitting basis sets for H to Rn. Phys Chem Chem Phys. 2006;8(9):1057-1065.
Stoychev GL, Auer AA, Neese F. Automatic generation of auxiliary basis sets. J Chem Theory Comput. 2017;13(2):554-562.
Wannier GH. Motion of gaseous ions in a strong electric field. 2. Phys Rev. 1952;87(5):795-798.
Spanel P, Smith D. Influence of weakly bound adduct ions on breath trace gas analysis by selected ion flow tube mass spectrometry (SIFT-MS). Int J Mass Spectrom. 2009;280(1-3):128-135.
Todd JFJ. Recommendations for nomenclature and symbolism for mass-spectroscopy (including an appendix of terms used in vacuum technology). Int J Mass Spectrom. 1995;142(3):211-240.
OSHA Occupational Chemical Database. Washington, DC: U.S. Dept. of Labor, Occupational Safety & Health Administration; 2018.
Recent developments and applications of selected ion flow tube mass spectrometry (SIFT-MS)